/*------------------------------------------------------------------------- * drawElements Quality Program OpenGL (ES) Module * ----------------------------------------------- * * Copyright 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file * \brief Calibration tools. *//*--------------------------------------------------------------------*/ #include "glsCalibration.hpp" #include "tcuTestLog.hpp" #include "tcuVectorUtil.hpp" #include "deStringUtil.hpp" #include "deMath.h" #include "deClock.h" #include <algorithm> #include <limits> using std::string; using std::vector; using tcu::Vec2; using tcu::TestLog; using tcu::TestNode; using namespace glu; namespace deqp { namespace gls { // Reorders input arbitrarily, linear complexity and no allocations template<typename T> float destructiveMedian (vector<T>& data) { const typename vector<T>::iterator mid = data.begin()+data.size()/2; std::nth_element(data.begin(), mid, data.end()); if (data.size()%2 == 0) // Even number of elements, need average of two centermost elements return (*mid + *std::max_element(data.begin(), mid))*0.5f; // Data is partially sorted around mid, mid is half an item after center else return *mid; } LineParameters theilSenLinearRegression (const std::vector<tcu::Vec2>& dataPoints) { const float epsilon = 1e-6f; const int numDataPoints = (int)dataPoints.size(); vector<float> pairwiseCoefficients; vector<float> pointwiseOffsets; LineParameters result (0.0f, 0.0f); // Compute the pairwise coefficients. for (int i = 0; i < numDataPoints; i++) { const Vec2& ptA = dataPoints[i]; for (int j = 0; j < i; j++) { const Vec2& ptB = dataPoints[j]; if (de::abs(ptA.x() - ptB.x()) > epsilon) pairwiseCoefficients.push_back((ptA.y() - ptB.y()) / (ptA.x() - ptB.x())); } } // Find the median of the pairwise coefficients. // \note If there are no data point pairs with differing x values, the coefficient variable will stay zero as initialized. if (!pairwiseCoefficients.empty()) result.coefficient = destructiveMedian(pairwiseCoefficients); // Compute the offsets corresponding to the median coefficient, for all data points. for (int i = 0; i < numDataPoints; i++) pointwiseOffsets.push_back(dataPoints[i].y() - result.coefficient*dataPoints[i].x()); // Find the median of the offsets. // \note If there are no data points, the offset variable will stay zero as initialized. if (!pointwiseOffsets.empty()) result.offset = destructiveMedian(pointwiseOffsets); return result; } // Sample from given values using linear interpolation at a given position as if values were laid to range [0, 1] template <typename T> static float linearSample (const std::vector<T>& values, float position) { DE_ASSERT(position >= 0.0f); DE_ASSERT(position <= 1.0f); const int maxNdx = (int)values.size() - 1; const float floatNdx = (float)maxNdx * position; const int lowerNdx = (int)deFloatFloor(floatNdx); const int higherNdx = lowerNdx + (lowerNdx == maxNdx ? 0 : 1); // Use only last element if position is 1.0 const float interpolationFactor = floatNdx - (float)lowerNdx; DE_ASSERT(lowerNdx >= 0 && lowerNdx < (int)values.size()); DE_ASSERT(higherNdx >= 0 && higherNdx < (int)values.size()); DE_ASSERT(interpolationFactor >= 0 && interpolationFactor < 1.0f); return tcu::mix((float)values[lowerNdx], (float)values[higherNdx], interpolationFactor); } LineParametersWithConfidence theilSenSiegelLinearRegression (const std::vector<tcu::Vec2>& dataPoints, float reportedConfidence) { DE_ASSERT(!dataPoints.empty()); // Siegel's variation const float epsilon = 1e-6f; const int numDataPoints = (int)dataPoints.size(); std::vector<float> medianSlopes; std::vector<float> pointwiseOffsets; LineParametersWithConfidence result; // Compute the median slope via each element for (int i = 0; i < numDataPoints; i++) { const tcu::Vec2& ptA = dataPoints[i]; std::vector<float> slopes; slopes.reserve(numDataPoints); for (int j = 0; j < numDataPoints; j++) { const tcu::Vec2& ptB = dataPoints[j]; if (de::abs(ptA.x() - ptB.x()) > epsilon) slopes.push_back((ptA.y() - ptB.y()) / (ptA.x() - ptB.x())); } // Add median of slopes through point i medianSlopes.push_back(destructiveMedian(slopes)); } DE_ASSERT(!medianSlopes.empty()); // Find the median of the pairwise coefficients. std::sort(medianSlopes.begin(), medianSlopes.end()); result.coefficient = linearSample(medianSlopes, 0.5f); // Compute the offsets corresponding to the median coefficient, for all data points. for (int i = 0; i < numDataPoints; i++) pointwiseOffsets.push_back(dataPoints[i].y() - result.coefficient*dataPoints[i].x()); // Find the median of the offsets. std::sort(pointwiseOffsets.begin(), pointwiseOffsets.end()); result.offset = linearSample(pointwiseOffsets, 0.5f); // calculate confidence intervals result.coefficientConfidenceLower = linearSample(medianSlopes, 0.5f - reportedConfidence*0.5f); result.coefficientConfidenceUpper = linearSample(medianSlopes, 0.5f + reportedConfidence*0.5f); result.offsetConfidenceLower = linearSample(pointwiseOffsets, 0.5f - reportedConfidence*0.5f); result.offsetConfidenceUpper = linearSample(pointwiseOffsets, 0.5f + reportedConfidence*0.5f); result.confidence = reportedConfidence; return result; } bool MeasureState::isDone (void) const { return (int)frameTimes.size() >= maxNumFrames || (frameTimes.size() >= 2 && frameTimes[frameTimes.size()-2] >= (deUint64)frameShortcutTime && frameTimes[frameTimes.size()-1] >= (deUint64)frameShortcutTime); } deUint64 MeasureState::getTotalTime (void) const { deUint64 time = 0; for (int i = 0; i < (int)frameTimes.size(); i++) time += frameTimes[i]; return time; } void MeasureState::clear (void) { maxNumFrames = 0; frameShortcutTime = std::numeric_limits<float>::infinity(); numDrawCalls = 0; frameTimes.clear(); } void MeasureState::start (int maxNumFrames_, float frameShortcutTime_, int numDrawCalls_) { frameTimes.clear(); frameTimes.reserve(maxNumFrames_); maxNumFrames = maxNumFrames_; frameShortcutTime = frameShortcutTime_; numDrawCalls = numDrawCalls_; } TheilSenCalibrator::TheilSenCalibrator (void) : m_params (1 /* initial calls */, 10 /* calibrate iter frames */, 2000.0f /* calibrate iter shortcut threshold */, 31 /* max calibration iterations */, 1000.0f/30.0f /* target frame time */, 1000.0f/60.0f /* frame time cap */, 1000.0f /* target measure duration */) , m_state (INTERNALSTATE_LAST) { clear(); } TheilSenCalibrator::TheilSenCalibrator (const CalibratorParameters& params) : m_params (params) , m_state (INTERNALSTATE_LAST) { clear(); } TheilSenCalibrator::~TheilSenCalibrator() { } void TheilSenCalibrator::clear (void) { m_measureState.clear(); m_calibrateIterations.clear(); m_state = INTERNALSTATE_CALIBRATING; } void TheilSenCalibrator::clear (const CalibratorParameters& params) { m_params = params; clear(); } TheilSenCalibrator::State TheilSenCalibrator::getState (void) const { if (m_state == INTERNALSTATE_FINISHED) return STATE_FINISHED; else { DE_ASSERT(m_state == INTERNALSTATE_CALIBRATING || !m_measureState.isDone()); return m_measureState.isDone() ? STATE_RECOMPUTE_PARAMS : STATE_MEASURE; } } void TheilSenCalibrator::recordIteration (deUint64 iterationTime) { DE_ASSERT((m_state == INTERNALSTATE_CALIBRATING || m_state == INTERNALSTATE_RUNNING) && !m_measureState.isDone()); m_measureState.frameTimes.push_back(iterationTime); if (m_state == INTERNALSTATE_RUNNING && m_measureState.isDone()) m_state = INTERNALSTATE_FINISHED; } void TheilSenCalibrator::recomputeParameters (void) { DE_ASSERT(m_state == INTERNALSTATE_CALIBRATING); DE_ASSERT(m_measureState.isDone()); // Minimum and maximum acceptable frame times. const float minGoodFrameTimeUs = m_params.targetFrameTimeUs * 0.95f; const float maxGoodFrameTimeUs = m_params.targetFrameTimeUs * 1.15f; const int numIterations = (int)m_calibrateIterations.size(); // Record frame time. if (numIterations > 0) { m_calibrateIterations.back().frameTime = (float)((double)m_measureState.getTotalTime() / (double)m_measureState.frameTimes.size()); // Check if we're good enough to stop calibrating. { bool endCalibration = false; // Is the maximum calibration iteration limit reached? endCalibration = endCalibration || (int)m_calibrateIterations.size() >= m_params.maxCalibrateIterations; // Do a few past iterations have frame time in acceptable range? { const int numRelevantPastIterations = 2; if (!endCalibration && (int)m_calibrateIterations.size() >= numRelevantPastIterations) { const CalibrateIteration* const past = &m_calibrateIterations[m_calibrateIterations.size() - numRelevantPastIterations]; bool allInGoodRange = true; for (int i = 0; i < numRelevantPastIterations && allInGoodRange; i++) { const float frameTimeUs = past[i].frameTime; if (!de::inRange(frameTimeUs, minGoodFrameTimeUs, maxGoodFrameTimeUs)) allInGoodRange = false; } endCalibration = endCalibration || allInGoodRange; } } // Do a few past iterations have similar-enough call counts? { const int numRelevantPastIterations = 3; if (!endCalibration && (int)m_calibrateIterations.size() >= numRelevantPastIterations) { const CalibrateIteration* const past = &m_calibrateIterations[m_calibrateIterations.size() - numRelevantPastIterations]; int minCallCount = std::numeric_limits<int>::max(); int maxCallCount = std::numeric_limits<int>::min(); for (int i = 0; i < numRelevantPastIterations; i++) { minCallCount = de::min(minCallCount, past[i].numDrawCalls); maxCallCount = de::max(maxCallCount, past[i].numDrawCalls); } if ((float)(maxCallCount - minCallCount) <= (float)minCallCount * 0.1f) endCalibration = true; } } // Is call count just 1, and frame time still way too high? endCalibration = endCalibration || (m_calibrateIterations.back().numDrawCalls == 1 && m_calibrateIterations.back().frameTime > m_params.targetFrameTimeUs*2.0f); if (endCalibration) { const int minFrames = 10; const int maxFrames = 60; int numMeasureFrames = deClamp32(deRoundFloatToInt32(m_params.targetMeasureDurationUs / m_calibrateIterations.back().frameTime), minFrames, maxFrames); m_state = INTERNALSTATE_RUNNING; m_measureState.start(numMeasureFrames, m_params.calibrateIterationShortcutThreshold, m_calibrateIterations.back().numDrawCalls); return; } } } DE_ASSERT(m_state == INTERNALSTATE_CALIBRATING); // Estimate new call count. { int newCallCount; if (numIterations == 0) newCallCount = m_params.numInitialCalls; else { vector<Vec2> dataPoints; for (int i = 0; i < numIterations; i++) { if (m_calibrateIterations[i].numDrawCalls == 1 || m_calibrateIterations[i].frameTime > m_params.frameTimeCapUs*1.05f) // Only account for measurements not too near the cap. dataPoints.push_back(Vec2((float)m_calibrateIterations[i].numDrawCalls, m_calibrateIterations[i].frameTime)); } if (numIterations == 1) dataPoints.push_back(Vec2(0.0f, 0.0f)); // If there's just one measurement so far, this will help in getting the next estimate. { const float targetFrameTimeUs = m_params.targetFrameTimeUs; const float coeffEpsilon = 0.001f; // Coefficient must be large enough (and positive) to be considered sensible. const LineParameters estimatorLine = theilSenLinearRegression(dataPoints); int prevMaxCalls = 0; // Find the maximum of the past call counts. for (int i = 0; i < numIterations; i++) prevMaxCalls = de::max(prevMaxCalls, m_calibrateIterations[i].numDrawCalls); if (estimatorLine.coefficient < coeffEpsilon) // Coefficient not good for sensible estimation; increase call count enough to get a reasonably different value. newCallCount = 2*prevMaxCalls; else { // Solve newCallCount such that approximately targetFrameTime = offset + coefficient*newCallCount. newCallCount = (int)((targetFrameTimeUs - estimatorLine.offset) / estimatorLine.coefficient + 0.5f); // We should generally prefer FPS counts below the target rather than above (i.e. higher frame times rather than lower). if (estimatorLine.offset + estimatorLine.coefficient*(float)newCallCount < minGoodFrameTimeUs) newCallCount++; } // Make sure we have at least minimum amount of calls, and don't allow increasing call count too much in one iteration. newCallCount = de::clamp(newCallCount, 1, prevMaxCalls*10); } } m_measureState.start(m_params.maxCalibrateIterationFrames, m_params.calibrateIterationShortcutThreshold, newCallCount); m_calibrateIterations.push_back(CalibrateIteration(newCallCount, 0.0f)); } } void logCalibrationInfo (tcu::TestLog& log, const TheilSenCalibrator& calibrator) { const CalibratorParameters& params = calibrator.getParameters(); const std::vector<CalibrateIteration>& calibrateIterations = calibrator.getCalibrationInfo(); // Write out default calibration info. log << TestLog::Section("CalibrationInfo", "Calibration Info") << TestLog::Message << "Target frame time: " << params.targetFrameTimeUs << " us (" << 1000000 / params.targetFrameTimeUs << " fps)" << TestLog::EndMessage; for (int iterNdx = 0; iterNdx < (int)calibrateIterations.size(); iterNdx++) { log << TestLog::Message << " iteration " << iterNdx << ": " << calibrateIterations[iterNdx].numDrawCalls << " calls => " << de::floatToString(calibrateIterations[iterNdx].frameTime, 2) << " us (" << de::floatToString(1000000.0f / calibrateIterations[iterNdx].frameTime, 2) << " fps)" << TestLog::EndMessage; } log << TestLog::Integer("CallCount", "Calibrated call count", "", QP_KEY_TAG_NONE, calibrator.getMeasureState().numDrawCalls) << TestLog::Integer("FrameCount", "Calibrated frame count", "", QP_KEY_TAG_NONE, (int)calibrator.getMeasureState().frameTimes.size()); log << TestLog::EndSection; } } // gls } // deqp