// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr> // Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_SUITESPARSEQRSUPPORT_H #define EIGEN_SUITESPARSEQRSUPPORT_H namespace Eigen { template<typename MatrixType> class SPQR; template<typename SPQRType> struct SPQRMatrixQReturnType; template<typename SPQRType> struct SPQRMatrixQTransposeReturnType; template <typename SPQRType, typename Derived> struct SPQR_QProduct; namespace internal { template <typename SPQRType> struct traits<SPQRMatrixQReturnType<SPQRType> > { typedef typename SPQRType::MatrixType ReturnType; }; template <typename SPQRType> struct traits<SPQRMatrixQTransposeReturnType<SPQRType> > { typedef typename SPQRType::MatrixType ReturnType; }; template <typename SPQRType, typename Derived> struct traits<SPQR_QProduct<SPQRType, Derived> > { typedef typename Derived::PlainObject ReturnType; }; } // End namespace internal /** * \ingroup SPQRSupport_Module * \class SPQR * \brief Sparse QR factorization based on SuiteSparseQR library * * This class is used to perform a multithreaded and multifrontal rank-revealing QR decomposition * of sparse matrices. The result is then used to solve linear leasts_square systems. * Clearly, a QR factorization is returned such that A*P = Q*R where : * * P is the column permutation. Use colsPermutation() to get it. * * Q is the orthogonal matrix represented as Householder reflectors. * Use matrixQ() to get an expression and matrixQ().transpose() to get the transpose. * You can then apply it to a vector. * * R is the sparse triangular factor. Use matrixQR() to get it as SparseMatrix. * NOTE : The Index type of R is always SuiteSparse_long. You can get it with SPQR::Index * * \tparam _MatrixType The type of the sparse matrix A, must be a column-major SparseMatrix<> * * \implsparsesolverconcept * * */ template<typename _MatrixType> class SPQR : public SparseSolverBase<SPQR<_MatrixType> > { protected: typedef SparseSolverBase<SPQR<_MatrixType> > Base; using Base::m_isInitialized; public: typedef typename _MatrixType::Scalar Scalar; typedef typename _MatrixType::RealScalar RealScalar; typedef SuiteSparse_long StorageIndex ; typedef SparseMatrix<Scalar, ColMajor, StorageIndex> MatrixType; typedef Map<PermutationMatrix<Dynamic, Dynamic, StorageIndex> > PermutationType; enum { ColsAtCompileTime = Dynamic, MaxColsAtCompileTime = Dynamic }; public: SPQR() : m_ordering(SPQR_ORDERING_DEFAULT), m_allow_tol(SPQR_DEFAULT_TOL), m_tolerance (NumTraits<Scalar>::epsilon()), m_useDefaultThreshold(true) { cholmod_l_start(&m_cc); } explicit SPQR(const _MatrixType& matrix) : m_ordering(SPQR_ORDERING_DEFAULT), m_allow_tol(SPQR_DEFAULT_TOL), m_tolerance (NumTraits<Scalar>::epsilon()), m_useDefaultThreshold(true) { cholmod_l_start(&m_cc); compute(matrix); } ~SPQR() { SPQR_free(); cholmod_l_finish(&m_cc); } void SPQR_free() { cholmod_l_free_sparse(&m_H, &m_cc); cholmod_l_free_sparse(&m_cR, &m_cc); cholmod_l_free_dense(&m_HTau, &m_cc); std::free(m_E); std::free(m_HPinv); } void compute(const _MatrixType& matrix) { if(m_isInitialized) SPQR_free(); MatrixType mat(matrix); /* Compute the default threshold as in MatLab, see: * Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing * Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011, Page 8:3 */ RealScalar pivotThreshold = m_tolerance; if(m_useDefaultThreshold) { RealScalar max2Norm = 0.0; for (int j = 0; j < mat.cols(); j++) max2Norm = numext::maxi(max2Norm, mat.col(j).norm()); if(max2Norm==RealScalar(0)) max2Norm = RealScalar(1); pivotThreshold = 20 * (mat.rows() + mat.cols()) * max2Norm * NumTraits<RealScalar>::epsilon(); } cholmod_sparse A; A = viewAsCholmod(mat); m_rows = matrix.rows(); Index col = matrix.cols(); m_rank = SuiteSparseQR<Scalar>(m_ordering, pivotThreshold, col, &A, &m_cR, &m_E, &m_H, &m_HPinv, &m_HTau, &m_cc); if (!m_cR) { m_info = NumericalIssue; m_isInitialized = false; return; } m_info = Success; m_isInitialized = true; m_isRUpToDate = false; } /** * Get the number of rows of the input matrix and the Q matrix */ inline Index rows() const {return m_rows; } /** * Get the number of columns of the input matrix. */ inline Index cols() const { return m_cR->ncol; } template<typename Rhs, typename Dest> void _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const { eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()"); eigen_assert(b.cols()==1 && "This method is for vectors only"); //Compute Q^T * b typename Dest::PlainObject y, y2; y = matrixQ().transpose() * b; // Solves with the triangular matrix R Index rk = this->rank(); y2 = y; y.resize((std::max)(cols(),Index(y.rows())),y.cols()); y.topRows(rk) = this->matrixR().topLeftCorner(rk, rk).template triangularView<Upper>().solve(y2.topRows(rk)); // Apply the column permutation // colsPermutation() performs a copy of the permutation, // so let's apply it manually: for(Index i = 0; i < rk; ++i) dest.row(m_E[i]) = y.row(i); for(Index i = rk; i < cols(); ++i) dest.row(m_E[i]).setZero(); // y.bottomRows(y.rows()-rk).setZero(); // dest = colsPermutation() * y.topRows(cols()); m_info = Success; } /** \returns the sparse triangular factor R. It is a sparse matrix */ const MatrixType matrixR() const { eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()"); if(!m_isRUpToDate) { m_R = viewAsEigen<Scalar,ColMajor, typename MatrixType::StorageIndex>(*m_cR); m_isRUpToDate = true; } return m_R; } /// Get an expression of the matrix Q SPQRMatrixQReturnType<SPQR> matrixQ() const { return SPQRMatrixQReturnType<SPQR>(*this); } /// Get the permutation that was applied to columns of A PermutationType colsPermutation() const { eigen_assert(m_isInitialized && "Decomposition is not initialized."); return PermutationType(m_E, m_cR->ncol); } /** * Gets the rank of the matrix. * It should be equal to matrixQR().cols if the matrix is full-rank */ Index rank() const { eigen_assert(m_isInitialized && "Decomposition is not initialized."); return m_cc.SPQR_istat[4]; } /// Set the fill-reducing ordering method to be used void setSPQROrdering(int ord) { m_ordering = ord;} /// Set the tolerance tol to treat columns with 2-norm < =tol as zero void setPivotThreshold(const RealScalar& tol) { m_useDefaultThreshold = false; m_tolerance = tol; } /** \returns a pointer to the SPQR workspace */ cholmod_common *cholmodCommon() const { return &m_cc; } /** \brief Reports whether previous computation was successful. * * \returns \c Success if computation was succesful, * \c NumericalIssue if the sparse QR can not be computed */ ComputationInfo info() const { eigen_assert(m_isInitialized && "Decomposition is not initialized."); return m_info; } protected: bool m_analysisIsOk; bool m_factorizationIsOk; mutable bool m_isRUpToDate; mutable ComputationInfo m_info; int m_ordering; // Ordering method to use, see SPQR's manual int m_allow_tol; // Allow to use some tolerance during numerical factorization. RealScalar m_tolerance; // treat columns with 2-norm below this tolerance as zero mutable cholmod_sparse *m_cR; // The sparse R factor in cholmod format mutable MatrixType m_R; // The sparse matrix R in Eigen format mutable StorageIndex *m_E; // The permutation applied to columns mutable cholmod_sparse *m_H; //The householder vectors mutable StorageIndex *m_HPinv; // The row permutation of H mutable cholmod_dense *m_HTau; // The Householder coefficients mutable Index m_rank; // The rank of the matrix mutable cholmod_common m_cc; // Workspace and parameters bool m_useDefaultThreshold; // Use default threshold Index m_rows; template<typename ,typename > friend struct SPQR_QProduct; }; template <typename SPQRType, typename Derived> struct SPQR_QProduct : ReturnByValue<SPQR_QProduct<SPQRType,Derived> > { typedef typename SPQRType::Scalar Scalar; typedef typename SPQRType::StorageIndex StorageIndex; //Define the constructor to get reference to argument types SPQR_QProduct(const SPQRType& spqr, const Derived& other, bool transpose) : m_spqr(spqr),m_other(other),m_transpose(transpose) {} inline Index rows() const { return m_transpose ? m_spqr.rows() : m_spqr.cols(); } inline Index cols() const { return m_other.cols(); } // Assign to a vector template<typename ResType> void evalTo(ResType& res) const { cholmod_dense y_cd; cholmod_dense *x_cd; int method = m_transpose ? SPQR_QTX : SPQR_QX; cholmod_common *cc = m_spqr.cholmodCommon(); y_cd = viewAsCholmod(m_other.const_cast_derived()); x_cd = SuiteSparseQR_qmult<Scalar>(method, m_spqr.m_H, m_spqr.m_HTau, m_spqr.m_HPinv, &y_cd, cc); res = Matrix<Scalar,ResType::RowsAtCompileTime,ResType::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x), x_cd->nrow, x_cd->ncol); cholmod_l_free_dense(&x_cd, cc); } const SPQRType& m_spqr; const Derived& m_other; bool m_transpose; }; template<typename SPQRType> struct SPQRMatrixQReturnType{ SPQRMatrixQReturnType(const SPQRType& spqr) : m_spqr(spqr) {} template<typename Derived> SPQR_QProduct<SPQRType, Derived> operator*(const MatrixBase<Derived>& other) { return SPQR_QProduct<SPQRType,Derived>(m_spqr,other.derived(),false); } SPQRMatrixQTransposeReturnType<SPQRType> adjoint() const { return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr); } // To use for operations with the transpose of Q SPQRMatrixQTransposeReturnType<SPQRType> transpose() const { return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr); } const SPQRType& m_spqr; }; template<typename SPQRType> struct SPQRMatrixQTransposeReturnType{ SPQRMatrixQTransposeReturnType(const SPQRType& spqr) : m_spqr(spqr) {} template<typename Derived> SPQR_QProduct<SPQRType,Derived> operator*(const MatrixBase<Derived>& other) { return SPQR_QProduct<SPQRType,Derived>(m_spqr,other.derived(), true); } const SPQRType& m_spqr; }; }// End namespace Eigen #endif