// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2012 Alexey Korepanov <kaikaikai@yandex.ru> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #define EIGEN_RUNTIME_NO_MALLOC #include "main.h" #include <limits> #include <Eigen/Eigenvalues> template<typename MatrixType> void real_qz(const MatrixType& m) { /* this test covers the following files: RealQZ.h */ using std::abs; typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; Index dim = m.cols(); MatrixType A = MatrixType::Random(dim,dim), B = MatrixType::Random(dim,dim); // Regression test for bug 985: Randomly set rows or columns to zero Index k=internal::random<Index>(0, dim-1); switch(internal::random<int>(0,10)) { case 0: A.row(k).setZero(); break; case 1: A.col(k).setZero(); break; case 2: B.row(k).setZero(); break; case 3: B.col(k).setZero(); break; default: break; } RealQZ<MatrixType> qz(dim); // TODO enable full-prealocation of required memory, this probably requires an in-place mode for HessenbergDecomposition //Eigen::internal::set_is_malloc_allowed(false); qz.compute(A,B); //Eigen::internal::set_is_malloc_allowed(true); VERIFY_IS_EQUAL(qz.info(), Success); // check for zeros bool all_zeros = true; for (Index i=0; i<A.cols(); i++) for (Index j=0; j<i; j++) { if (abs(qz.matrixT()(i,j))!=Scalar(0.0)) { std::cerr << "Error: T(" << i << "," << j << ") = " << qz.matrixT()(i,j) << std::endl; all_zeros = false; } if (j<i-1 && abs(qz.matrixS()(i,j))!=Scalar(0.0)) { std::cerr << "Error: S(" << i << "," << j << ") = " << qz.matrixS()(i,j) << std::endl; all_zeros = false; } if (j==i-1 && j>0 && abs(qz.matrixS()(i,j))!=Scalar(0.0) && abs(qz.matrixS()(i-1,j-1))!=Scalar(0.0)) { std::cerr << "Error: S(" << i << "," << j << ") = " << qz.matrixS()(i,j) << " && S(" << i-1 << "," << j-1 << ") = " << qz.matrixS()(i-1,j-1) << std::endl; all_zeros = false; } } VERIFY_IS_EQUAL(all_zeros, true); VERIFY_IS_APPROX(qz.matrixQ()*qz.matrixS()*qz.matrixZ(), A); VERIFY_IS_APPROX(qz.matrixQ()*qz.matrixT()*qz.matrixZ(), B); VERIFY_IS_APPROX(qz.matrixQ()*qz.matrixQ().adjoint(), MatrixType::Identity(dim,dim)); VERIFY_IS_APPROX(qz.matrixZ()*qz.matrixZ().adjoint(), MatrixType::Identity(dim,dim)); } void test_real_qz() { int s = 0; for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( real_qz(Matrix4f()) ); s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); CALL_SUBTEST_2( real_qz(MatrixXd(s,s)) ); // some trivial but implementation-wise tricky cases CALL_SUBTEST_2( real_qz(MatrixXd(1,1)) ); CALL_SUBTEST_2( real_qz(MatrixXd(2,2)) ); CALL_SUBTEST_3( real_qz(Matrix<double,1,1>()) ); CALL_SUBTEST_4( real_qz(Matrix2d()) ); } TEST_SET_BUT_UNUSED_VARIABLE(s) }