// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include <cstdlib> #include <cerrno> #include <ctime> #include <iostream> #include <fstream> #include <string> #include <sstream> #include <vector> #include <typeinfo> // The following includes of STL headers have to be done _before_ the // definition of macros min() and max(). The reason is that many STL // implementations will not work properly as the min and max symbols collide // with the STL functions std:min() and std::max(). The STL headers may check // for the macro definition of min/max and issue a warning or undefine the // macros. // // Still, Windows defines min() and max() in windef.h as part of the regular // Windows system interfaces and many other Windows APIs depend on these // macros being available. To prevent the macro expansion of min/max and to // make Eigen compatible with the Windows environment all function calls of // std::min() and std::max() have to be written with parenthesis around the // function name. // // All STL headers used by Eigen should be included here. Because main.h is // included before any Eigen header and because the STL headers are guarded // against multiple inclusions, no STL header will see our own min/max macro // definitions. #include <limits> #include <algorithm> #include <complex> #include <deque> #include <queue> #include <cassert> #include <list> #if __cplusplus >= 201103L #include <random> #ifdef EIGEN_USE_THREADS #include <future> #endif #endif // To test that all calls from Eigen code to std::min() and std::max() are // protected by parenthesis against macro expansion, the min()/max() macros // are defined here and any not-parenthesized min/max call will cause a // compiler error. #define min(A,B) please_protect_your_min_with_parentheses #define max(A,B) please_protect_your_max_with_parentheses #define isnan(X) please_protect_your_isnan_with_parentheses #define isinf(X) please_protect_your_isinf_with_parentheses #define isfinite(X) please_protect_your_isfinite_with_parentheses #ifdef M_PI #undef M_PI #endif #define M_PI please_use_EIGEN_PI_instead_of_M_PI #define FORBIDDEN_IDENTIFIER (this_identifier_is_forbidden_to_avoid_clashes) this_identifier_is_forbidden_to_avoid_clashes // B0 is defined in POSIX header termios.h #define B0 FORBIDDEN_IDENTIFIER // Unit tests calling Eigen's blas library must preserve the default blocking size // to avoid troubles. #ifndef EIGEN_NO_DEBUG_SMALL_PRODUCT_BLOCKS #define EIGEN_DEBUG_SMALL_PRODUCT_BLOCKS #endif // shuts down ICC's remark #593: variable "XXX" was set but never used #define TEST_SET_BUT_UNUSED_VARIABLE(X) EIGEN_UNUSED_VARIABLE(X) #ifdef TEST_ENABLE_TEMPORARY_TRACKING static long int nb_temporaries; static long int nb_temporaries_on_assert = -1; inline void on_temporary_creation(long int size) { // here's a great place to set a breakpoint when debugging failures in this test! if(size!=0) nb_temporaries++; if(nb_temporaries_on_assert>0) assert(nb_temporaries<nb_temporaries_on_assert); } #define EIGEN_DENSE_STORAGE_CTOR_PLUGIN { on_temporary_creation(size); } #define VERIFY_EVALUATION_COUNT(XPR,N) {\ nb_temporaries = 0; \ XPR; \ if(nb_temporaries!=N) { std::cerr << "nb_temporaries == " << nb_temporaries << "\n"; }\ VERIFY( (#XPR) && nb_temporaries==N ); \ } #endif // the following file is automatically generated by cmake #include "split_test_helper.h" #ifdef NDEBUG #undef NDEBUG #endif // On windows CE, NDEBUG is automatically defined <assert.h> if NDEBUG is not defined. #ifndef DEBUG #define DEBUG #endif // bounds integer values for AltiVec #if defined(__ALTIVEC__) || defined(__VSX__) #define EIGEN_MAKING_DOCS #endif #ifndef EIGEN_TEST_FUNC #error EIGEN_TEST_FUNC must be defined #endif #define DEFAULT_REPEAT 10 namespace Eigen { static std::vector<std::string> g_test_stack; // level == 0 <=> abort if test fail // level >= 1 <=> warning message to std::cerr if test fail static int g_test_level = 0; static int g_repeat; static unsigned int g_seed; static bool g_has_set_repeat, g_has_set_seed; } #define TRACK std::cerr << __FILE__ << " " << __LINE__ << std::endl // #define TRACK while() #define EI_PP_MAKE_STRING2(S) #S #define EI_PP_MAKE_STRING(S) EI_PP_MAKE_STRING2(S) #define EIGEN_DEFAULT_IO_FORMAT IOFormat(4, 0, " ", "\n", "", "", "", "") #if (defined(_CPPUNWIND) || defined(__EXCEPTIONS)) && !defined(__CUDA_ARCH__) #define EIGEN_EXCEPTIONS #endif #ifndef EIGEN_NO_ASSERTION_CHECKING namespace Eigen { static const bool should_raise_an_assert = false; // Used to avoid to raise two exceptions at a time in which // case the exception is not properly caught. // This may happen when a second exceptions is triggered in a destructor. static bool no_more_assert = false; static bool report_on_cerr_on_assert_failure = true; struct eigen_assert_exception { eigen_assert_exception(void) {} ~eigen_assert_exception() { Eigen::no_more_assert = false; } }; } // If EIGEN_DEBUG_ASSERTS is defined and if no assertion is triggered while // one should have been, then the list of excecuted assertions is printed out. // // EIGEN_DEBUG_ASSERTS is not enabled by default as it // significantly increases the compilation time // and might even introduce side effects that would hide // some memory errors. #ifdef EIGEN_DEBUG_ASSERTS namespace Eigen { namespace internal { static bool push_assert = false; } static std::vector<std::string> eigen_assert_list; } #define eigen_assert(a) \ if( (!(a)) && (!no_more_assert) ) \ { \ if(report_on_cerr_on_assert_failure) \ std::cerr << #a << " " __FILE__ << "(" << __LINE__ << ")\n"; \ Eigen::no_more_assert = true; \ EIGEN_THROW_X(Eigen::eigen_assert_exception()); \ } \ else if (Eigen::internal::push_assert) \ { \ eigen_assert_list.push_back(std::string(EI_PP_MAKE_STRING(__FILE__) " (" EI_PP_MAKE_STRING(__LINE__) ") : " #a) ); \ } #ifdef EIGEN_EXCEPTIONS #define VERIFY_RAISES_ASSERT(a) \ { \ Eigen::no_more_assert = false; \ Eigen::eigen_assert_list.clear(); \ Eigen::internal::push_assert = true; \ Eigen::report_on_cerr_on_assert_failure = false; \ try { \ a; \ std::cerr << "One of the following asserts should have been triggered:\n"; \ for (uint ai=0 ; ai<eigen_assert_list.size() ; ++ai) \ std::cerr << " " << eigen_assert_list[ai] << "\n"; \ VERIFY(Eigen::should_raise_an_assert && # a); \ } catch (Eigen::eigen_assert_exception) { \ Eigen::internal::push_assert = false; VERIFY(true); \ } \ Eigen::report_on_cerr_on_assert_failure = true; \ Eigen::internal::push_assert = false; \ } #endif //EIGEN_EXCEPTIONS #elif !defined(__CUDACC__) // EIGEN_DEBUG_ASSERTS // see bug 89. The copy_bool here is working around a bug in gcc <= 4.3 #define eigen_assert(a) \ if( (!Eigen::internal::copy_bool(a)) && (!no_more_assert) )\ { \ Eigen::no_more_assert = true; \ if(report_on_cerr_on_assert_failure) \ eigen_plain_assert(a); \ else \ EIGEN_THROW_X(Eigen::eigen_assert_exception()); \ } #ifdef EIGEN_EXCEPTIONS #define VERIFY_RAISES_ASSERT(a) { \ Eigen::no_more_assert = false; \ Eigen::report_on_cerr_on_assert_failure = false; \ try { \ a; \ VERIFY(Eigen::should_raise_an_assert && # a); \ } \ catch (Eigen::eigen_assert_exception&) { VERIFY(true); } \ Eigen::report_on_cerr_on_assert_failure = true; \ } #endif //EIGEN_EXCEPTIONS #endif // EIGEN_DEBUG_ASSERTS #ifndef VERIFY_RAISES_ASSERT #define VERIFY_RAISES_ASSERT(a) \ std::cout << "Can't VERIFY_RAISES_ASSERT( " #a " ) with exceptions disabled\n"; #endif #if !defined(__CUDACC__) #define EIGEN_USE_CUSTOM_ASSERT #endif #else // EIGEN_NO_ASSERTION_CHECKING #define VERIFY_RAISES_ASSERT(a) {} #endif // EIGEN_NO_ASSERTION_CHECKING #define EIGEN_INTERNAL_DEBUGGING #include <Eigen/QR> // required for createRandomPIMatrixOfRank inline void verify_impl(bool condition, const char *testname, const char *file, int line, const char *condition_as_string) { if (!condition) { if(Eigen::g_test_level>0) std::cerr << "WARNING: "; std::cerr << "Test " << testname << " failed in " << file << " (" << line << ")" << std::endl << " " << condition_as_string << std::endl; std::cerr << "Stack:\n"; const int test_stack_size = static_cast<int>(Eigen::g_test_stack.size()); for(int i=test_stack_size-1; i>=0; --i) std::cerr << " - " << Eigen::g_test_stack[i] << "\n"; std::cerr << "\n"; if(Eigen::g_test_level==0) abort(); } } #define VERIFY(a) ::verify_impl(a, g_test_stack.back().c_str(), __FILE__, __LINE__, EI_PP_MAKE_STRING(a)) #define VERIFY_GE(a, b) ::verify_impl(a >= b, g_test_stack.back().c_str(), __FILE__, __LINE__, EI_PP_MAKE_STRING(a >= b)) #define VERIFY_LE(a, b) ::verify_impl(a <= b, g_test_stack.back().c_str(), __FILE__, __LINE__, EI_PP_MAKE_STRING(a <= b)) #define VERIFY_IS_EQUAL(a, b) VERIFY(test_is_equal(a, b, true)) #define VERIFY_IS_NOT_EQUAL(a, b) VERIFY(test_is_equal(a, b, false)) #define VERIFY_IS_APPROX(a, b) VERIFY(verifyIsApprox(a, b)) #define VERIFY_IS_NOT_APPROX(a, b) VERIFY(!test_isApprox(a, b)) #define VERIFY_IS_MUCH_SMALLER_THAN(a, b) VERIFY(test_isMuchSmallerThan(a, b)) #define VERIFY_IS_NOT_MUCH_SMALLER_THAN(a, b) VERIFY(!test_isMuchSmallerThan(a, b)) #define VERIFY_IS_APPROX_OR_LESS_THAN(a, b) VERIFY(test_isApproxOrLessThan(a, b)) #define VERIFY_IS_NOT_APPROX_OR_LESS_THAN(a, b) VERIFY(!test_isApproxOrLessThan(a, b)) #define VERIFY_IS_UNITARY(a) VERIFY(test_isUnitary(a)) #define CALL_SUBTEST(FUNC) do { \ g_test_stack.push_back(EI_PP_MAKE_STRING(FUNC)); \ FUNC; \ g_test_stack.pop_back(); \ } while (0) namespace Eigen { template<typename T> inline typename NumTraits<T>::Real test_precision() { return NumTraits<T>::dummy_precision(); } template<> inline float test_precision<float>() { return 1e-3f; } template<> inline double test_precision<double>() { return 1e-6; } template<> inline long double test_precision<long double>() { return 1e-6l; } template<> inline float test_precision<std::complex<float> >() { return test_precision<float>(); } template<> inline double test_precision<std::complex<double> >() { return test_precision<double>(); } template<> inline long double test_precision<std::complex<long double> >() { return test_precision<long double>(); } inline bool test_isApprox(const int& a, const int& b) { return internal::isApprox(a, b, test_precision<int>()); } inline bool test_isMuchSmallerThan(const int& a, const int& b) { return internal::isMuchSmallerThan(a, b, test_precision<int>()); } inline bool test_isApproxOrLessThan(const int& a, const int& b) { return internal::isApproxOrLessThan(a, b, test_precision<int>()); } inline bool test_isApprox(const float& a, const float& b) { return internal::isApprox(a, b, test_precision<float>()); } inline bool test_isMuchSmallerThan(const float& a, const float& b) { return internal::isMuchSmallerThan(a, b, test_precision<float>()); } inline bool test_isApproxOrLessThan(const float& a, const float& b) { return internal::isApproxOrLessThan(a, b, test_precision<float>()); } inline bool test_isApprox(const double& a, const double& b) { return internal::isApprox(a, b, test_precision<double>()); } inline bool test_isMuchSmallerThan(const double& a, const double& b) { return internal::isMuchSmallerThan(a, b, test_precision<double>()); } inline bool test_isApproxOrLessThan(const double& a, const double& b) { return internal::isApproxOrLessThan(a, b, test_precision<double>()); } #ifndef EIGEN_TEST_NO_COMPLEX inline bool test_isApprox(const std::complex<float>& a, const std::complex<float>& b) { return internal::isApprox(a, b, test_precision<std::complex<float> >()); } inline bool test_isMuchSmallerThan(const std::complex<float>& a, const std::complex<float>& b) { return internal::isMuchSmallerThan(a, b, test_precision<std::complex<float> >()); } inline bool test_isApprox(const std::complex<double>& a, const std::complex<double>& b) { return internal::isApprox(a, b, test_precision<std::complex<double> >()); } inline bool test_isMuchSmallerThan(const std::complex<double>& a, const std::complex<double>& b) { return internal::isMuchSmallerThan(a, b, test_precision<std::complex<double> >()); } #ifndef EIGEN_TEST_NO_LONGDOUBLE inline bool test_isApprox(const std::complex<long double>& a, const std::complex<long double>& b) { return internal::isApprox(a, b, test_precision<std::complex<long double> >()); } inline bool test_isMuchSmallerThan(const std::complex<long double>& a, const std::complex<long double>& b) { return internal::isMuchSmallerThan(a, b, test_precision<std::complex<long double> >()); } #endif #endif #ifndef EIGEN_TEST_NO_LONGDOUBLE inline bool test_isApprox(const long double& a, const long double& b) { bool ret = internal::isApprox(a, b, test_precision<long double>()); if (!ret) std::cerr << std::endl << " actual = " << a << std::endl << " expected = " << b << std::endl << std::endl; return ret; } inline bool test_isMuchSmallerThan(const long double& a, const long double& b) { return internal::isMuchSmallerThan(a, b, test_precision<long double>()); } inline bool test_isApproxOrLessThan(const long double& a, const long double& b) { return internal::isApproxOrLessThan(a, b, test_precision<long double>()); } #endif // EIGEN_TEST_NO_LONGDOUBLE inline bool test_isApprox(const half& a, const half& b) { return internal::isApprox(a, b, test_precision<half>()); } inline bool test_isMuchSmallerThan(const half& a, const half& b) { return internal::isMuchSmallerThan(a, b, test_precision<half>()); } inline bool test_isApproxOrLessThan(const half& a, const half& b) { return internal::isApproxOrLessThan(a, b, test_precision<half>()); } // test_relative_error returns the relative difference between a and b as a real scalar as used in isApprox. template<typename T1,typename T2> typename NumTraits<typename T1::RealScalar>::NonInteger test_relative_error(const EigenBase<T1> &a, const EigenBase<T2> &b) { using std::sqrt; typedef typename NumTraits<typename T1::RealScalar>::NonInteger RealScalar; typename internal::nested_eval<T1,2>::type ea(a.derived()); typename internal::nested_eval<T2,2>::type eb(b.derived()); return sqrt(RealScalar((ea-eb).cwiseAbs2().sum()) / RealScalar((std::min)(eb.cwiseAbs2().sum(),ea.cwiseAbs2().sum()))); } template<typename T1,typename T2> typename T1::RealScalar test_relative_error(const T1 &a, const T2 &b, const typename T1::Coefficients* = 0) { return test_relative_error(a.coeffs(), b.coeffs()); } template<typename T1,typename T2> typename T1::Scalar test_relative_error(const T1 &a, const T2 &b, const typename T1::MatrixType* = 0) { return test_relative_error(a.matrix(), b.matrix()); } template<typename S, int D> S test_relative_error(const Translation<S,D> &a, const Translation<S,D> &b) { return test_relative_error(a.vector(), b.vector()); } template <typename S, int D, int O> S test_relative_error(const ParametrizedLine<S,D,O> &a, const ParametrizedLine<S,D,O> &b) { return (std::max)(test_relative_error(a.origin(), b.origin()), test_relative_error(a.origin(), b.origin())); } template <typename S, int D> S test_relative_error(const AlignedBox<S,D> &a, const AlignedBox<S,D> &b) { return (std::max)(test_relative_error((a.min)(), (b.min)()), test_relative_error((a.max)(), (b.max)())); } template<typename Derived> class SparseMatrixBase; template<typename T1,typename T2> typename T1::RealScalar test_relative_error(const MatrixBase<T1> &a, const SparseMatrixBase<T2> &b) { return test_relative_error(a,b.toDense()); } template<typename Derived> class SparseMatrixBase; template<typename T1,typename T2> typename T1::RealScalar test_relative_error(const SparseMatrixBase<T1> &a, const MatrixBase<T2> &b) { return test_relative_error(a.toDense(),b); } template<typename Derived> class SparseMatrixBase; template<typename T1,typename T2> typename T1::RealScalar test_relative_error(const SparseMatrixBase<T1> &a, const SparseMatrixBase<T2> &b) { return test_relative_error(a.toDense(),b.toDense()); } template<typename T1,typename T2> typename NumTraits<typename NumTraits<T1>::Real>::NonInteger test_relative_error(const T1 &a, const T2 &b, typename internal::enable_if<internal::is_arithmetic<typename NumTraits<T1>::Real>::value, T1>::type* = 0) { typedef typename NumTraits<typename NumTraits<T1>::Real>::NonInteger RealScalar; return numext::sqrt(RealScalar(numext::abs2(a-b))/RealScalar((numext::mini)(numext::abs2(a),numext::abs2(b)))); } template<typename T> T test_relative_error(const Rotation2D<T> &a, const Rotation2D<T> &b) { return test_relative_error(a.angle(), b.angle()); } template<typename T> T test_relative_error(const AngleAxis<T> &a, const AngleAxis<T> &b) { return (std::max)(test_relative_error(a.angle(), b.angle()), test_relative_error(a.axis(), b.axis())); } template<typename Type1, typename Type2> inline bool test_isApprox(const Type1& a, const Type2& b, typename Type1::Scalar* = 0) // Enabled for Eigen's type only { return a.isApprox(b, test_precision<typename Type1::Scalar>()); } // get_test_precision is a small wrapper to test_precision allowing to return the scalar precision for either scalars or expressions template<typename T> typename NumTraits<typename T::Scalar>::Real get_test_precision(const T&, const typename T::Scalar* = 0) { return test_precision<typename NumTraits<typename T::Scalar>::Real>(); } template<typename T> typename NumTraits<T>::Real get_test_precision(const T&,typename internal::enable_if<internal::is_arithmetic<typename NumTraits<T>::Real>::value, T>::type* = 0) { return test_precision<typename NumTraits<T>::Real>(); } // verifyIsApprox is a wrapper to test_isApprox that outputs the relative difference magnitude if the test fails. template<typename Type1, typename Type2> inline bool verifyIsApprox(const Type1& a, const Type2& b) { bool ret = test_isApprox(a,b); if(!ret) { std::cerr << "Difference too large wrt tolerance " << get_test_precision(a) << ", relative error is: " << test_relative_error(a,b) << std::endl; } return ret; } // The idea behind this function is to compare the two scalars a and b where // the scalar ref is a hint about the expected order of magnitude of a and b. // WARNING: the scalar a and b must be positive // Therefore, if for some reason a and b are very small compared to ref, // we won't issue a false negative. // This test could be: abs(a-b) <= eps * ref // However, it seems that simply comparing a+ref and b+ref is more sensitive to true error. template<typename Scalar,typename ScalarRef> inline bool test_isApproxWithRef(const Scalar& a, const Scalar& b, const ScalarRef& ref) { return test_isApprox(a+ref, b+ref); } template<typename Derived1, typename Derived2> inline bool test_isMuchSmallerThan(const MatrixBase<Derived1>& m1, const MatrixBase<Derived2>& m2) { return m1.isMuchSmallerThan(m2, test_precision<typename internal::traits<Derived1>::Scalar>()); } template<typename Derived> inline bool test_isMuchSmallerThan(const MatrixBase<Derived>& m, const typename NumTraits<typename internal::traits<Derived>::Scalar>::Real& s) { return m.isMuchSmallerThan(s, test_precision<typename internal::traits<Derived>::Scalar>()); } template<typename Derived> inline bool test_isUnitary(const MatrixBase<Derived>& m) { return m.isUnitary(test_precision<typename internal::traits<Derived>::Scalar>()); } // Forward declaration to avoid ICC warning template<typename T, typename U> bool test_is_equal(const T& actual, const U& expected, bool expect_equal=true); template<typename T, typename U> bool test_is_equal(const T& actual, const U& expected, bool expect_equal) { if ((actual==expected) == expect_equal) return true; // false: std::cerr << "\n actual = " << actual << "\n expected " << (expect_equal ? "= " : "!=") << expected << "\n\n"; return false; } /** Creates a random Partial Isometry matrix of given rank. * * A partial isometry is a matrix all of whose singular values are either 0 or 1. * This is very useful to test rank-revealing algorithms. */ // Forward declaration to avoid ICC warning template<typename MatrixType> void createRandomPIMatrixOfRank(Index desired_rank, Index rows, Index cols, MatrixType& m); template<typename MatrixType> void createRandomPIMatrixOfRank(Index desired_rank, Index rows, Index cols, MatrixType& m) { typedef typename internal::traits<MatrixType>::Scalar Scalar; enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime }; typedef Matrix<Scalar, Dynamic, 1> VectorType; typedef Matrix<Scalar, Rows, Rows> MatrixAType; typedef Matrix<Scalar, Cols, Cols> MatrixBType; if(desired_rank == 0) { m.setZero(rows,cols); return; } if(desired_rank == 1) { // here we normalize the vectors to get a partial isometry m = VectorType::Random(rows).normalized() * VectorType::Random(cols).normalized().transpose(); return; } MatrixAType a = MatrixAType::Random(rows,rows); MatrixType d = MatrixType::Identity(rows,cols); MatrixBType b = MatrixBType::Random(cols,cols); // set the diagonal such that only desired_rank non-zero entries reamain const Index diag_size = (std::min)(d.rows(),d.cols()); if(diag_size != desired_rank) d.diagonal().segment(desired_rank, diag_size-desired_rank) = VectorType::Zero(diag_size-desired_rank); HouseholderQR<MatrixAType> qra(a); HouseholderQR<MatrixBType> qrb(b); m = qra.householderQ() * d * qrb.householderQ(); } // Forward declaration to avoid ICC warning template<typename PermutationVectorType> void randomPermutationVector(PermutationVectorType& v, Index size); template<typename PermutationVectorType> void randomPermutationVector(PermutationVectorType& v, Index size) { typedef typename PermutationVectorType::Scalar Scalar; v.resize(size); for(Index i = 0; i < size; ++i) v(i) = Scalar(i); if(size == 1) return; for(Index n = 0; n < 3 * size; ++n) { Index i = internal::random<Index>(0, size-1); Index j; do j = internal::random<Index>(0, size-1); while(j==i); std::swap(v(i), v(j)); } } template<typename T> bool isNotNaN(const T& x) { return x==x; } template<typename T> bool isPlusInf(const T& x) { return x > NumTraits<T>::highest(); } template<typename T> bool isMinusInf(const T& x) { return x < NumTraits<T>::lowest(); } } // end namespace Eigen template<typename T> struct GetDifferentType; template<> struct GetDifferentType<float> { typedef double type; }; template<> struct GetDifferentType<double> { typedef float type; }; template<typename T> struct GetDifferentType<std::complex<T> > { typedef std::complex<typename GetDifferentType<T>::type> type; }; // Forward declaration to avoid ICC warning template<typename T> std::string type_name(); template<typename T> std::string type_name() { return "other"; } template<> std::string type_name<float>() { return "float"; } template<> std::string type_name<double>() { return "double"; } template<> std::string type_name<long double>() { return "long double"; } template<> std::string type_name<int>() { return "int"; } template<> std::string type_name<std::complex<float> >() { return "complex<float>"; } template<> std::string type_name<std::complex<double> >() { return "complex<double>"; } template<> std::string type_name<std::complex<long double> >() { return "complex<long double>"; } template<> std::string type_name<std::complex<int> >() { return "complex<int>"; } // forward declaration of the main test function void EIGEN_CAT(test_,EIGEN_TEST_FUNC)(); using namespace Eigen; inline void set_repeat_from_string(const char *str) { errno = 0; g_repeat = int(strtoul(str, 0, 10)); if(errno || g_repeat <= 0) { std::cout << "Invalid repeat value " << str << std::endl; exit(EXIT_FAILURE); } g_has_set_repeat = true; } inline void set_seed_from_string(const char *str) { errno = 0; g_seed = int(strtoul(str, 0, 10)); if(errno || g_seed == 0) { std::cout << "Invalid seed value " << str << std::endl; exit(EXIT_FAILURE); } g_has_set_seed = true; } int main(int argc, char *argv[]) { g_has_set_repeat = false; g_has_set_seed = false; bool need_help = false; for(int i = 1; i < argc; i++) { if(argv[i][0] == 'r') { if(g_has_set_repeat) { std::cout << "Argument " << argv[i] << " conflicting with a former argument" << std::endl; return 1; } set_repeat_from_string(argv[i]+1); } else if(argv[i][0] == 's') { if(g_has_set_seed) { std::cout << "Argument " << argv[i] << " conflicting with a former argument" << std::endl; return 1; } set_seed_from_string(argv[i]+1); } else { need_help = true; } } if(need_help) { std::cout << "This test application takes the following optional arguments:" << std::endl; std::cout << " rN Repeat each test N times (default: " << DEFAULT_REPEAT << ")" << std::endl; std::cout << " sN Use N as seed for random numbers (default: based on current time)" << std::endl; std::cout << std::endl; std::cout << "If defined, the environment variables EIGEN_REPEAT and EIGEN_SEED" << std::endl; std::cout << "will be used as default values for these parameters." << std::endl; return 1; } char *env_EIGEN_REPEAT = getenv("EIGEN_REPEAT"); if(!g_has_set_repeat && env_EIGEN_REPEAT) set_repeat_from_string(env_EIGEN_REPEAT); char *env_EIGEN_SEED = getenv("EIGEN_SEED"); if(!g_has_set_seed && env_EIGEN_SEED) set_seed_from_string(env_EIGEN_SEED); if(!g_has_set_seed) g_seed = (unsigned int) time(NULL); if(!g_has_set_repeat) g_repeat = DEFAULT_REPEAT; std::cout << "Initializing random number generator with seed " << g_seed << std::endl; std::stringstream ss; ss << "Seed: " << g_seed; g_test_stack.push_back(ss.str()); srand(g_seed); std::cout << "Repeating each test " << g_repeat << " times" << std::endl; Eigen::g_test_stack.push_back(std::string(EI_PP_MAKE_STRING(EIGEN_TEST_FUNC))); EIGEN_CAT(test_,EIGEN_TEST_FUNC)(); return 0; } // These warning are disabled here such that they are still ON when parsing Eigen's header files. #if defined __INTEL_COMPILER // remark #383: value copied to temporary, reference to temporary used // -> this warning is raised even for legal usage as: g_test_stack.push_back("foo"); where g_test_stack is a std::vector<std::string> // remark #1418: external function definition with no prior declaration // -> this warning is raised for all our test functions. Declaring them static would fix the issue. // warning #279: controlling expression is constant // remark #1572: floating-point equality and inequality comparisons are unreliable #pragma warning disable 279 383 1418 1572 #endif #ifdef _MSC_VER // 4503 - decorated name length exceeded, name was truncated #pragma warning( disable : 4503) #endif