// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> // Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include <Eigen/Geometry> #include <Eigen/LU> #include <Eigen/SVD> template<typename T> T bounded_acos(T v) { using std::acos; using std::min; using std::max; return acos((max)(T(-1),(min)(v,T(1)))); } template<typename QuatType> void check_slerp(const QuatType& q0, const QuatType& q1) { using std::abs; typedef typename QuatType::Scalar Scalar; typedef AngleAxis<Scalar> AA; Scalar largeEps = test_precision<Scalar>(); Scalar theta_tot = AA(q1*q0.inverse()).angle(); if(theta_tot>Scalar(EIGEN_PI)) theta_tot = Scalar(2.)*Scalar(EIGEN_PI)-theta_tot; for(Scalar t=0; t<=Scalar(1.001); t+=Scalar(0.1)) { QuatType q = q0.slerp(t,q1); Scalar theta = AA(q*q0.inverse()).angle(); VERIFY(abs(q.norm() - 1) < largeEps); if(theta_tot==0) VERIFY(theta_tot==0); else VERIFY(abs(theta - t * theta_tot) < largeEps); } } template<typename Scalar, int Options> void quaternion(void) { /* this test covers the following files: Quaternion.h */ using std::abs; typedef Matrix<Scalar,3,1> Vector3; typedef Matrix<Scalar,3,3> Matrix3; typedef Quaternion<Scalar,Options> Quaternionx; typedef AngleAxis<Scalar> AngleAxisx; Scalar largeEps = test_precision<Scalar>(); if (internal::is_same<Scalar,float>::value) largeEps = Scalar(1e-3); Scalar eps = internal::random<Scalar>() * Scalar(1e-2); Vector3 v0 = Vector3::Random(), v1 = Vector3::Random(), v2 = Vector3::Random(), v3 = Vector3::Random(); Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)), b = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)); // Quaternion: Identity(), setIdentity(); Quaternionx q1, q2; q2.setIdentity(); VERIFY_IS_APPROX(Quaternionx(Quaternionx::Identity()).coeffs(), q2.coeffs()); q1.coeffs().setRandom(); VERIFY_IS_APPROX(q1.coeffs(), (q1*q2).coeffs()); // concatenation q1 *= q2; q1 = AngleAxisx(a, v0.normalized()); q2 = AngleAxisx(a, v1.normalized()); // angular distance Scalar refangle = abs(AngleAxisx(q1.inverse()*q2).angle()); if (refangle>Scalar(EIGEN_PI)) refangle = Scalar(2)*Scalar(EIGEN_PI) - refangle; if((q1.coeffs()-q2.coeffs()).norm() > 10*largeEps) { VERIFY_IS_MUCH_SMALLER_THAN(abs(q1.angularDistance(q2) - refangle), Scalar(1)); } // rotation matrix conversion VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2); VERIFY_IS_APPROX(q1 * q2 * v2, q1.toRotationMatrix() * q2.toRotationMatrix() * v2); VERIFY( (q2*q1).isApprox(q1*q2, largeEps) || !(q2 * q1 * v2).isApprox(q1.toRotationMatrix() * q2.toRotationMatrix() * v2)); q2 = q1.toRotationMatrix(); VERIFY_IS_APPROX(q1*v1,q2*v1); Matrix3 rot1(q1); VERIFY_IS_APPROX(q1*v1,rot1*v1); Quaternionx q3(rot1.transpose()*rot1); VERIFY_IS_APPROX(q3*v1,v1); // angle-axis conversion AngleAxisx aa = AngleAxisx(q1); VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1); // Do not execute the test if the rotation angle is almost zero, or // the rotation axis and v1 are almost parallel. if (abs(aa.angle()) > 5*test_precision<Scalar>() && (aa.axis() - v1.normalized()).norm() < Scalar(1.99) && (aa.axis() + v1.normalized()).norm() < Scalar(1.99)) { VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1); } // from two vector creation VERIFY_IS_APPROX( v2.normalized(),(q2.setFromTwoVectors(v1, v2)*v1).normalized()); VERIFY_IS_APPROX( v1.normalized(),(q2.setFromTwoVectors(v1, v1)*v1).normalized()); VERIFY_IS_APPROX(-v1.normalized(),(q2.setFromTwoVectors(v1,-v1)*v1).normalized()); if (internal::is_same<Scalar,double>::value) { v3 = (v1.array()+eps).matrix(); VERIFY_IS_APPROX( v3.normalized(),(q2.setFromTwoVectors(v1, v3)*v1).normalized()); VERIFY_IS_APPROX(-v3.normalized(),(q2.setFromTwoVectors(v1,-v3)*v1).normalized()); } // from two vector creation static function VERIFY_IS_APPROX( v2.normalized(),(Quaternionx::FromTwoVectors(v1, v2)*v1).normalized()); VERIFY_IS_APPROX( v1.normalized(),(Quaternionx::FromTwoVectors(v1, v1)*v1).normalized()); VERIFY_IS_APPROX(-v1.normalized(),(Quaternionx::FromTwoVectors(v1,-v1)*v1).normalized()); if (internal::is_same<Scalar,double>::value) { v3 = (v1.array()+eps).matrix(); VERIFY_IS_APPROX( v3.normalized(),(Quaternionx::FromTwoVectors(v1, v3)*v1).normalized()); VERIFY_IS_APPROX(-v3.normalized(),(Quaternionx::FromTwoVectors(v1,-v3)*v1).normalized()); } // inverse and conjugate VERIFY_IS_APPROX(q1 * (q1.inverse() * v1), v1); VERIFY_IS_APPROX(q1 * (q1.conjugate() * v1), v1); // test casting Quaternion<float> q1f = q1.template cast<float>(); VERIFY_IS_APPROX(q1f.template cast<Scalar>(),q1); Quaternion<double> q1d = q1.template cast<double>(); VERIFY_IS_APPROX(q1d.template cast<Scalar>(),q1); // test bug 369 - improper alignment. Quaternionx *q = new Quaternionx; delete q; q1 = Quaternionx::UnitRandom(); q2 = Quaternionx::UnitRandom(); check_slerp(q1,q2); q1 = AngleAxisx(b, v1.normalized()); q2 = AngleAxisx(b+Scalar(EIGEN_PI), v1.normalized()); check_slerp(q1,q2); q1 = AngleAxisx(b, v1.normalized()); q2 = AngleAxisx(-b, -v1.normalized()); check_slerp(q1,q2); q1 = Quaternionx::UnitRandom(); q2.coeffs() = -q1.coeffs(); check_slerp(q1,q2); } template<typename Scalar> void mapQuaternion(void){ typedef Map<Quaternion<Scalar>, Aligned> MQuaternionA; typedef Map<const Quaternion<Scalar>, Aligned> MCQuaternionA; typedef Map<Quaternion<Scalar> > MQuaternionUA; typedef Map<const Quaternion<Scalar> > MCQuaternionUA; typedef Quaternion<Scalar> Quaternionx; typedef Matrix<Scalar,3,1> Vector3; typedef AngleAxis<Scalar> AngleAxisx; Vector3 v0 = Vector3::Random(), v1 = Vector3::Random(); Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)); EIGEN_ALIGN_MAX Scalar array1[4]; EIGEN_ALIGN_MAX Scalar array2[4]; EIGEN_ALIGN_MAX Scalar array3[4+1]; Scalar* array3unaligned = array3+1; MQuaternionA mq1(array1); MCQuaternionA mcq1(array1); MQuaternionA mq2(array2); MQuaternionUA mq3(array3unaligned); MCQuaternionUA mcq3(array3unaligned); // std::cerr << array1 << " " << array2 << " " << array3 << "\n"; mq1 = AngleAxisx(a, v0.normalized()); mq2 = mq1; mq3 = mq1; Quaternionx q1 = mq1; Quaternionx q2 = mq2; Quaternionx q3 = mq3; Quaternionx q4 = MCQuaternionUA(array3unaligned); VERIFY_IS_APPROX(q1.coeffs(), q2.coeffs()); VERIFY_IS_APPROX(q1.coeffs(), q3.coeffs()); VERIFY_IS_APPROX(q4.coeffs(), q3.coeffs()); #ifdef EIGEN_VECTORIZE if(internal::packet_traits<Scalar>::Vectorizable) VERIFY_RAISES_ASSERT((MQuaternionA(array3unaligned))); #endif VERIFY_IS_APPROX(mq1 * (mq1.inverse() * v1), v1); VERIFY_IS_APPROX(mq1 * (mq1.conjugate() * v1), v1); VERIFY_IS_APPROX(mcq1 * (mcq1.inverse() * v1), v1); VERIFY_IS_APPROX(mcq1 * (mcq1.conjugate() * v1), v1); VERIFY_IS_APPROX(mq3 * (mq3.inverse() * v1), v1); VERIFY_IS_APPROX(mq3 * (mq3.conjugate() * v1), v1); VERIFY_IS_APPROX(mcq3 * (mcq3.inverse() * v1), v1); VERIFY_IS_APPROX(mcq3 * (mcq3.conjugate() * v1), v1); VERIFY_IS_APPROX(mq1*mq2, q1*q2); VERIFY_IS_APPROX(mq3*mq2, q3*q2); VERIFY_IS_APPROX(mcq1*mq2, q1*q2); VERIFY_IS_APPROX(mcq3*mq2, q3*q2); } template<typename Scalar> void quaternionAlignment(void){ typedef Quaternion<Scalar,AutoAlign> QuaternionA; typedef Quaternion<Scalar,DontAlign> QuaternionUA; EIGEN_ALIGN_MAX Scalar array1[4]; EIGEN_ALIGN_MAX Scalar array2[4]; EIGEN_ALIGN_MAX Scalar array3[4+1]; Scalar* arrayunaligned = array3+1; QuaternionA *q1 = ::new(reinterpret_cast<void*>(array1)) QuaternionA; QuaternionUA *q2 = ::new(reinterpret_cast<void*>(array2)) QuaternionUA; QuaternionUA *q3 = ::new(reinterpret_cast<void*>(arrayunaligned)) QuaternionUA; q1->coeffs().setRandom(); *q2 = *q1; *q3 = *q1; VERIFY_IS_APPROX(q1->coeffs(), q2->coeffs()); VERIFY_IS_APPROX(q1->coeffs(), q3->coeffs()); #if defined(EIGEN_VECTORIZE) && EIGEN_MAX_STATIC_ALIGN_BYTES>0 if(internal::packet_traits<Scalar>::Vectorizable && internal::packet_traits<Scalar>::size<=4) VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(arrayunaligned)) QuaternionA)); #endif } template<typename PlainObjectType> void check_const_correctness(const PlainObjectType&) { // there's a lot that we can't test here while still having this test compile! // the only possible approach would be to run a script trying to compile stuff and checking that it fails. // CMake can help with that. // verify that map-to-const don't have LvalueBit typedef typename internal::add_const<PlainObjectType>::type ConstPlainObjectType; VERIFY( !(internal::traits<Map<ConstPlainObjectType> >::Flags & LvalueBit) ); VERIFY( !(internal::traits<Map<ConstPlainObjectType, Aligned> >::Flags & LvalueBit) ); VERIFY( !(Map<ConstPlainObjectType>::Flags & LvalueBit) ); VERIFY( !(Map<ConstPlainObjectType, Aligned>::Flags & LvalueBit) ); } void test_geo_quaternion() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1(( quaternion<float,AutoAlign>() )); CALL_SUBTEST_1( check_const_correctness(Quaternionf()) ); CALL_SUBTEST_2(( quaternion<double,AutoAlign>() )); CALL_SUBTEST_2( check_const_correctness(Quaterniond()) ); CALL_SUBTEST_3(( quaternion<float,DontAlign>() )); CALL_SUBTEST_4(( quaternion<double,DontAlign>() )); CALL_SUBTEST_5(( quaternionAlignment<float>() )); CALL_SUBTEST_6(( quaternionAlignment<double>() )); CALL_SUBTEST_1( mapQuaternion<float>() ); CALL_SUBTEST_2( mapQuaternion<double>() ); } }