/* chpmv.f -- translated by f2c (version 20100827).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "datatypes.h"

/* Subroutine */ int chpmv_(char *uplo, integer *n, complex *alpha, complex *
	ap, complex *x, integer *incx, complex *beta, complex *y, integer *
	incy, ftnlen uplo_len)
{
    /* System generated locals */
    integer i__1, i__2, i__3, i__4, i__5;
    real r__1;
    complex q__1, q__2, q__3, q__4;

    /* Builtin functions */
    void r_cnjg(complex *, complex *);

    /* Local variables */
    integer i__, j, k, kk, ix, iy, jx, jy, kx, ky, info;
    complex temp1, temp2;
    extern logical lsame_(char *, char *, ftnlen, ftnlen);
    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CHPMV  performs the matrix-vector operation */

/*     y := alpha*A*x + beta*y, */

/*  where alpha and beta are scalars, x and y are n element vectors and */
/*  A is an n by n hermitian matrix, supplied in packed form. */

/*  Arguments */
/*  ========== */

/*  UPLO   - CHARACTER*1. */
/*           On entry, UPLO specifies whether the upper or lower */
/*           triangular part of the matrix A is supplied in the packed */
/*           array AP as follows: */

/*              UPLO = 'U' or 'u'   The upper triangular part of A is */
/*                                  supplied in AP. */

/*              UPLO = 'L' or 'l'   The lower triangular part of A is */
/*                                  supplied in AP. */

/*           Unchanged on exit. */

/*  N      - INTEGER. */
/*           On entry, N specifies the order of the matrix A. */
/*           N must be at least zero. */
/*           Unchanged on exit. */

/*  ALPHA  - COMPLEX         . */
/*           On entry, ALPHA specifies the scalar alpha. */
/*           Unchanged on exit. */

/*  AP     - COMPLEX          array of DIMENSION at least */
/*           ( ( n*( n + 1 ) )/2 ). */
/*           Before entry with UPLO = 'U' or 'u', the array AP must */
/*           contain the upper triangular part of the hermitian matrix */
/*           packed sequentially, column by column, so that AP( 1 ) */
/*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */
/*           and a( 2, 2 ) respectively, and so on. */
/*           Before entry with UPLO = 'L' or 'l', the array AP must */
/*           contain the lower triangular part of the hermitian matrix */
/*           packed sequentially, column by column, so that AP( 1 ) */
/*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */
/*           and a( 3, 1 ) respectively, and so on. */
/*           Note that the imaginary parts of the diagonal elements need */
/*           not be set and are assumed to be zero. */
/*           Unchanged on exit. */

/*  X      - COMPLEX          array of dimension at least */
/*           ( 1 + ( n - 1 )*abs( INCX ) ). */
/*           Before entry, the incremented array X must contain the n */
/*           element vector x. */
/*           Unchanged on exit. */

/*  INCX   - INTEGER. */
/*           On entry, INCX specifies the increment for the elements of */
/*           X. INCX must not be zero. */
/*           Unchanged on exit. */

/*  BETA   - COMPLEX         . */
/*           On entry, BETA specifies the scalar beta. When BETA is */
/*           supplied as zero then Y need not be set on input. */
/*           Unchanged on exit. */

/*  Y      - COMPLEX          array of dimension at least */
/*           ( 1 + ( n - 1 )*abs( INCY ) ). */
/*           Before entry, the incremented array Y must contain the n */
/*           element vector y. On exit, Y is overwritten by the updated */
/*           vector y. */

/*  INCY   - INTEGER. */
/*           On entry, INCY specifies the increment for the elements of */
/*           Y. INCY must not be zero. */
/*           Unchanged on exit. */

/*  Further Details */
/*  =============== */

/*  Level 2 Blas routine. */

/*  -- Written on 22-October-1986. */
/*     Jack Dongarra, Argonne National Lab. */
/*     Jeremy Du Croz, Nag Central Office. */
/*     Sven Hammarling, Nag Central Office. */
/*     Richard Hanson, Sandia National Labs. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --y;
    --x;
    --ap;

    /* Function Body */
    info = 0;
    if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
	    ftnlen)1, (ftnlen)1)) {
	info = 1;
    } else if (*n < 0) {
	info = 2;
    } else if (*incx == 0) {
	info = 6;
    } else if (*incy == 0) {
	info = 9;
    }
    if (info != 0) {
	xerbla_("CHPMV ", &info, (ftnlen)6);
	return 0;
    }

/*     Quick return if possible. */

    if (*n == 0 || (alpha->r == 0.f && alpha->i == 0.f && (beta->r == 1.f && 
                                                           beta->i == 0.f))) {
	return 0;
    }

/*     Set up the start points in  X  and  Y. */

    if (*incx > 0) {
	kx = 1;
    } else {
	kx = 1 - (*n - 1) * *incx;
    }
    if (*incy > 0) {
	ky = 1;
    } else {
	ky = 1 - (*n - 1) * *incy;
    }

/*     Start the operations. In this version the elements of the array AP */
/*     are accessed sequentially with one pass through AP. */

/*     First form  y := beta*y. */

    if (beta->r != 1.f || beta->i != 0.f) {
	if (*incy == 1) {
	    if (beta->r == 0.f && beta->i == 0.f) {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    i__2 = i__;
		    y[i__2].r = 0.f, y[i__2].i = 0.f;
/* L10: */
		}
	    } else {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    i__2 = i__;
		    i__3 = i__;
		    q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i, 
			    q__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
			    .r;
		    y[i__2].r = q__1.r, y[i__2].i = q__1.i;
/* L20: */
		}
	    }
	} else {
	    iy = ky;
	    if (beta->r == 0.f && beta->i == 0.f) {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    i__2 = iy;
		    y[i__2].r = 0.f, y[i__2].i = 0.f;
		    iy += *incy;
/* L30: */
		}
	    } else {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    i__2 = iy;
		    i__3 = iy;
		    q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i, 
			    q__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
			    .r;
		    y[i__2].r = q__1.r, y[i__2].i = q__1.i;
		    iy += *incy;
/* L40: */
		}
	    }
	}
    }
    if (alpha->r == 0.f && alpha->i == 0.f) {
	return 0;
    }
    kk = 1;
    if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {

/*        Form  y  when AP contains the upper triangle. */

	if (*incx == 1 && *incy == 1) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j;
		q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i =
			 alpha->r * x[i__2].i + alpha->i * x[i__2].r;
		temp1.r = q__1.r, temp1.i = q__1.i;
		temp2.r = 0.f, temp2.i = 0.f;
		k = kk;
		i__2 = j - 1;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    i__3 = i__;
		    i__4 = i__;
		    i__5 = k;
		    q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i, 
			    q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
			    .r;
		    q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
		    y[i__3].r = q__1.r, y[i__3].i = q__1.i;
		    r_cnjg(&q__3, &ap[k]);
		    i__3 = i__;
		    q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i =
			     q__3.r * x[i__3].i + q__3.i * x[i__3].r;
		    q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
		    temp2.r = q__1.r, temp2.i = q__1.i;
		    ++k;
/* L50: */
		}
		i__2 = j;
		i__3 = j;
		i__4 = kk + j - 1;
		r__1 = ap[i__4].r;
		q__3.r = r__1 * temp1.r, q__3.i = r__1 * temp1.i;
		q__2.r = y[i__3].r + q__3.r, q__2.i = y[i__3].i + q__3.i;
		q__4.r = alpha->r * temp2.r - alpha->i * temp2.i, q__4.i = 
			alpha->r * temp2.i + alpha->i * temp2.r;
		q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
		y[i__2].r = q__1.r, y[i__2].i = q__1.i;
		kk += j;
/* L60: */
	    }
	} else {
	    jx = kx;
	    jy = ky;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = jx;
		q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i =
			 alpha->r * x[i__2].i + alpha->i * x[i__2].r;
		temp1.r = q__1.r, temp1.i = q__1.i;
		temp2.r = 0.f, temp2.i = 0.f;
		ix = kx;
		iy = ky;
		i__2 = kk + j - 2;
		for (k = kk; k <= i__2; ++k) {
		    i__3 = iy;
		    i__4 = iy;
		    i__5 = k;
		    q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i, 
			    q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
			    .r;
		    q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
		    y[i__3].r = q__1.r, y[i__3].i = q__1.i;
		    r_cnjg(&q__3, &ap[k]);
		    i__3 = ix;
		    q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i =
			     q__3.r * x[i__3].i + q__3.i * x[i__3].r;
		    q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
		    temp2.r = q__1.r, temp2.i = q__1.i;
		    ix += *incx;
		    iy += *incy;
/* L70: */
		}
		i__2 = jy;
		i__3 = jy;
		i__4 = kk + j - 1;
		r__1 = ap[i__4].r;
		q__3.r = r__1 * temp1.r, q__3.i = r__1 * temp1.i;
		q__2.r = y[i__3].r + q__3.r, q__2.i = y[i__3].i + q__3.i;
		q__4.r = alpha->r * temp2.r - alpha->i * temp2.i, q__4.i = 
			alpha->r * temp2.i + alpha->i * temp2.r;
		q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
		y[i__2].r = q__1.r, y[i__2].i = q__1.i;
		jx += *incx;
		jy += *incy;
		kk += j;
/* L80: */
	    }
	}
    } else {

/*        Form  y  when AP contains the lower triangle. */

	if (*incx == 1 && *incy == 1) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j;
		q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i =
			 alpha->r * x[i__2].i + alpha->i * x[i__2].r;
		temp1.r = q__1.r, temp1.i = q__1.i;
		temp2.r = 0.f, temp2.i = 0.f;
		i__2 = j;
		i__3 = j;
		i__4 = kk;
		r__1 = ap[i__4].r;
		q__2.r = r__1 * temp1.r, q__2.i = r__1 * temp1.i;
		q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i;
		y[i__2].r = q__1.r, y[i__2].i = q__1.i;
		k = kk + 1;
		i__2 = *n;
		for (i__ = j + 1; i__ <= i__2; ++i__) {
		    i__3 = i__;
		    i__4 = i__;
		    i__5 = k;
		    q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i, 
			    q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
			    .r;
		    q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
		    y[i__3].r = q__1.r, y[i__3].i = q__1.i;
		    r_cnjg(&q__3, &ap[k]);
		    i__3 = i__;
		    q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i =
			     q__3.r * x[i__3].i + q__3.i * x[i__3].r;
		    q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
		    temp2.r = q__1.r, temp2.i = q__1.i;
		    ++k;
/* L90: */
		}
		i__2 = j;
		i__3 = j;
		q__2.r = alpha->r * temp2.r - alpha->i * temp2.i, q__2.i = 
			alpha->r * temp2.i + alpha->i * temp2.r;
		q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i;
		y[i__2].r = q__1.r, y[i__2].i = q__1.i;
		kk += *n - j + 1;
/* L100: */
	    }
	} else {
	    jx = kx;
	    jy = ky;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = jx;
		q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i =
			 alpha->r * x[i__2].i + alpha->i * x[i__2].r;
		temp1.r = q__1.r, temp1.i = q__1.i;
		temp2.r = 0.f, temp2.i = 0.f;
		i__2 = jy;
		i__3 = jy;
		i__4 = kk;
		r__1 = ap[i__4].r;
		q__2.r = r__1 * temp1.r, q__2.i = r__1 * temp1.i;
		q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i;
		y[i__2].r = q__1.r, y[i__2].i = q__1.i;
		ix = jx;
		iy = jy;
		i__2 = kk + *n - j;
		for (k = kk + 1; k <= i__2; ++k) {
		    ix += *incx;
		    iy += *incy;
		    i__3 = iy;
		    i__4 = iy;
		    i__5 = k;
		    q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i, 
			    q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
			    .r;
		    q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
		    y[i__3].r = q__1.r, y[i__3].i = q__1.i;
		    r_cnjg(&q__3, &ap[k]);
		    i__3 = ix;
		    q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i =
			     q__3.r * x[i__3].i + q__3.i * x[i__3].r;
		    q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
		    temp2.r = q__1.r, temp2.i = q__1.i;
/* L110: */
		}
		i__2 = jy;
		i__3 = jy;
		q__2.r = alpha->r * temp2.r - alpha->i * temp2.i, q__2.i = 
			alpha->r * temp2.i + alpha->i * temp2.r;
		q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i;
		y[i__2].r = q__1.r, y[i__2].i = q__1.i;
		jx += *incx;
		jy += *incy;
		kk += *n - j + 1;
/* L120: */
	    }
	}
    }

    return 0;

/*     End of CHPMV . */

} /* chpmv_ */