// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> // Copyright (C) 2009 Keir Mierle <mierle@gmail.com> // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> // Copyright (C) 2011 Timothy E. Holy <tim.holy@gmail.com > // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_LDLT_H #define EIGEN_LDLT_H namespace Eigen { namespace internal { template<typename MatrixType, int UpLo> struct LDLT_Traits; // PositiveSemiDef means positive semi-definite and non-zero; same for NegativeSemiDef enum SignMatrix { PositiveSemiDef, NegativeSemiDef, ZeroSign, Indefinite }; } /** \ingroup Cholesky_Module * * \class LDLT * * \brief Robust Cholesky decomposition of a matrix with pivoting * * \tparam _MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition * \tparam _UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper. * The other triangular part won't be read. * * Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite * matrix \f$ A \f$ such that \f$ A = P^TLDL^*P \f$, where P is a permutation matrix, L * is lower triangular with a unit diagonal and D is a diagonal matrix. * * The decomposition uses pivoting to ensure stability, so that L will have * zeros in the bottom right rank(A) - n submatrix. Avoiding the square root * on D also stabilizes the computation. * * Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky * decomposition to determine whether a system of equations has a solution. * * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. * * \sa MatrixBase::ldlt(), SelfAdjointView::ldlt(), class LLT */ template<typename _MatrixType, int _UpLo> class LDLT { public: typedef _MatrixType MatrixType; enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, UpLo = _UpLo }; typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 typedef typename MatrixType::StorageIndex StorageIndex; typedef Matrix<Scalar, RowsAtCompileTime, 1, 0, MaxRowsAtCompileTime, 1> TmpMatrixType; typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType; typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType; typedef internal::LDLT_Traits<MatrixType,UpLo> Traits; /** \brief Default Constructor. * * The default constructor is useful in cases in which the user intends to * perform decompositions via LDLT::compute(const MatrixType&). */ LDLT() : m_matrix(), m_transpositions(), m_sign(internal::ZeroSign), m_isInitialized(false) {} /** \brief Default Constructor with memory preallocation * * Like the default constructor but with preallocation of the internal data * according to the specified problem \a size. * \sa LDLT() */ explicit LDLT(Index size) : m_matrix(size, size), m_transpositions(size), m_temporary(size), m_sign(internal::ZeroSign), m_isInitialized(false) {} /** \brief Constructor with decomposition * * This calculates the decomposition for the input \a matrix. * * \sa LDLT(Index size) */ template<typename InputType> explicit LDLT(const EigenBase<InputType>& matrix) : m_matrix(matrix.rows(), matrix.cols()), m_transpositions(matrix.rows()), m_temporary(matrix.rows()), m_sign(internal::ZeroSign), m_isInitialized(false) { compute(matrix.derived()); } /** \brief Constructs a LDLT factorization from a given matrix * * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref. * * \sa LDLT(const EigenBase&) */ template<typename InputType> explicit LDLT(EigenBase<InputType>& matrix) : m_matrix(matrix.derived()), m_transpositions(matrix.rows()), m_temporary(matrix.rows()), m_sign(internal::ZeroSign), m_isInitialized(false) { compute(matrix.derived()); } /** Clear any existing decomposition * \sa rankUpdate(w,sigma) */ void setZero() { m_isInitialized = false; } /** \returns a view of the upper triangular matrix U */ inline typename Traits::MatrixU matrixU() const { eigen_assert(m_isInitialized && "LDLT is not initialized."); return Traits::getU(m_matrix); } /** \returns a view of the lower triangular matrix L */ inline typename Traits::MatrixL matrixL() const { eigen_assert(m_isInitialized && "LDLT is not initialized."); return Traits::getL(m_matrix); } /** \returns the permutation matrix P as a transposition sequence. */ inline const TranspositionType& transpositionsP() const { eigen_assert(m_isInitialized && "LDLT is not initialized."); return m_transpositions; } /** \returns the coefficients of the diagonal matrix D */ inline Diagonal<const MatrixType> vectorD() const { eigen_assert(m_isInitialized && "LDLT is not initialized."); return m_matrix.diagonal(); } /** \returns true if the matrix is positive (semidefinite) */ inline bool isPositive() const { eigen_assert(m_isInitialized && "LDLT is not initialized."); return m_sign == internal::PositiveSemiDef || m_sign == internal::ZeroSign; } /** \returns true if the matrix is negative (semidefinite) */ inline bool isNegative(void) const { eigen_assert(m_isInitialized && "LDLT is not initialized."); return m_sign == internal::NegativeSemiDef || m_sign == internal::ZeroSign; } /** \returns a solution x of \f$ A x = b \f$ using the current decomposition of A. * * This function also supports in-place solves using the syntax <tt>x = decompositionObject.solve(x)</tt> . * * \note_about_checking_solutions * * More precisely, this method solves \f$ A x = b \f$ using the decomposition \f$ A = P^T L D L^* P \f$ * by solving the systems \f$ P^T y_1 = b \f$, \f$ L y_2 = y_1 \f$, \f$ D y_3 = y_2 \f$, * \f$ L^* y_4 = y_3 \f$ and \f$ P x = y_4 \f$ in succession. If the matrix \f$ A \f$ is singular, then * \f$ D \f$ will also be singular (all the other matrices are invertible). In that case, the * least-square solution of \f$ D y_3 = y_2 \f$ is computed. This does not mean that this function * computes the least-square solution of \f$ A x = b \f$ is \f$ A \f$ is singular. * * \sa MatrixBase::ldlt(), SelfAdjointView::ldlt() */ template<typename Rhs> inline const Solve<LDLT, Rhs> solve(const MatrixBase<Rhs>& b) const { eigen_assert(m_isInitialized && "LDLT is not initialized."); eigen_assert(m_matrix.rows()==b.rows() && "LDLT::solve(): invalid number of rows of the right hand side matrix b"); return Solve<LDLT, Rhs>(*this, b.derived()); } template<typename Derived> bool solveInPlace(MatrixBase<Derived> &bAndX) const; template<typename InputType> LDLT& compute(const EigenBase<InputType>& matrix); /** \returns an estimate of the reciprocal condition number of the matrix of * which \c *this is the LDLT decomposition. */ RealScalar rcond() const { eigen_assert(m_isInitialized && "LDLT is not initialized."); return internal::rcond_estimate_helper(m_l1_norm, *this); } template <typename Derived> LDLT& rankUpdate(const MatrixBase<Derived>& w, const RealScalar& alpha=1); /** \returns the internal LDLT decomposition matrix * * TODO: document the storage layout */ inline const MatrixType& matrixLDLT() const { eigen_assert(m_isInitialized && "LDLT is not initialized."); return m_matrix; } MatrixType reconstructedMatrix() const; /** \returns the adjoint of \c *this, that is, a const reference to the decomposition itself as the underlying matrix is self-adjoint. * * This method is provided for compatibility with other matrix decompositions, thus enabling generic code such as: * \code x = decomposition.adjoint().solve(b) \endcode */ const LDLT& adjoint() const { return *this; }; inline Index rows() const { return m_matrix.rows(); } inline Index cols() const { return m_matrix.cols(); } /** \brief Reports whether previous computation was successful. * * \returns \c Success if computation was succesful, * \c NumericalIssue if the matrix.appears to be negative. */ ComputationInfo info() const { eigen_assert(m_isInitialized && "LDLT is not initialized."); return m_info; } #ifndef EIGEN_PARSED_BY_DOXYGEN template<typename RhsType, typename DstType> EIGEN_DEVICE_FUNC void _solve_impl(const RhsType &rhs, DstType &dst) const; #endif protected: static void check_template_parameters() { EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); } /** \internal * Used to compute and store the Cholesky decomposition A = L D L^* = U^* D U. * The strict upper part is used during the decomposition, the strict lower * part correspond to the coefficients of L (its diagonal is equal to 1 and * is not stored), and the diagonal entries correspond to D. */ MatrixType m_matrix; RealScalar m_l1_norm; TranspositionType m_transpositions; TmpMatrixType m_temporary; internal::SignMatrix m_sign; bool m_isInitialized; ComputationInfo m_info; }; namespace internal { template<int UpLo> struct ldlt_inplace; template<> struct ldlt_inplace<Lower> { template<typename MatrixType, typename TranspositionType, typename Workspace> static bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign) { using std::abs; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; typedef typename TranspositionType::StorageIndex IndexType; eigen_assert(mat.rows()==mat.cols()); const Index size = mat.rows(); bool found_zero_pivot = false; bool ret = true; if (size <= 1) { transpositions.setIdentity(); if (numext::real(mat.coeff(0,0)) > static_cast<RealScalar>(0) ) sign = PositiveSemiDef; else if (numext::real(mat.coeff(0,0)) < static_cast<RealScalar>(0)) sign = NegativeSemiDef; else sign = ZeroSign; return true; } for (Index k = 0; k < size; ++k) { // Find largest diagonal element Index index_of_biggest_in_corner; mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner); index_of_biggest_in_corner += k; transpositions.coeffRef(k) = IndexType(index_of_biggest_in_corner); if(k != index_of_biggest_in_corner) { // apply the transposition while taking care to consider only // the lower triangular part Index s = size-index_of_biggest_in_corner-1; // trailing size after the biggest element mat.row(k).head(k).swap(mat.row(index_of_biggest_in_corner).head(k)); mat.col(k).tail(s).swap(mat.col(index_of_biggest_in_corner).tail(s)); std::swap(mat.coeffRef(k,k),mat.coeffRef(index_of_biggest_in_corner,index_of_biggest_in_corner)); for(Index i=k+1;i<index_of_biggest_in_corner;++i) { Scalar tmp = mat.coeffRef(i,k); mat.coeffRef(i,k) = numext::conj(mat.coeffRef(index_of_biggest_in_corner,i)); mat.coeffRef(index_of_biggest_in_corner,i) = numext::conj(tmp); } if(NumTraits<Scalar>::IsComplex) mat.coeffRef(index_of_biggest_in_corner,k) = numext::conj(mat.coeff(index_of_biggest_in_corner,k)); } // partition the matrix: // A00 | - | - // lu = A10 | A11 | - // A20 | A21 | A22 Index rs = size - k - 1; Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1); Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k); Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k); if(k>0) { temp.head(k) = mat.diagonal().real().head(k).asDiagonal() * A10.adjoint(); mat.coeffRef(k,k) -= (A10 * temp.head(k)).value(); if(rs>0) A21.noalias() -= A20 * temp.head(k); } // In some previous versions of Eigen (e.g., 3.2.1), the scaling was omitted if the pivot // was smaller than the cutoff value. However, since LDLT is not rank-revealing // we should only make sure that we do not introduce INF or NaN values. // Remark that LAPACK also uses 0 as the cutoff value. RealScalar realAkk = numext::real(mat.coeffRef(k,k)); bool pivot_is_valid = (abs(realAkk) > RealScalar(0)); if(k==0 && !pivot_is_valid) { // The entire diagonal is zero, there is nothing more to do // except filling the transpositions, and checking whether the matrix is zero. sign = ZeroSign; for(Index j = 0; j<size; ++j) { transpositions.coeffRef(j) = IndexType(j); ret = ret && (mat.col(j).tail(size-j-1).array()==Scalar(0)).all(); } return ret; } if((rs>0) && pivot_is_valid) A21 /= realAkk; if(found_zero_pivot && pivot_is_valid) ret = false; // factorization failed else if(!pivot_is_valid) found_zero_pivot = true; if (sign == PositiveSemiDef) { if (realAkk < static_cast<RealScalar>(0)) sign = Indefinite; } else if (sign == NegativeSemiDef) { if (realAkk > static_cast<RealScalar>(0)) sign = Indefinite; } else if (sign == ZeroSign) { if (realAkk > static_cast<RealScalar>(0)) sign = PositiveSemiDef; else if (realAkk < static_cast<RealScalar>(0)) sign = NegativeSemiDef; } } return ret; } // Reference for the algorithm: Davis and Hager, "Multiple Rank // Modifications of a Sparse Cholesky Factorization" (Algorithm 1) // Trivial rearrangements of their computations (Timothy E. Holy) // allow their algorithm to work for rank-1 updates even if the // original matrix is not of full rank. // Here only rank-1 updates are implemented, to reduce the // requirement for intermediate storage and improve accuracy template<typename MatrixType, typename WDerived> static bool updateInPlace(MatrixType& mat, MatrixBase<WDerived>& w, const typename MatrixType::RealScalar& sigma=1) { using numext::isfinite; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; const Index size = mat.rows(); eigen_assert(mat.cols() == size && w.size()==size); RealScalar alpha = 1; // Apply the update for (Index j = 0; j < size; j++) { // Check for termination due to an original decomposition of low-rank if (!(isfinite)(alpha)) break; // Update the diagonal terms RealScalar dj = numext::real(mat.coeff(j,j)); Scalar wj = w.coeff(j); RealScalar swj2 = sigma*numext::abs2(wj); RealScalar gamma = dj*alpha + swj2; mat.coeffRef(j,j) += swj2/alpha; alpha += swj2/dj; // Update the terms of L Index rs = size-j-1; w.tail(rs) -= wj * mat.col(j).tail(rs); if(gamma != 0) mat.col(j).tail(rs) += (sigma*numext::conj(wj)/gamma)*w.tail(rs); } return true; } template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType> static bool update(MatrixType& mat, const TranspositionType& transpositions, Workspace& tmp, const WType& w, const typename MatrixType::RealScalar& sigma=1) { // Apply the permutation to the input w tmp = transpositions * w; return ldlt_inplace<Lower>::updateInPlace(mat,tmp,sigma); } }; template<> struct ldlt_inplace<Upper> { template<typename MatrixType, typename TranspositionType, typename Workspace> static EIGEN_STRONG_INLINE bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign) { Transpose<MatrixType> matt(mat); return ldlt_inplace<Lower>::unblocked(matt, transpositions, temp, sign); } template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType> static EIGEN_STRONG_INLINE bool update(MatrixType& mat, TranspositionType& transpositions, Workspace& tmp, WType& w, const typename MatrixType::RealScalar& sigma=1) { Transpose<MatrixType> matt(mat); return ldlt_inplace<Lower>::update(matt, transpositions, tmp, w.conjugate(), sigma); } }; template<typename MatrixType> struct LDLT_Traits<MatrixType,Lower> { typedef const TriangularView<const MatrixType, UnitLower> MatrixL; typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitUpper> MatrixU; static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); } static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); } }; template<typename MatrixType> struct LDLT_Traits<MatrixType,Upper> { typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitLower> MatrixL; typedef const TriangularView<const MatrixType, UnitUpper> MatrixU; static inline MatrixL getL(const MatrixType& m) { return MatrixL(m.adjoint()); } static inline MatrixU getU(const MatrixType& m) { return MatrixU(m); } }; } // end namespace internal /** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix */ template<typename MatrixType, int _UpLo> template<typename InputType> LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const EigenBase<InputType>& a) { check_template_parameters(); eigen_assert(a.rows()==a.cols()); const Index size = a.rows(); m_matrix = a.derived(); // Compute matrix L1 norm = max abs column sum. m_l1_norm = RealScalar(0); // TODO move this code to SelfAdjointView for (Index col = 0; col < size; ++col) { RealScalar abs_col_sum; if (_UpLo == Lower) abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>(); else abs_col_sum = m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>(); if (abs_col_sum > m_l1_norm) m_l1_norm = abs_col_sum; } m_transpositions.resize(size); m_isInitialized = false; m_temporary.resize(size); m_sign = internal::ZeroSign; m_info = internal::ldlt_inplace<UpLo>::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; m_isInitialized = true; return *this; } /** Update the LDLT decomposition: given A = L D L^T, efficiently compute the decomposition of A + sigma w w^T. * \param w a vector to be incorporated into the decomposition. * \param sigma a scalar, +1 for updates and -1 for "downdates," which correspond to removing previously-added column vectors. Optional; default value is +1. * \sa setZero() */ template<typename MatrixType, int _UpLo> template<typename Derived> LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::rankUpdate(const MatrixBase<Derived>& w, const typename LDLT<MatrixType,_UpLo>::RealScalar& sigma) { typedef typename TranspositionType::StorageIndex IndexType; const Index size = w.rows(); if (m_isInitialized) { eigen_assert(m_matrix.rows()==size); } else { m_matrix.resize(size,size); m_matrix.setZero(); m_transpositions.resize(size); for (Index i = 0; i < size; i++) m_transpositions.coeffRef(i) = IndexType(i); m_temporary.resize(size); m_sign = sigma>=0 ? internal::PositiveSemiDef : internal::NegativeSemiDef; m_isInitialized = true; } internal::ldlt_inplace<UpLo>::update(m_matrix, m_transpositions, m_temporary, w, sigma); return *this; } #ifndef EIGEN_PARSED_BY_DOXYGEN template<typename _MatrixType, int _UpLo> template<typename RhsType, typename DstType> void LDLT<_MatrixType,_UpLo>::_solve_impl(const RhsType &rhs, DstType &dst) const { eigen_assert(rhs.rows() == rows()); // dst = P b dst = m_transpositions * rhs; // dst = L^-1 (P b) matrixL().solveInPlace(dst); // dst = D^-1 (L^-1 P b) // more precisely, use pseudo-inverse of D (see bug 241) using std::abs; const typename Diagonal<const MatrixType>::RealReturnType vecD(vectorD()); // In some previous versions, tolerance was set to the max of 1/highest and the maximal diagonal entry * epsilon // as motivated by LAPACK's xGELSS: // RealScalar tolerance = numext::maxi(vecD.array().abs().maxCoeff() * NumTraits<RealScalar>::epsilon(),RealScalar(1) / NumTraits<RealScalar>::highest()); // However, LDLT is not rank revealing, and so adjusting the tolerance wrt to the highest // diagonal element is not well justified and leads to numerical issues in some cases. // Moreover, Lapack's xSYTRS routines use 0 for the tolerance. RealScalar tolerance = RealScalar(1) / NumTraits<RealScalar>::highest(); for (Index i = 0; i < vecD.size(); ++i) { if(abs(vecD(i)) > tolerance) dst.row(i) /= vecD(i); else dst.row(i).setZero(); } // dst = L^-T (D^-1 L^-1 P b) matrixU().solveInPlace(dst); // dst = P^-1 (L^-T D^-1 L^-1 P b) = A^-1 b dst = m_transpositions.transpose() * dst; } #endif /** \internal use x = ldlt_object.solve(x); * * This is the \em in-place version of solve(). * * \param bAndX represents both the right-hand side matrix b and result x. * * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD. * * This version avoids a copy when the right hand side matrix b is not * needed anymore. * * \sa LDLT::solve(), MatrixBase::ldlt() */ template<typename MatrixType,int _UpLo> template<typename Derived> bool LDLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const { eigen_assert(m_isInitialized && "LDLT is not initialized."); eigen_assert(m_matrix.rows() == bAndX.rows()); bAndX = this->solve(bAndX); return true; } /** \returns the matrix represented by the decomposition, * i.e., it returns the product: P^T L D L^* P. * This function is provided for debug purpose. */ template<typename MatrixType, int _UpLo> MatrixType LDLT<MatrixType,_UpLo>::reconstructedMatrix() const { eigen_assert(m_isInitialized && "LDLT is not initialized."); const Index size = m_matrix.rows(); MatrixType res(size,size); // P res.setIdentity(); res = transpositionsP() * res; // L^* P res = matrixU() * res; // D(L^*P) res = vectorD().real().asDiagonal() * res; // L(DL^*P) res = matrixL() * res; // P^T (LDL^*P) res = transpositionsP().transpose() * res; return res; } /** \cholesky_module * \returns the Cholesky decomposition with full pivoting without square root of \c *this * \sa MatrixBase::ldlt() */ template<typename MatrixType, unsigned int UpLo> inline const LDLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo> SelfAdjointView<MatrixType, UpLo>::ldlt() const { return LDLT<PlainObject,UpLo>(m_matrix); } /** \cholesky_module * \returns the Cholesky decomposition with full pivoting without square root of \c *this * \sa SelfAdjointView::ldlt() */ template<typename Derived> inline const LDLT<typename MatrixBase<Derived>::PlainObject> MatrixBase<Derived>::ldlt() const { return LDLT<PlainObject>(derived()); } } // end namespace Eigen #endif // EIGEN_LDLT_H