// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #define EIGEN_NO_STATIC_ASSERT #include "product.h" #include <Eigen/LU> // regression test for bug 447 template<int> void product1x1() { Matrix<float,1,3> matAstatic; Matrix<float,3,1> matBstatic; matAstatic.setRandom(); matBstatic.setRandom(); VERIFY_IS_APPROX( (matAstatic * matBstatic).coeff(0,0), matAstatic.cwiseProduct(matBstatic.transpose()).sum() ); MatrixXf matAdynamic(1,3); MatrixXf matBdynamic(3,1); matAdynamic.setRandom(); matBdynamic.setRandom(); VERIFY_IS_APPROX( (matAdynamic * matBdynamic).coeff(0,0), matAdynamic.cwiseProduct(matBdynamic.transpose()).sum() ); } template<typename TC, typename TA, typename TB> const TC& ref_prod(TC &C, const TA &A, const TB &B) { for(Index i=0;i<C.rows();++i) for(Index j=0;j<C.cols();++j) for(Index k=0;k<A.cols();++k) C.coeffRef(i,j) += A.coeff(i,k) * B.coeff(k,j); return C; } template<typename T, int Rows, int Cols, int Depth, int OC, int OA, int OB> typename internal::enable_if<! ( (Rows ==1&&Depth!=1&&OA==ColMajor) || (Depth==1&&Rows !=1&&OA==RowMajor) || (Cols ==1&&Depth!=1&&OB==RowMajor) || (Depth==1&&Cols !=1&&OB==ColMajor) || (Rows ==1&&Cols !=1&&OC==ColMajor) || (Cols ==1&&Rows !=1&&OC==RowMajor)),void>::type test_lazy_single(int rows, int cols, int depth) { Matrix<T,Rows,Depth,OA> A(rows,depth); A.setRandom(); Matrix<T,Depth,Cols,OB> B(depth,cols); B.setRandom(); Matrix<T,Rows,Cols,OC> C(rows,cols); C.setRandom(); Matrix<T,Rows,Cols,OC> D(C); VERIFY_IS_APPROX(C+=A.lazyProduct(B), ref_prod(D,A,B)); } template<typename T, int Rows, int Cols, int Depth, int OC, int OA, int OB> typename internal::enable_if< ( (Rows ==1&&Depth!=1&&OA==ColMajor) || (Depth==1&&Rows !=1&&OA==RowMajor) || (Cols ==1&&Depth!=1&&OB==RowMajor) || (Depth==1&&Cols !=1&&OB==ColMajor) || (Rows ==1&&Cols !=1&&OC==ColMajor) || (Cols ==1&&Rows !=1&&OC==RowMajor)),void>::type test_lazy_single(int, int, int) { } template<typename T, int Rows, int Cols, int Depth> void test_lazy_all_layout(int rows=Rows, int cols=Cols, int depth=Depth) { CALL_SUBTEST(( test_lazy_single<T,Rows,Cols,Depth,ColMajor,ColMajor,ColMajor>(rows,cols,depth) )); CALL_SUBTEST(( test_lazy_single<T,Rows,Cols,Depth,RowMajor,ColMajor,ColMajor>(rows,cols,depth) )); CALL_SUBTEST(( test_lazy_single<T,Rows,Cols,Depth,ColMajor,RowMajor,ColMajor>(rows,cols,depth) )); CALL_SUBTEST(( test_lazy_single<T,Rows,Cols,Depth,RowMajor,RowMajor,ColMajor>(rows,cols,depth) )); CALL_SUBTEST(( test_lazy_single<T,Rows,Cols,Depth,ColMajor,ColMajor,RowMajor>(rows,cols,depth) )); CALL_SUBTEST(( test_lazy_single<T,Rows,Cols,Depth,RowMajor,ColMajor,RowMajor>(rows,cols,depth) )); CALL_SUBTEST(( test_lazy_single<T,Rows,Cols,Depth,ColMajor,RowMajor,RowMajor>(rows,cols,depth) )); CALL_SUBTEST(( test_lazy_single<T,Rows,Cols,Depth,RowMajor,RowMajor,RowMajor>(rows,cols,depth) )); } template<typename T> void test_lazy_l1() { int rows = internal::random<int>(1,12); int cols = internal::random<int>(1,12); int depth = internal::random<int>(1,12); // Inner CALL_SUBTEST(( test_lazy_all_layout<T,1,1,1>() )); CALL_SUBTEST(( test_lazy_all_layout<T,1,1,2>() )); CALL_SUBTEST(( test_lazy_all_layout<T,1,1,3>() )); CALL_SUBTEST(( test_lazy_all_layout<T,1,1,8>() )); CALL_SUBTEST(( test_lazy_all_layout<T,1,1,9>() )); CALL_SUBTEST(( test_lazy_all_layout<T,1,1,-1>(1,1,depth) )); // Outer CALL_SUBTEST(( test_lazy_all_layout<T,2,1,1>() )); CALL_SUBTEST(( test_lazy_all_layout<T,1,2,1>() )); CALL_SUBTEST(( test_lazy_all_layout<T,2,2,1>() )); CALL_SUBTEST(( test_lazy_all_layout<T,3,3,1>() )); CALL_SUBTEST(( test_lazy_all_layout<T,4,4,1>() )); CALL_SUBTEST(( test_lazy_all_layout<T,4,8,1>() )); CALL_SUBTEST(( test_lazy_all_layout<T,4,-1,1>(4,cols) )); CALL_SUBTEST(( test_lazy_all_layout<T,7,-1,1>(7,cols) )); CALL_SUBTEST(( test_lazy_all_layout<T,-1,8,1>(rows) )); CALL_SUBTEST(( test_lazy_all_layout<T,-1,3,1>(rows) )); CALL_SUBTEST(( test_lazy_all_layout<T,-1,-1,1>(rows,cols) )); } template<typename T> void test_lazy_l2() { int rows = internal::random<int>(1,12); int cols = internal::random<int>(1,12); int depth = internal::random<int>(1,12); // mat-vec CALL_SUBTEST(( test_lazy_all_layout<T,2,1,2>() )); CALL_SUBTEST(( test_lazy_all_layout<T,2,1,4>() )); CALL_SUBTEST(( test_lazy_all_layout<T,4,1,2>() )); CALL_SUBTEST(( test_lazy_all_layout<T,4,1,4>() )); CALL_SUBTEST(( test_lazy_all_layout<T,5,1,4>() )); CALL_SUBTEST(( test_lazy_all_layout<T,4,1,5>() )); CALL_SUBTEST(( test_lazy_all_layout<T,4,1,6>() )); CALL_SUBTEST(( test_lazy_all_layout<T,6,1,4>() )); CALL_SUBTEST(( test_lazy_all_layout<T,8,1,8>() )); CALL_SUBTEST(( test_lazy_all_layout<T,-1,1,4>(rows) )); CALL_SUBTEST(( test_lazy_all_layout<T,4,1,-1>(4,1,depth) )); CALL_SUBTEST(( test_lazy_all_layout<T,-1,1,-1>(rows,1,depth) )); // vec-mat CALL_SUBTEST(( test_lazy_all_layout<T,1,2,2>() )); CALL_SUBTEST(( test_lazy_all_layout<T,1,2,4>() )); CALL_SUBTEST(( test_lazy_all_layout<T,1,4,2>() )); CALL_SUBTEST(( test_lazy_all_layout<T,1,4,4>() )); CALL_SUBTEST(( test_lazy_all_layout<T,1,5,4>() )); CALL_SUBTEST(( test_lazy_all_layout<T,1,4,5>() )); CALL_SUBTEST(( test_lazy_all_layout<T,1,4,6>() )); CALL_SUBTEST(( test_lazy_all_layout<T,1,6,4>() )); CALL_SUBTEST(( test_lazy_all_layout<T,1,8,8>() )); CALL_SUBTEST(( test_lazy_all_layout<T,1,-1, 4>(1,cols) )); CALL_SUBTEST(( test_lazy_all_layout<T,1, 4,-1>(1,4,depth) )); CALL_SUBTEST(( test_lazy_all_layout<T,1,-1,-1>(1,cols,depth) )); } template<typename T> void test_lazy_l3() { int rows = internal::random<int>(1,12); int cols = internal::random<int>(1,12); int depth = internal::random<int>(1,12); // mat-mat CALL_SUBTEST(( test_lazy_all_layout<T,2,4,2>() )); CALL_SUBTEST(( test_lazy_all_layout<T,2,6,4>() )); CALL_SUBTEST(( test_lazy_all_layout<T,4,3,2>() )); CALL_SUBTEST(( test_lazy_all_layout<T,4,8,4>() )); CALL_SUBTEST(( test_lazy_all_layout<T,5,6,4>() )); CALL_SUBTEST(( test_lazy_all_layout<T,4,2,5>() )); CALL_SUBTEST(( test_lazy_all_layout<T,4,7,6>() )); CALL_SUBTEST(( test_lazy_all_layout<T,6,8,4>() )); CALL_SUBTEST(( test_lazy_all_layout<T,8,3,8>() )); CALL_SUBTEST(( test_lazy_all_layout<T,-1,6,4>(rows) )); CALL_SUBTEST(( test_lazy_all_layout<T,4,3,-1>(4,3,depth) )); CALL_SUBTEST(( test_lazy_all_layout<T,-1,6,-1>(rows,6,depth) )); CALL_SUBTEST(( test_lazy_all_layout<T,8,2,2>() )); CALL_SUBTEST(( test_lazy_all_layout<T,5,2,4>() )); CALL_SUBTEST(( test_lazy_all_layout<T,4,4,2>() )); CALL_SUBTEST(( test_lazy_all_layout<T,8,4,4>() )); CALL_SUBTEST(( test_lazy_all_layout<T,6,5,4>() )); CALL_SUBTEST(( test_lazy_all_layout<T,4,4,5>() )); CALL_SUBTEST(( test_lazy_all_layout<T,3,4,6>() )); CALL_SUBTEST(( test_lazy_all_layout<T,2,6,4>() )); CALL_SUBTEST(( test_lazy_all_layout<T,7,8,8>() )); CALL_SUBTEST(( test_lazy_all_layout<T,8,-1, 4>(8,cols) )); CALL_SUBTEST(( test_lazy_all_layout<T,3, 4,-1>(3,4,depth) )); CALL_SUBTEST(( test_lazy_all_layout<T,4,-1,-1>(4,cols,depth) )); } template<typename T,int N,int M,int K> void test_linear_but_not_vectorizable() { // Check tricky cases for which the result of the product is a vector and thus must exhibit the LinearBit flag, // but is not vectorizable along the linear dimension. Index n = N==Dynamic ? internal::random<Index>(1,32) : N; Index m = M==Dynamic ? internal::random<Index>(1,32) : M; Index k = K==Dynamic ? internal::random<Index>(1,32) : K; { Matrix<T,N,M+1> A; A.setRandom(n,m+1); Matrix<T,M*2,K> B; B.setRandom(m*2,k); Matrix<T,1,K> C; Matrix<T,1,K> R; C.noalias() = A.template topLeftCorner<1,M>() * (B.template topRows<M>()+B.template bottomRows<M>()); R.noalias() = A.template topLeftCorner<1,M>() * (B.template topRows<M>()+B.template bottomRows<M>()).eval(); VERIFY_IS_APPROX(C,R); } { Matrix<T,M+1,N,RowMajor> A; A.setRandom(m+1,n); Matrix<T,K,M*2,RowMajor> B; B.setRandom(k,m*2); Matrix<T,K,1> C; Matrix<T,K,1> R; C.noalias() = (B.template leftCols<M>()+B.template rightCols<M>()) * A.template topLeftCorner<M,1>(); R.noalias() = (B.template leftCols<M>()+B.template rightCols<M>()).eval() * A.template topLeftCorner<M,1>(); VERIFY_IS_APPROX(C,R); } } template<int Rows> void bug_1311() { Matrix< double, Rows, 2 > A; A.setRandom(); Vector2d b = Vector2d::Random() ; Matrix<double,Rows,1> res; res.noalias() = 1. * (A * b); VERIFY_IS_APPROX(res, A*b); res.noalias() = 1.*A * b; VERIFY_IS_APPROX(res, A*b); res.noalias() = (1.*A).lazyProduct(b); VERIFY_IS_APPROX(res, A*b); res.noalias() = (1.*A).lazyProduct(1.*b); VERIFY_IS_APPROX(res, A*b); res.noalias() = (A).lazyProduct(1.*b); VERIFY_IS_APPROX(res, A*b); } void test_product_small() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( product(Matrix<float, 3, 2>()) ); CALL_SUBTEST_2( product(Matrix<int, 3, 17>()) ); CALL_SUBTEST_8( product(Matrix<double, 3, 17>()) ); CALL_SUBTEST_3( product(Matrix3d()) ); CALL_SUBTEST_4( product(Matrix4d()) ); CALL_SUBTEST_5( product(Matrix4f()) ); CALL_SUBTEST_6( product1x1<0>() ); CALL_SUBTEST_11( test_lazy_l1<float>() ); CALL_SUBTEST_12( test_lazy_l2<float>() ); CALL_SUBTEST_13( test_lazy_l3<float>() ); CALL_SUBTEST_21( test_lazy_l1<double>() ); CALL_SUBTEST_22( test_lazy_l2<double>() ); CALL_SUBTEST_23( test_lazy_l3<double>() ); CALL_SUBTEST_31( test_lazy_l1<std::complex<float> >() ); CALL_SUBTEST_32( test_lazy_l2<std::complex<float> >() ); CALL_SUBTEST_33( test_lazy_l3<std::complex<float> >() ); CALL_SUBTEST_41( test_lazy_l1<std::complex<double> >() ); CALL_SUBTEST_42( test_lazy_l2<std::complex<double> >() ); CALL_SUBTEST_43( test_lazy_l3<std::complex<double> >() ); CALL_SUBTEST_7(( test_linear_but_not_vectorizable<float,2,1,Dynamic>() )); CALL_SUBTEST_7(( test_linear_but_not_vectorizable<float,3,1,Dynamic>() )); CALL_SUBTEST_7(( test_linear_but_not_vectorizable<float,2,1,16>() )); CALL_SUBTEST_6( bug_1311<3>() ); CALL_SUBTEST_6( bug_1311<5>() ); } #ifdef EIGEN_TEST_PART_6 { // test compilation of (outer_product) * vector Vector3f v = Vector3f::Random(); VERIFY_IS_APPROX( (v * v.transpose()) * v, (v * v.transpose()).eval() * v); } { // regression test for pull-request #93 Eigen::Matrix<double, 1, 1> A; A.setRandom(); Eigen::Matrix<double, 18, 1> B; B.setRandom(); Eigen::Matrix<double, 1, 18> C; C.setRandom(); VERIFY_IS_APPROX(B * A.inverse(), B * A.inverse()[0]); VERIFY_IS_APPROX(A.inverse() * C, A.inverse()[0] * C); } { Eigen::Matrix<double, 10, 10> A, B, C; A.setRandom(); C = A; for(int k=0; k<79; ++k) C = C * A; B.noalias() = (((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A)) * ((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))) * (((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A)) * ((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))); VERIFY_IS_APPROX(B,C); } #endif }