/*------------------------------------------------------------------------- * drawElements Quality Program OpenGL ES 3.0 Module * ------------------------------------------------- * * Copyright 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file * \brief Varying interpolation accuracy tests. * * \todo [2012-07-03 pyry] On GLES3 we could use floating-point render target * for better accuracy evaluation. *//*--------------------------------------------------------------------*/ #include "es3aVaryingInterpolationTests.hpp" #include "gluPixelTransfer.hpp" #include "gluShaderProgram.hpp" #include "gluShaderUtil.hpp" #include "tcuStringTemplate.hpp" #include "gluContextInfo.hpp" #include "glsTextureTestUtil.hpp" #include "tcuVector.hpp" #include "tcuVectorUtil.hpp" #include "tcuTestLog.hpp" #include "tcuFloat.hpp" #include "tcuImageCompare.hpp" #include "tcuRenderTarget.hpp" #include "deRandom.hpp" #include "deStringUtil.hpp" #include "deString.h" #include "glw.h" using tcu::TestLog; using tcu::Vec3; using tcu::Vec4; using std::string; using std::vector; using std::map; using tcu::SurfaceAccess; namespace deqp { namespace gles3 { namespace Accuracy { static inline float projectedTriInterpolate (const tcu::Vec3& s, const tcu::Vec3& w, float nx, float ny) { return (s[0]*(1.0f-nx-ny)/w[0] + s[1]*ny/w[1] + s[2]*nx/w[2]) / ((1.0f-nx-ny)/w[0] + ny/w[1] + nx/w[2]); } static void renderReference (const SurfaceAccess& dst, const float coords[4*3], const Vec4& wCoord, const Vec3& scale, const Vec3& bias) { float dstW = (float)dst.getWidth(); float dstH = (float)dst.getHeight(); Vec3 triR[2] = { Vec3(coords[0*3+0], coords[1*3+0], coords[2*3+0]), Vec3(coords[3*3+0], coords[2*3+0], coords[1*3+0]) }; Vec3 triG[2] = { Vec3(coords[0*3+1], coords[1*3+1], coords[2*3+1]), Vec3(coords[3*3+1], coords[2*3+1], coords[1*3+1]) }; Vec3 triB[2] = { Vec3(coords[0*3+2], coords[1*3+2], coords[2*3+2]), Vec3(coords[3*3+2], coords[2*3+2], coords[1*3+2]) }; tcu::Vec3 triW[2] = { wCoord.swizzle(0, 1, 2), wCoord.swizzle(3, 2, 1) }; for (int py = 0; py < dst.getHeight(); py++) { for (int px = 0; px < dst.getWidth(); px++) { float wx = (float)px + 0.5f; float wy = (float)py + 0.5f; float nx = wx / dstW; float ny = wy / dstH; int triNdx = nx + ny >= 1.0f ? 1 : 0; float triNx = triNdx ? 1.0f - nx : nx; float triNy = triNdx ? 1.0f - ny : ny; float r = projectedTriInterpolate(triR[triNdx], triW[triNdx], triNx, triNy) * scale[0] + bias[0]; float g = projectedTriInterpolate(triG[triNdx], triW[triNdx], triNx, triNy) * scale[1] + bias[1]; float b = projectedTriInterpolate(triB[triNdx], triW[triNdx], triNx, triNy) * scale[2] + bias[2]; Vec4 color = Vec4(r, g, b, 1.0f); dst.setPixel(color, px, py); } } } class InterpolationCase : public TestCase { public: InterpolationCase (Context& context, const char* name, const char* desc, glu::Precision precision, const tcu::Vec3& minVal, const tcu::Vec3& maxVal, bool projective); ~InterpolationCase (void); IterateResult iterate (void); private: glu::Precision m_precision; tcu::Vec3 m_min; tcu::Vec3 m_max; bool m_projective; }; InterpolationCase::InterpolationCase (Context& context, const char* name, const char* desc, glu::Precision precision, const tcu::Vec3& minVal, const tcu::Vec3& maxVal, bool projective) : TestCase (context, tcu::NODETYPE_ACCURACY, name, desc) , m_precision (precision) , m_min (minVal) , m_max (maxVal) , m_projective (projective) { } InterpolationCase::~InterpolationCase (void) { } static bool isValidFloat (glu::Precision precision, float val) { if (precision == glu::PRECISION_MEDIUMP) { tcu::Float16 fp16(val); return !fp16.isDenorm() && !fp16.isInf() && !fp16.isNaN(); } else { tcu::Float32 fp32(val); return !fp32.isDenorm() && !fp32.isInf() && !fp32.isNaN(); } } template <int Size> static bool isValidFloatVec (glu::Precision precision, const tcu::Vector<float, Size>& vec) { for (int ndx = 0; ndx < Size; ndx++) { if (!isValidFloat(precision, vec[ndx])) return false; } return true; } InterpolationCase::IterateResult InterpolationCase::iterate (void) { TestLog& log = m_testCtx.getLog(); de::Random rnd (deStringHash(getName())); const tcu::RenderTarget& renderTarget = m_context.getRenderTarget(); int viewportWidth = 128; int viewportHeight = 128; if (renderTarget.getWidth() < viewportWidth || renderTarget.getHeight() < viewportHeight) throw tcu::NotSupportedError("Too small viewport", "", __FILE__, __LINE__); int viewportX = rnd.getInt(0, renderTarget.getWidth() - viewportWidth); int viewportY = rnd.getInt(0, renderTarget.getHeight() - viewportHeight); static const char* s_vertShaderTemplate = "#version 300 es\n" "in highp vec4 a_position;\n" "in ${PRECISION} vec3 a_coords;\n" "out ${PRECISION} vec3 v_coords;\n" "\n" "void main (void)\n" "{\n" " gl_Position = a_position;\n" " v_coords = a_coords;\n" "}\n"; static const char* s_fragShaderTemplate = "#version 300 es\n" "in ${PRECISION} vec3 v_coords;\n" "uniform ${PRECISION} vec3 u_scale;\n" "uniform ${PRECISION} vec3 u_bias;\n" "layout(location = 0) out ${PRECISION} vec4 o_color;\n" "\n" "void main (void)\n" "{\n" " o_color = vec4(v_coords * u_scale + u_bias, 1.0);\n" "}\n"; map<string, string> templateParams; templateParams["PRECISION"] = glu::getPrecisionName(m_precision); glu::ShaderProgram program(m_context.getRenderContext(), glu::makeVtxFragSources(tcu::StringTemplate(s_vertShaderTemplate).specialize(templateParams), tcu::StringTemplate(s_fragShaderTemplate).specialize(templateParams))); log << program; if (!program.isOk()) { if (m_precision == glu::PRECISION_HIGHP && !m_context.getContextInfo().isFragmentHighPrecisionSupported()) m_testCtx.setTestResult(QP_TEST_RESULT_NOT_SUPPORTED, "Fragment highp not supported"); else m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Compile failed"); return STOP; } // Position coordinates. Vec4 wCoord = m_projective ? Vec4(1.3f, 0.8f, 0.6f, 2.0f) : Vec4(1.0f, 1.0f, 1.0f, 1.0f); float positions[] = { -1.0f*wCoord.x(), -1.0f*wCoord.x(), 0.0f, wCoord.x(), -1.0f*wCoord.y(), +1.0f*wCoord.y(), 0.0f, wCoord.y(), +1.0f*wCoord.z(), -1.0f*wCoord.z(), 0.0f, wCoord.z(), +1.0f*wCoord.w(), +1.0f*wCoord.w(), 0.0f, wCoord.w() }; // Coordinates for interpolation. tcu::Vec3 scale = 1.0f / (m_max - m_min); tcu::Vec3 bias = -1.0f*m_min*scale; float coords[] = { (0.0f - bias[0])/scale[0], (0.5f - bias[1])/scale[1], (1.0f - bias[2])/scale[2], (0.5f - bias[0])/scale[0], (1.0f - bias[1])/scale[1], (0.5f - bias[2])/scale[2], (0.5f - bias[0])/scale[0], (0.0f - bias[1])/scale[1], (0.5f - bias[2])/scale[2], (1.0f - bias[0])/scale[0], (0.5f - bias[1])/scale[1], (0.0f - bias[2])/scale[2] }; log << TestLog::Message << "a_coords = " << ((tcu::Vec3(0.0f) - bias)/scale) << " -> " << ((tcu::Vec3(1.0f) - bias)/scale) << TestLog::EndMessage; log << TestLog::Message << "u_scale = " << scale << TestLog::EndMessage; log << TestLog::Message << "u_bias = " << bias << TestLog::EndMessage; // Verify that none of the inputs are denormalized / inf / nan. TCU_CHECK(isValidFloatVec(m_precision, scale)); TCU_CHECK(isValidFloatVec(m_precision, bias)); for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(coords); ndx++) { TCU_CHECK(isValidFloat(m_precision, coords[ndx])); TCU_CHECK(isValidFloat(m_precision, coords[ndx] * scale[ndx % 3] + bias[ndx % 3])); } // Indices. static const deUint16 indices[] = { 0, 1, 2, 2, 1, 3 }; { const int posLoc = glGetAttribLocation(program.getProgram(), "a_position"); const int coordLoc = glGetAttribLocation(program.getProgram(), "a_coords"); glEnableVertexAttribArray(posLoc); glVertexAttribPointer(posLoc, 4, GL_FLOAT, GL_FALSE, 0, &positions[0]); glEnableVertexAttribArray(coordLoc); glVertexAttribPointer(coordLoc, 3, GL_FLOAT, GL_FALSE, 0, &coords[0]); } glUseProgram(program.getProgram()); glUniform3f(glGetUniformLocation(program.getProgram(), "u_scale"), scale.x(), scale.y(), scale.z()); glUniform3f(glGetUniformLocation(program.getProgram(), "u_bias"), bias.x(), bias.y(), bias.z()); GLU_CHECK_MSG("After program setup"); // Frames. tcu::Surface rendered (viewportWidth, viewportHeight); tcu::Surface reference (viewportWidth, viewportHeight); // Render with GL. glViewport(viewportX, viewportY, viewportWidth, viewportHeight); glDrawElements(GL_TRIANGLES, DE_LENGTH_OF_ARRAY(indices), GL_UNSIGNED_SHORT, &indices[0]); // Render reference \note While GPU is hopefully doing our draw call. renderReference(SurfaceAccess(reference, m_context.getRenderTarget().getPixelFormat()), coords, wCoord, scale, bias); glu::readPixels(m_context.getRenderContext(), viewportX, viewportY, rendered.getAccess()); // Compute difference. const int bestScoreDiff = 16; const int worstScoreDiff = 300; int score = tcu::measurePixelDiffAccuracy(log, "Result", "Image comparison result", reference, rendered, bestScoreDiff, worstScoreDiff, tcu::COMPARE_LOG_EVERYTHING); m_testCtx.setTestResult(QP_TEST_RESULT_PASS, de::toString(score).c_str()); return STOP; } VaryingInterpolationTests::VaryingInterpolationTests (Context& context) : TestCaseGroup(context, "interpolation", "Varying Interpolation Accuracy Tests") { } VaryingInterpolationTests::~VaryingInterpolationTests (void) { } void VaryingInterpolationTests::init (void) { DE_STATIC_ASSERT(glu::PRECISION_LOWP+1 == glu::PRECISION_MEDIUMP); DE_STATIC_ASSERT(glu::PRECISION_MEDIUMP+1 == glu::PRECISION_HIGHP); // Exp = Emax-3, Mantissa = 0 float minF32 = tcu::Float32((0u<<31) | (0xfcu<<23) | 0x0u).asFloat(); float maxF32 = tcu::Float32((1u<<31) | (0xfcu<<23) | 0x0u).asFloat(); float minF16 = tcu::Float16((deUint16)((0u<<15) | (0x1cu<<10) | 0x0u)).asFloat(); float maxF16 = tcu::Float16((deUint16)((1u<<15) | (0x1cu<<10) | 0x0u)).asFloat(); static const struct { const char* name; Vec3 minVal; Vec3 maxVal; glu::Precision minPrecision; } coordRanges[] = { { "zero_to_one", Vec3( 0.0f, 0.0f, 0.0f), Vec3( 1.0f, 1.0f, 1.0f), glu::PRECISION_LOWP }, { "zero_to_minus_one", Vec3( 0.0f, 0.0f, 0.0f), Vec3( -1.0f, -1.0f, -1.0f), glu::PRECISION_LOWP }, { "minus_one_to_one", Vec3( -1.0f, -1.0f, -1.0f), Vec3( 1.0f, 1.0f, 1.0f), glu::PRECISION_LOWP }, { "minus_ten_to_ten", Vec3(-10.0f, -10.0f, -10.0f), Vec3( 10.0f, 10.0f, 10.0f), glu::PRECISION_MEDIUMP }, { "thousands", Vec3( -5e3f, 1e3f, 1e3f), Vec3( 3e3f, -1e3f, 7e3f), glu::PRECISION_MEDIUMP }, { "full_mediump", Vec3(minF16, minF16, minF16), Vec3(maxF16, maxF16, maxF16), glu::PRECISION_MEDIUMP }, { "full_highp", Vec3(minF32, minF32, minF32), Vec3(maxF32, maxF32, maxF32), glu::PRECISION_HIGHP }, }; for (int precision = glu::PRECISION_LOWP; precision <= glu::PRECISION_HIGHP; precision++) { for (int coordNdx = 0; coordNdx < DE_LENGTH_OF_ARRAY(coordRanges); coordNdx++) { if (precision < (int)coordRanges[coordNdx].minPrecision) continue; string baseName = string(glu::getPrecisionName((glu::Precision)precision)) + "_" + coordRanges[coordNdx].name; addChild(new InterpolationCase(m_context, baseName.c_str(), "", (glu::Precision)precision, coordRanges[coordNdx].minVal, coordRanges[coordNdx].maxVal, false)); addChild(new InterpolationCase(m_context, (baseName + "_proj").c_str(), "", (glu::Precision)precision, coordRanges[coordNdx].minVal, coordRanges[coordNdx].maxVal, true)); } } } } // Accuracy } // gles3 } // deqp