/*------------------------------------------------------------------------- * drawElements Quality Program OpenGL ES 2.0 Module * ------------------------------------------------- * * Copyright 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file * \brief Shader matrix arithmetic tests. * * Variables: * + operation * - mat OP mat * - mat OP vec * - vec OP mat * - mat OP scalar * - OP mat * + matrix source * - constant (ctor) * - uniform * - vertex input * - fragment input * + other operand: always dynamic data? * + how to reduce to vec3? *//*--------------------------------------------------------------------*/ #include "es2fShaderMatrixTests.hpp" #include "glsShaderRenderCase.hpp" #include "gluShaderUtil.hpp" #include "tcuVector.hpp" #include "tcuMatrix.hpp" #include "tcuMatrixUtil.hpp" #include "deStringUtil.hpp" #include "glwEnums.hpp" #include "glwFunctions.hpp" namespace deqp { namespace gles2 { namespace Functional { using std::string; using std::vector; using namespace glu; using namespace deqp::gls; using tcu::Vec2; using tcu::Vec3; using tcu::Vec4; using tcu::Mat2; using tcu::Mat3; using tcu::Mat4; // Uniform / constant values for tests. // \note Input1 should not contain 0 components as it is used as divisor in div cases. // \todo [2012-02-14 pyry] Make these dynamic. static const float s_constInFloat[2] = { 0.5f, -0.2f }; static const Vec2 s_constInVec2[2] = { Vec2(1.2f, 0.5f), Vec2(0.5f, 1.0f) }; static const Vec3 s_constInVec3[2] = { Vec3(1.1f, 0.1f, 0.5f), Vec3(-0.2f, 0.5f, 0.8f) }; static const Vec4 s_constInVec4[2] = { Vec4(1.4f, 0.2f, -0.5f, 0.7f), Vec4(0.2f, -1.0f, 0.5f, 0.8f) }; static const float s_constInMat20[] = { 0.6f, -1.0f, 0.7f, 0.4f }; static const float s_constInMat21[] = { -0.5f, -0.4f, 0.7f, -0.8f }; static const float s_constInMat31[] = { 1.2f, 0.1f, -0.1f, 0.1f, 0.9f, 0.2f, 0.2f, -0.1f, 0.7f }; static const float s_constInMat41[] = { 1.2f, -0.2f, 0.4f, 0.1f, 0.1f, 0.8f, -0.1f, -0.2f, -0.2f, 0.1f, -1.1f, 0.3f, 0.1f, 0.2f, 0.3f, 0.9f }; static const Mat2 s_constInMat2[2] = { tcu::Mat2(s_constInMat20), tcu::Mat2(s_constInMat21) }; static const Mat3 s_constInMat3[2] = { tcu::translationMatrix(tcu::Vec2(0.2f, -0.3f)), tcu::Mat3(s_constInMat31) }; static const Mat4 s_constInMat4[2] = { tcu::translationMatrix(tcu::Vec3(0.2f, -0.3f, 0.15f)), tcu::Mat4(s_constInMat41) }; namespace MatrixCaseUtils { enum InputType { INPUTTYPE_CONST = 0, INPUTTYPE_UNIFORM, INPUTTYPE_DYNAMIC, INPUTTYPE_LAST }; struct ShaderInput { ShaderInput (InputType inputType_, DataType dataType_, Precision precision_) : inputType (inputType_) , dataType (dataType_) , precision (precision_) { } InputType inputType; DataType dataType; Precision precision; }; enum MatrixOp { OP_ADD = 0, OP_SUB, OP_MUL, OP_DIV, OP_COMP_MUL, OP_UNARY_PLUS, OP_NEGATION, OP_PRE_INCREMENT, OP_PRE_DECREMENT, OP_POST_INCREMENT, OP_POST_DECREMENT, OP_ADD_INTO, OP_SUBTRACT_FROM, OP_MULTIPLY_INTO, OP_DIVIDE_INTO, OP_LAST }; // Type traits. template <int DataT> struct TypeTraits; #define DECLARE_TYPE_TRAIT(DATATYPE, TYPE) \ template<> \ struct TypeTraits<DATATYPE> { \ typedef TYPE Type; \ } DECLARE_TYPE_TRAIT(TYPE_FLOAT, float); DECLARE_TYPE_TRAIT(TYPE_FLOAT_VEC2, tcu::Vec2); DECLARE_TYPE_TRAIT(TYPE_FLOAT_VEC3, tcu::Vec3); DECLARE_TYPE_TRAIT(TYPE_FLOAT_VEC4, tcu::Vec4); DECLARE_TYPE_TRAIT(TYPE_FLOAT_MAT2, tcu::Mat2); DECLARE_TYPE_TRAIT(TYPE_FLOAT_MAT3, tcu::Mat3); DECLARE_TYPE_TRAIT(TYPE_FLOAT_MAT4, tcu::Mat4); // Operation info enum OperationType { OPERATIONTYPE_BINARY_OPERATOR = 0, OPERATIONTYPE_BINARY_FUNCTION, OPERATIONTYPE_UNARY_PREFIX_OPERATOR, OPERATIONTYPE_UNARY_POSTFIX_OPERATOR, OPERATIONTYPE_ASSIGNMENT, OPERATIONTYPE_LAST }; static const char* getOperationName (MatrixOp op) { switch (op) { case OP_ADD: return "+"; case OP_SUB: return "-"; case OP_MUL: return "*"; case OP_DIV: return "/"; case OP_COMP_MUL: return "matrixCompMult"; case OP_UNARY_PLUS: return "+"; case OP_NEGATION: return "-"; case OP_PRE_INCREMENT: return "++"; case OP_PRE_DECREMENT: return "--"; case OP_POST_INCREMENT: return "++"; case OP_POST_DECREMENT: return "--"; case OP_ADD_INTO: return "+="; case OP_SUBTRACT_FROM: return "-="; case OP_MULTIPLY_INTO: return "*="; case OP_DIVIDE_INTO: return "/="; default: DE_ASSERT(DE_FALSE); return ""; } } static OperationType getOperationType (MatrixOp op) { switch (op) { case OP_ADD: return OPERATIONTYPE_BINARY_OPERATOR; case OP_SUB: return OPERATIONTYPE_BINARY_OPERATOR; case OP_MUL: return OPERATIONTYPE_BINARY_OPERATOR; case OP_DIV: return OPERATIONTYPE_BINARY_OPERATOR; case OP_COMP_MUL: return OPERATIONTYPE_BINARY_FUNCTION; case OP_UNARY_PLUS: return OPERATIONTYPE_UNARY_PREFIX_OPERATOR; case OP_NEGATION: return OPERATIONTYPE_UNARY_PREFIX_OPERATOR; case OP_PRE_INCREMENT: return OPERATIONTYPE_UNARY_PREFIX_OPERATOR; case OP_PRE_DECREMENT: return OPERATIONTYPE_UNARY_PREFIX_OPERATOR; case OP_POST_INCREMENT: return OPERATIONTYPE_UNARY_POSTFIX_OPERATOR; case OP_POST_DECREMENT: return OPERATIONTYPE_UNARY_POSTFIX_OPERATOR; case OP_ADD_INTO: return OPERATIONTYPE_ASSIGNMENT; case OP_SUBTRACT_FROM: return OPERATIONTYPE_ASSIGNMENT; case OP_MULTIPLY_INTO: return OPERATIONTYPE_ASSIGNMENT; case OP_DIVIDE_INTO: return OPERATIONTYPE_ASSIGNMENT; default: DE_ASSERT(DE_FALSE); return OPERATIONTYPE_LAST; } } enum TestMatrixType { TESTMATRIXTYPE_DEFAULT = 0, TESTMATRIXTYPE_NEGATED, TESTMATRIXTYPE_INCREMENTED, TESTMATRIXTYPE_DECREMENTED, TESTMATRIXTYPE_LAST }; static TestMatrixType getOperationTestMatrixType (MatrixOp op) { switch(op) { case OP_ADD: return TESTMATRIXTYPE_DEFAULT; case OP_SUB: return TESTMATRIXTYPE_DEFAULT; case OP_MUL: return TESTMATRIXTYPE_DEFAULT; case OP_DIV: return TESTMATRIXTYPE_DEFAULT; case OP_COMP_MUL: return TESTMATRIXTYPE_DEFAULT; case OP_UNARY_PLUS: return TESTMATRIXTYPE_DEFAULT; case OP_NEGATION: return TESTMATRIXTYPE_NEGATED; case OP_PRE_INCREMENT: return TESTMATRIXTYPE_NEGATED; case OP_PRE_DECREMENT: return TESTMATRIXTYPE_INCREMENTED; case OP_POST_INCREMENT: return TESTMATRIXTYPE_NEGATED; case OP_POST_DECREMENT: return TESTMATRIXTYPE_DEFAULT; case OP_ADD_INTO: return TESTMATRIXTYPE_DECREMENTED; case OP_SUBTRACT_FROM: return TESTMATRIXTYPE_DEFAULT; case OP_MULTIPLY_INTO: return TESTMATRIXTYPE_DEFAULT; case OP_DIVIDE_INTO: return TESTMATRIXTYPE_DEFAULT; default: DE_ASSERT(DE_FALSE); return TESTMATRIXTYPE_LAST; } } static bool isOperationBinary (MatrixOp op) { return getOperationType(op) == OPERATIONTYPE_BINARY_OPERATOR || getOperationType(op) == OPERATIONTYPE_BINARY_FUNCTION || getOperationType(op) == OPERATIONTYPE_ASSIGNMENT; } static bool isOperationMatrixScalar (MatrixOp op) { return op == OP_ADD || op == OP_SUB || op == OP_MUL || op == OP_DIV; } static bool isOperationMatrixVector (MatrixOp op) { return op == OP_MUL; } static bool isOperationMatrixMatrix (MatrixOp op) { return op == OP_ADD || op == OP_SUB || op == OP_MUL || op == OP_DIV || op == OP_COMP_MUL; } static bool isOperationUnary (MatrixOp op) { return op == OP_UNARY_PLUS || op == OP_NEGATION || op == OP_PRE_INCREMENT || op == OP_PRE_DECREMENT || op == OP_POST_INCREMENT || op == OP_POST_DECREMENT; } static bool isOperationValueModifying (MatrixOp op) { return op == OP_PRE_INCREMENT || op == OP_PRE_DECREMENT || op == OP_POST_INCREMENT || op == OP_POST_DECREMENT; } static bool isOperationAssignment (MatrixOp op) { return op == OP_ADD_INTO || op == OP_SUBTRACT_FROM || op == OP_MULTIPLY_INTO || op == OP_DIVIDE_INTO; } // Operation nature enum OperationNature { OPERATIONNATURE_PURE = 0, OPERATIONNATURE_MUTATING, OPERATIONNATURE_ASSIGNMENT, OPERATIONNATURE_LAST }; static OperationNature getOperationNature (MatrixOp op) { if (isOperationAssignment(op)) return OPERATIONNATURE_ASSIGNMENT; if (isOperationValueModifying(op)) return OPERATIONNATURE_MUTATING; return OPERATIONNATURE_PURE; } // Input value loader. template <int InputT, int DataT> typename TypeTraits<DataT>::Type getInputValue (const ShaderEvalContext& evalCtx, int inputNdx); template <> inline float getInputValue<INPUTTYPE_CONST, TYPE_FLOAT> (const ShaderEvalContext& evalCtx, int inputNdx) { DE_UNREF(evalCtx); return s_constInFloat[inputNdx]; } template <> inline tcu::Vec2 getInputValue<INPUTTYPE_CONST, TYPE_FLOAT_VEC2> (const ShaderEvalContext& evalCtx, int inputNdx) { DE_UNREF(evalCtx); return s_constInVec2[inputNdx]; } template <> inline tcu::Vec3 getInputValue<INPUTTYPE_CONST, TYPE_FLOAT_VEC3> (const ShaderEvalContext& evalCtx, int inputNdx) { DE_UNREF(evalCtx); return s_constInVec3[inputNdx]; } template <> inline tcu::Vec4 getInputValue<INPUTTYPE_CONST, TYPE_FLOAT_VEC4> (const ShaderEvalContext& evalCtx, int inputNdx) { DE_UNREF(evalCtx); return s_constInVec4[inputNdx]; } template <> inline tcu::Mat2 getInputValue<INPUTTYPE_CONST, TYPE_FLOAT_MAT2> (const ShaderEvalContext& evalCtx, int inputNdx) { DE_UNREF(evalCtx); return s_constInMat2[inputNdx]; } template <> inline tcu::Mat3 getInputValue<INPUTTYPE_CONST, TYPE_FLOAT_MAT3> (const ShaderEvalContext& evalCtx, int inputNdx) { DE_UNREF(evalCtx); return s_constInMat3[inputNdx]; } template <> inline tcu::Mat4 getInputValue<INPUTTYPE_CONST, TYPE_FLOAT_MAT4> (const ShaderEvalContext& evalCtx, int inputNdx) { DE_UNREF(evalCtx); return s_constInMat4[inputNdx]; } template <> inline float getInputValue<INPUTTYPE_DYNAMIC, TYPE_FLOAT> (const ShaderEvalContext& evalCtx, int inputNdx) { DE_UNREF(inputNdx); return evalCtx.coords.x(); } template <> inline tcu::Vec2 getInputValue<INPUTTYPE_DYNAMIC, TYPE_FLOAT_VEC2> (const ShaderEvalContext& evalCtx, int inputNdx) { DE_UNREF(inputNdx); return evalCtx.coords.swizzle(0, 1); } template <> inline tcu::Vec3 getInputValue<INPUTTYPE_DYNAMIC, TYPE_FLOAT_VEC3> (const ShaderEvalContext& evalCtx, int inputNdx) { DE_UNREF(inputNdx); return evalCtx.coords.swizzle(0, 1, 2); } template <> inline tcu::Vec4 getInputValue<INPUTTYPE_DYNAMIC, TYPE_FLOAT_VEC4> (const ShaderEvalContext& evalCtx, int inputNdx) { DE_UNREF(inputNdx); return evalCtx.coords.swizzle(0, 1, 2, 3); } template <> inline tcu::Mat2 getInputValue<INPUTTYPE_DYNAMIC, TYPE_FLOAT_MAT2> (const ShaderEvalContext& evalCtx, int inputNdx) { DE_UNREF(inputNdx); // Not used. tcu::Mat2 m; m.setColumn(0, evalCtx.in[0].swizzle(0,1)); m.setColumn(1, evalCtx.in[1].swizzle(0,1)); return m; } template <> inline tcu::Mat3 getInputValue<INPUTTYPE_DYNAMIC, TYPE_FLOAT_MAT3> (const ShaderEvalContext& evalCtx, int inputNdx) { DE_UNREF(inputNdx); // Not used. tcu::Mat3 m; m.setColumn(0, evalCtx.in[0].swizzle(0,1,2)); m.setColumn(1, evalCtx.in[1].swizzle(0,1,2)); m.setColumn(2, evalCtx.in[2].swizzle(0,1,2)); return m; } template <> inline tcu::Mat4 getInputValue<INPUTTYPE_DYNAMIC, TYPE_FLOAT_MAT4> (const ShaderEvalContext& evalCtx, int inputNdx) { DE_UNREF(inputNdx); // Not used. tcu::Mat4 m; m.setColumn(0, evalCtx.in[0]); m.setColumn(1, evalCtx.in[1]); m.setColumn(2, evalCtx.in[2]); m.setColumn(3, evalCtx.in[3]); return m; } // Reduction from expression result to vec3. inline tcu::Vec3 reduceToVec3 (const tcu::Vec2& value) { return value.swizzle(0,1,0); } inline tcu::Vec3 reduceToVec3 (const tcu::Vec3& value) { return value; } inline tcu::Vec3 reduceToVec3 (const tcu::Vec4& value) { return tcu::Vec3(value.x(), value.y(), value.z()+value.w()); } inline tcu::Vec3 reduceToVec3 (const tcu::Mat2& value) { return tcu::Vec3(value(0, 0), value(0, 1), value(1, 0)+value(1, 1)); } inline tcu::Vec3 reduceToVec3 (const tcu::Mat3& value) { return value.getColumn(0) + value.getColumn(1) + value.getColumn(2); } inline tcu::Vec3 reduceToVec3 (const tcu::Mat4& value) { return value.getColumn(0).swizzle(0,1,2) + value.getColumn(1).swizzle(1,2,3) + value.getColumn(2).swizzle(2,3,0) + value.getColumn(3).swizzle(3,0,1); } // matrixCompMult template <typename T, int Rows, int Cols> tcu::Matrix<T, Rows, Cols> matrixCompMult (const tcu::Matrix<T, Rows, Cols>& a, const tcu::Matrix<T, Rows, Cols>& b) { tcu::Matrix<T, Rows, Cols> retVal; for (int r = 0; r < Rows; ++r) for (int c = 0; c < Cols; ++c) retVal(r,c) = a(r,c) * b(r, c); return retVal; } // negate template <typename T, int Rows, int Cols> tcu::Matrix<T, Rows, Cols> negate (const tcu::Matrix<T, Rows, Cols>& mat) { tcu::Matrix<T, Rows, Cols> retVal; for (int r = 0; r < Rows; ++r) for (int c = 0; c < Cols; ++c) retVal(r,c) = -mat(r, c); return retVal; } // increment/decrement template <typename T, int Rows, int Cols> tcu::Matrix<T, Rows, Cols> increment (const tcu::Matrix<T, Rows, Cols>& mat) { tcu::Matrix<T, Rows, Cols> retVal; for (int r = 0; r < Rows; ++r) for (int c = 0; c < Cols; ++c) retVal(r,c) = mat(r, c) + 1.0f; return retVal; } template <typename T, int Rows, int Cols> tcu::Matrix<T, Rows, Cols> decrement (const tcu::Matrix<T, Rows, Cols>& mat) { tcu::Matrix<T, Rows, Cols> retVal; for (int r = 0; r < Rows; ++r) for (int c = 0; c < Cols; ++c) retVal(r,c) = mat(r, c) - 1.0f; return retVal; } // Evaluator template. template <int Op, int In0Type, int In0DataType, int In1Type, int In1DataType> struct Evaluator; template <int In0Type, int In0DataType, int In1Type, int In1DataType> struct Evaluator<OP_ADD, In0Type, In0DataType, In1Type, In1DataType> { static void evaluate (ShaderEvalContext& evalCtx) { evalCtx.color.xyz() = reduceToVec3(getInputValue<In0Type, In0DataType>(evalCtx, 0) + getInputValue<In1Type, In1DataType>(evalCtx, 1)); } }; template <int In0Type, int In0DataType, int In1Type, int In1DataType> struct Evaluator<OP_SUB, In0Type, In0DataType, In1Type, In1DataType> { static void evaluate (ShaderEvalContext& evalCtx) { evalCtx.color.xyz() = reduceToVec3(getInputValue<In0Type, In0DataType>(evalCtx, 0) - getInputValue<In1Type, In1DataType>(evalCtx, 1)); } }; template <int In0Type, int In0DataType, int In1Type, int In1DataType> struct Evaluator<OP_MUL, In0Type, In0DataType, In1Type, In1DataType> { static void evaluate (ShaderEvalContext& evalCtx) { evalCtx.color.xyz() = reduceToVec3(getInputValue<In0Type, In0DataType>(evalCtx, 0) * getInputValue<In1Type, In1DataType>(evalCtx, 1)); } }; template <int In0Type, int In0DataType, int In1Type, int In1DataType> struct Evaluator<OP_DIV, In0Type, In0DataType, In1Type, In1DataType> { static void evaluate (ShaderEvalContext& evalCtx) { evalCtx.color.xyz() = reduceToVec3(getInputValue<In0Type, In0DataType>(evalCtx, 0) / getInputValue<In1Type, In1DataType>(evalCtx, 1)); } }; template <int In0Type, int In0DataType, int In1Type, int In1DataType> struct Evaluator<OP_COMP_MUL, In0Type, In0DataType, In1Type, In1DataType> { static void evaluate (ShaderEvalContext& evalCtx) { evalCtx.color.xyz() = reduceToVec3(matrixCompMult(getInputValue<In0Type, In0DataType>(evalCtx, 0), getInputValue<In1Type, In1DataType>(evalCtx, 1))); } }; template <int In0Type, int In0DataType, int In1Type, int In1DataType> struct Evaluator<OP_UNARY_PLUS, In0Type, In0DataType, In1Type, In1DataType> { static void evaluate (ShaderEvalContext& evalCtx) { evalCtx.color.xyz() = reduceToVec3(getInputValue<In0Type, In0DataType>(evalCtx, 0)); } }; template <int In0Type, int In0DataType, int In1Type, int In1DataType> struct Evaluator<OP_NEGATION, In0Type, In0DataType, In1Type, In1DataType> { static void evaluate (ShaderEvalContext& evalCtx) { evalCtx.color.xyz() = reduceToVec3(negate(getInputValue<In0Type, In0DataType>(evalCtx, 0))); } }; template <int In0Type, int In0DataType, int In1Type, int In1DataType> struct Evaluator<OP_PRE_INCREMENT, In0Type, In0DataType, In1Type, In1DataType> { static void evaluate (ShaderEvalContext& evalCtx) { // modifying reduction: sum modified value too evalCtx.color.xyz() = reduceToVec3(increment(getInputValue<In0Type, In0DataType>(evalCtx, 0))) + reduceToVec3(increment(getInputValue<In0Type, In0DataType>(evalCtx, 0))); } }; template <int In0Type, int In0DataType, int In1Type, int In1DataType> struct Evaluator<OP_PRE_DECREMENT, In0Type, In0DataType, In1Type, In1DataType> { static void evaluate (ShaderEvalContext& evalCtx) { // modifying reduction: sum modified value too evalCtx.color.xyz() = reduceToVec3(decrement(getInputValue<In0Type, In0DataType>(evalCtx, 0))) + reduceToVec3(decrement(getInputValue<In0Type, In0DataType>(evalCtx, 0))); } }; template <int In0Type, int In0DataType, int In1Type, int In1DataType> struct Evaluator<OP_POST_INCREMENT, In0Type, In0DataType, In1Type, In1DataType> { static void evaluate (ShaderEvalContext& evalCtx) { // modifying reduction: sum modified value too evalCtx.color.xyz() = reduceToVec3(getInputValue<In0Type, In0DataType>(evalCtx, 0)) + reduceToVec3(increment(getInputValue<In0Type, In0DataType>(evalCtx, 0))); } }; template <int In0Type, int In0DataType, int In1Type, int In1DataType> struct Evaluator<OP_POST_DECREMENT, In0Type, In0DataType, In1Type, In1DataType> { static void evaluate (ShaderEvalContext& evalCtx) { // modifying reduction: sum modified value too evalCtx.color.xyz() = reduceToVec3(getInputValue<In0Type, In0DataType>(evalCtx, 0)) + reduceToVec3(decrement(getInputValue<In0Type, In0DataType>(evalCtx, 0))); } }; template <int In0Type, int In0DataType, int In1Type, int In1DataType> struct Evaluator<OP_ADD_INTO, In0Type, In0DataType, In1Type, In1DataType> { static void evaluate (ShaderEvalContext& evalCtx) { evalCtx.color.xyz() = reduceToVec3(getInputValue<In0Type, In0DataType>(evalCtx, 0) + getInputValue<In1Type, In1DataType>(evalCtx, 1)); } }; template <int In0Type, int In0DataType, int In1Type, int In1DataType> struct Evaluator<OP_SUBTRACT_FROM, In0Type, In0DataType, In1Type, In1DataType> { static void evaluate (ShaderEvalContext& evalCtx) { evalCtx.color.xyz() = reduceToVec3(getInputValue<In0Type, In0DataType>(evalCtx, 0) - getInputValue<In1Type, In1DataType>(evalCtx, 1)); } }; template <int In0Type, int In0DataType, int In1Type, int In1DataType> struct Evaluator<OP_MULTIPLY_INTO, In0Type, In0DataType, In1Type, In1DataType> { static void evaluate (ShaderEvalContext& evalCtx) { evalCtx.color.xyz() = reduceToVec3(getInputValue<In0Type, In0DataType>(evalCtx, 0) * getInputValue<In1Type, In1DataType>(evalCtx, 1)); } }; template <int In0Type, int In0DataType, int In1Type, int In1DataType> struct Evaluator<OP_DIVIDE_INTO, In0Type, In0DataType, In1Type, In1DataType> { static void evaluate (ShaderEvalContext& evalCtx) { evalCtx.color.xyz() = reduceToVec3(getInputValue<In0Type, In0DataType>(evalCtx, 0) / getInputValue<In1Type, In1DataType>(evalCtx, 1)); } }; ShaderEvalFunc getEvalFunc (const ShaderInput& in0, const ShaderInput& in1, MatrixOp op) { DE_STATIC_ASSERT(TYPE_LAST <= (1<<7)); DE_STATIC_ASSERT(OP_LAST <= (1<<4)); DE_STATIC_ASSERT(INPUTTYPE_LAST <= (1<<2)); #define PACK_EVAL_CASE(OP, IN0TYPE, IN0DATATYPE, IN1TYPE, IN1DATATYPE) (((OP) << 18) | ((IN0TYPE) << 16) | ((IN0DATATYPE) << 9) | ((IN1TYPE) << 7) | (IN1DATATYPE)) #define MAKE_EVAL_CASE(OP, IN0TYPE, IN0DATATYPE, IN1TYPE, IN1DATATYPE) \ case PACK_EVAL_CASE(OP, IN0TYPE, IN0DATATYPE, IN1TYPE, IN1DATATYPE): \ return Evaluator<OP, IN0TYPE, IN0DATATYPE, IN1TYPE, IN1DATATYPE>::evaluate #define SCALAR_OPS(IN0TYPE, IN0DATATYPE, IN1TYPE, IN1DATATYPE) \ MAKE_EVAL_CASE(OP_ADD, IN0TYPE, IN0DATATYPE, IN1TYPE, IN1DATATYPE); \ MAKE_EVAL_CASE(OP_SUB, IN0TYPE, IN0DATATYPE, IN1TYPE, IN1DATATYPE); \ MAKE_EVAL_CASE(OP_MUL, IN0TYPE, IN0DATATYPE, IN1TYPE, IN1DATATYPE); \ MAKE_EVAL_CASE(OP_DIV, IN0TYPE, IN0DATATYPE, IN1TYPE, IN1DATATYPE) #define ALL_OPS(IN0TYPE, IN0DATATYPE, IN1TYPE, IN1DATATYPE) \ MAKE_EVAL_CASE(OP_ADD, IN0TYPE, IN0DATATYPE, IN1TYPE, IN1DATATYPE); \ MAKE_EVAL_CASE(OP_SUB, IN0TYPE, IN0DATATYPE, IN1TYPE, IN1DATATYPE); \ MAKE_EVAL_CASE(OP_MUL, IN0TYPE, IN0DATATYPE, IN1TYPE, IN1DATATYPE); \ MAKE_EVAL_CASE(OP_DIV, IN0TYPE, IN0DATATYPE, IN1TYPE, IN1DATATYPE); \ MAKE_EVAL_CASE(OP_COMP_MUL, IN0TYPE, IN0DATATYPE, IN1TYPE, IN1DATATYPE); #define MUL_OP(IN0TYPE, IN0DATATYPE, IN1TYPE, IN1DATATYPE) \ MAKE_EVAL_CASE(OP_MUL, IN0TYPE, IN0DATATYPE, IN1TYPE, IN1DATATYPE) #define MAKE_MAT_SCALAR_VEC_CASES(OP, TYPE0, TYPE1) \ OP(INPUTTYPE_CONST, TYPE0, INPUTTYPE_CONST, TYPE1); \ OP(INPUTTYPE_DYNAMIC, TYPE0, INPUTTYPE_CONST, TYPE1); \ OP(INPUTTYPE_CONST, TYPE0, INPUTTYPE_DYNAMIC, TYPE1); \ OP(INPUTTYPE_DYNAMIC, TYPE0, INPUTTYPE_DYNAMIC, TYPE1) #define MAKE_MAT_MAT_CASES(OP, MATTYPE) \ OP(INPUTTYPE_CONST, MATTYPE, INPUTTYPE_CONST, MATTYPE); \ OP(INPUTTYPE_DYNAMIC, MATTYPE, INPUTTYPE_CONST, MATTYPE) #define UNARY_OP(IN0TYPE, IN0DATATYPE) \ MAKE_EVAL_CASE(OP_UNARY_PLUS, IN0TYPE, IN0DATATYPE, INPUTTYPE_CONST, TYPE_LAST); \ MAKE_EVAL_CASE(OP_NEGATION, IN0TYPE, IN0DATATYPE, INPUTTYPE_CONST, TYPE_LAST); \ MAKE_EVAL_CASE(OP_PRE_INCREMENT, IN0TYPE, IN0DATATYPE, INPUTTYPE_CONST, TYPE_LAST); \ MAKE_EVAL_CASE(OP_PRE_DECREMENT, IN0TYPE, IN0DATATYPE, INPUTTYPE_CONST, TYPE_LAST); \ MAKE_EVAL_CASE(OP_POST_INCREMENT, IN0TYPE, IN0DATATYPE, INPUTTYPE_CONST, TYPE_LAST); \ MAKE_EVAL_CASE(OP_POST_DECREMENT, IN0TYPE, IN0DATATYPE, INPUTTYPE_CONST, TYPE_LAST) #define MAKE_UNARY_CASES(OP, MATTYPE) \ OP(INPUTTYPE_CONST, MATTYPE); \ OP(INPUTTYPE_DYNAMIC, MATTYPE) #define ASSIGN_OP(IN0TYPE, IN0DATATYPE, IN1TYPE, IN1DATATYPE) \ MAKE_EVAL_CASE(OP_ADD_INTO, IN0TYPE, IN0DATATYPE, IN1TYPE, IN1DATATYPE); \ MAKE_EVAL_CASE(OP_SUBTRACT_FROM, IN0TYPE, IN0DATATYPE, IN1TYPE, IN1DATATYPE); \ MAKE_EVAL_CASE(OP_MULTIPLY_INTO, IN0TYPE, IN0DATATYPE, IN1TYPE, IN1DATATYPE); \ MAKE_EVAL_CASE(OP_DIVIDE_INTO, IN0TYPE, IN0DATATYPE, IN1TYPE, IN1DATATYPE) #define MAKE_ASSIGNMENT_CASES(OP, MATTYPE) \ OP(INPUTTYPE_CONST, MATTYPE, INPUTTYPE_CONST, MATTYPE); \ OP(INPUTTYPE_DYNAMIC, MATTYPE, INPUTTYPE_CONST, MATTYPE); \ OP(INPUTTYPE_CONST, MATTYPE, INPUTTYPE_DYNAMIC, MATTYPE); \ OP(INPUTTYPE_DYNAMIC, MATTYPE, INPUTTYPE_DYNAMIC, MATTYPE) // \note At the moment there is no difference between uniform and const inputs. This saves binary size. InputType in0Type = in0.inputType == INPUTTYPE_DYNAMIC ? INPUTTYPE_DYNAMIC : INPUTTYPE_CONST; InputType in1Type = in1.inputType == INPUTTYPE_DYNAMIC ? INPUTTYPE_DYNAMIC : INPUTTYPE_CONST; switch (PACK_EVAL_CASE(op, in0Type, in0.dataType, in1Type, in1.dataType)) { // Matrix-scalar. MAKE_MAT_SCALAR_VEC_CASES(SCALAR_OPS, TYPE_FLOAT_MAT2, TYPE_FLOAT); MAKE_MAT_SCALAR_VEC_CASES(SCALAR_OPS, TYPE_FLOAT_MAT3, TYPE_FLOAT); MAKE_MAT_SCALAR_VEC_CASES(SCALAR_OPS, TYPE_FLOAT_MAT4, TYPE_FLOAT); // Matrix-vector. MAKE_MAT_SCALAR_VEC_CASES(MUL_OP, TYPE_FLOAT_MAT2, TYPE_FLOAT_VEC2); MAKE_MAT_SCALAR_VEC_CASES(MUL_OP, TYPE_FLOAT_MAT3, TYPE_FLOAT_VEC3); MAKE_MAT_SCALAR_VEC_CASES(MUL_OP, TYPE_FLOAT_MAT4, TYPE_FLOAT_VEC4); // Vector-matrix. MAKE_MAT_SCALAR_VEC_CASES(MUL_OP, TYPE_FLOAT_VEC2, TYPE_FLOAT_MAT2); MAKE_MAT_SCALAR_VEC_CASES(MUL_OP, TYPE_FLOAT_VEC3, TYPE_FLOAT_MAT3); MAKE_MAT_SCALAR_VEC_CASES(MUL_OP, TYPE_FLOAT_VEC4, TYPE_FLOAT_MAT4); // Matrix-matrix. MAKE_MAT_MAT_CASES(ALL_OPS, TYPE_FLOAT_MAT2); MAKE_MAT_MAT_CASES(ALL_OPS, TYPE_FLOAT_MAT3); MAKE_MAT_MAT_CASES(ALL_OPS, TYPE_FLOAT_MAT4); // Unary matrix MAKE_UNARY_CASES(UNARY_OP, TYPE_FLOAT_MAT2); MAKE_UNARY_CASES(UNARY_OP, TYPE_FLOAT_MAT3); MAKE_UNARY_CASES(UNARY_OP, TYPE_FLOAT_MAT4); // Assignment matrix MAKE_ASSIGNMENT_CASES(ASSIGN_OP, TYPE_FLOAT_MAT2); MAKE_ASSIGNMENT_CASES(ASSIGN_OP, TYPE_FLOAT_MAT3); MAKE_ASSIGNMENT_CASES(ASSIGN_OP, TYPE_FLOAT_MAT4); default: DE_ASSERT(DE_FALSE); return DE_NULL; } #undef PACK_EVAL_CASE #undef MAKE_EVAL_CASE #undef MUL_OP #undef ALL_OPS #undef MAKE_MAT_SCALAR_VEC_CASES #undef MAKE_MAT_MAT_CASES } // Shader source format utilities. template <int Size> void writeVectorConstructor (std::ostream& str, const tcu::Vector<float, Size>& v) { str << "vec" << Size << "("; for (int ndx = 0; ndx < Size; ndx++) { if (ndx != 0) str << ", "; str << de::floatToString(v[ndx], 1); } str << ")"; } template <int Cols, int Rows> void writeMatrixConstructor (std::ostream& str, const tcu::Matrix<float, Rows, Cols>& m) { if (Rows == Cols) str << "mat" << Cols; else str << "mat" << Cols << "x" << Rows; str << "("; for (int colNdx = 0; colNdx < Cols; colNdx++) { for (int rowNdx = 0; rowNdx < Rows; rowNdx++) { if (rowNdx > 0 || colNdx > 0) str << ", "; str << de::floatToString(m(rowNdx, colNdx), 1); } } str << ")"; } } // MatrixCaseUtils using namespace MatrixCaseUtils; class ShaderMatrixCase : public ShaderRenderCase { public: ShaderMatrixCase (Context& context, const char* name, const char* desc, const ShaderInput& in0, const ShaderInput& in1, MatrixOp op, bool isVertexCase); ~ShaderMatrixCase (void); void init (void); protected: std::string genGLSLMatToVec3Reduction (const glu::DataType& matType, const char* varName); void setupUniforms (int programID, const tcu::Vec4& constCoords); private: ShaderInput m_in0; ShaderInput m_in1; MatrixOp m_op; }; ShaderMatrixCase::ShaderMatrixCase (Context& context, const char* name, const char* desc, const ShaderInput& in0, const ShaderInput& in1, MatrixOp op, bool isVertexCase) : ShaderRenderCase (context.getTestContext(), context.getRenderContext(), context.getContextInfo(), name, desc, isVertexCase, getEvalFunc(in0, in1, op)) , m_in0 (in0) , m_in1 (in1) , m_op (op) { } ShaderMatrixCase::~ShaderMatrixCase (void) { } void ShaderMatrixCase::init (void) { std::ostringstream vtx; std::ostringstream frag; std::ostringstream& op = m_isVertexCase ? vtx : frag; bool isInDynMat0 = isDataTypeMatrix(m_in0.dataType) && m_in0.inputType == INPUTTYPE_DYNAMIC; bool isInDynMat1 = isDataTypeMatrix(m_in1.dataType) && m_in1.inputType == INPUTTYPE_DYNAMIC; string inValue0; string inValue1; DataType resultType = TYPE_LAST; Precision resultPrec = m_in0.precision; vector<string> passVars; int numInputs = (isOperationBinary(m_op)) ? (2) : (1); std::string operationValue0; std::string operationValue1; DE_ASSERT(!isInDynMat0 || !isInDynMat1); // Only single dynamic matrix input is allowed. DE_UNREF(isInDynMat0 && isInDynMat1); // Compute result type. if (isDataTypeMatrix(m_in0.dataType) && isDataTypeMatrix(m_in1.dataType)) { DE_ASSERT(m_in0.dataType == m_in1.dataType); resultType = m_in0.dataType; } else if (getOperationType(m_op) == OPERATIONTYPE_UNARY_PREFIX_OPERATOR || getOperationType(m_op) == OPERATIONTYPE_UNARY_POSTFIX_OPERATOR) { resultType = m_in0.dataType; } else { int matNdx = isDataTypeMatrix(m_in0.dataType) ? 0 : 1; DataType matrixType = matNdx == 0 ? m_in0.dataType : m_in1.dataType; DataType otherType = matNdx == 0 ? m_in1.dataType : m_in0.dataType; if (otherType == TYPE_FLOAT) resultType = matrixType; else { DE_ASSERT(isDataTypeVector(otherType)); resultType = otherType; } } vtx << "attribute highp vec4 a_position;\n"; if (m_isVertexCase) { vtx << "varying mediump vec4 v_color;\n"; frag << "varying mediump vec4 v_color;\n"; } // Input declarations. for (int inNdx = 0; inNdx < numInputs; inNdx++) { const ShaderInput& in = inNdx > 0 ? m_in1 : m_in0; const char* precName = getPrecisionName(in.precision); const char* typeName = getDataTypeName(in.dataType); string& inValue = inNdx > 0 ? inValue1 : inValue0; if (in.inputType == INPUTTYPE_DYNAMIC) { vtx << "attribute " << precName << " " << typeName << " a_"; if (isDataTypeMatrix(in.dataType)) { // a_matN, v_matN vtx << typeName << ";\n"; if (!m_isVertexCase) { vtx << "varying " << precName << " " << typeName << " v_" << typeName << ";\n"; frag << "varying " << precName << " " << typeName << " v_" << typeName << ";\n"; passVars.push_back(typeName); } inValue = string(m_isVertexCase ? "a_" : "v_") + getDataTypeName(in.dataType); } else { // a_coords, v_coords vtx << "coords;\n"; if (!m_isVertexCase) { vtx << "varying " << precName << " " << typeName << " v_coords;\n"; frag << "varying " << precName << " " << typeName << " v_coords;\n"; passVars.push_back("coords"); } inValue = m_isVertexCase ? "a_coords" : "v_coords"; } } else if (in.inputType == INPUTTYPE_UNIFORM) { op << "uniform " << precName << " " << typeName << " u_in" << inNdx << ";\n"; inValue = string("u_in") + de::toString(inNdx); } else if (in.inputType == INPUTTYPE_CONST) { op << "const " << precName << " " << typeName << " in" << inNdx << " = "; // Generate declaration. switch (in.dataType) { case TYPE_FLOAT: op << de::floatToString(s_constInFloat[inNdx], 1); break; case TYPE_FLOAT_VEC2: writeVectorConstructor<2>(op, s_constInVec2[inNdx]); break; case TYPE_FLOAT_VEC3: writeVectorConstructor<3>(op, s_constInVec3[inNdx]); break; case TYPE_FLOAT_VEC4: writeVectorConstructor<4>(op, s_constInVec4[inNdx]); break; case TYPE_FLOAT_MAT2: writeMatrixConstructor<2, 2>(op, Mat2(s_constInMat2[inNdx])); break; case TYPE_FLOAT_MAT3: writeMatrixConstructor<3, 3>(op, Mat3(s_constInMat3[inNdx])); break; case TYPE_FLOAT_MAT4: writeMatrixConstructor<4, 4>(op, Mat4(s_constInMat4[inNdx])); break; default: DE_ASSERT(DE_FALSE); } op << ";\n"; inValue = string("in") + de::toString(inNdx); } } vtx << "\n" << "void main (void)\n" << "{\n" << " gl_Position = a_position;\n"; frag << "\n" << "void main (void)\n" << "{\n"; if (m_isVertexCase) { frag << " gl_FragColor = v_color;\n"; } else { for (vector<string>::const_iterator copyIter = passVars.begin(); copyIter != passVars.end(); copyIter++) vtx << " v_" << *copyIter << " = " << "a_" << *copyIter << ";\n"; } // Operation. switch (getOperationNature(m_op)) { case OPERATIONNATURE_PURE: DE_ASSERT(getOperationType(m_op) != OPERATIONTYPE_ASSIGNMENT); operationValue0 = inValue0; operationValue1 = inValue1; break; case OPERATIONNATURE_MUTATING: DE_ASSERT(getOperationType(m_op) != OPERATIONTYPE_ASSIGNMENT); op << " " << getPrecisionName(resultPrec) << " " << getDataTypeName(resultType) << " tmpValue = " << inValue0 << ";\n"; operationValue0 = "tmpValue"; operationValue1 = inValue1; break; case OPERATIONNATURE_ASSIGNMENT: DE_ASSERT(getOperationType(m_op) == OPERATIONTYPE_ASSIGNMENT); operationValue0 = inValue0; operationValue1 = inValue1; break; default: DE_ASSERT(DE_FALSE); } switch (getOperationType(m_op)) { case OPERATIONTYPE_BINARY_OPERATOR: op << " " << getPrecisionName(resultPrec) << " " << getDataTypeName(resultType) << " res = " << operationValue0 << " " << getOperationName(m_op) << " " << operationValue1 << ";\n"; break; case OPERATIONTYPE_UNARY_PREFIX_OPERATOR: op << " " << getPrecisionName(resultPrec) << " " << getDataTypeName(resultType) << " res = " << getOperationName(m_op) << operationValue0 << ";\n"; break; case OPERATIONTYPE_UNARY_POSTFIX_OPERATOR: op << " " << getPrecisionName(resultPrec) << " " << getDataTypeName(resultType) << " res = " << operationValue0 << getOperationName(m_op) << ";\n"; break; case OPERATIONTYPE_BINARY_FUNCTION: op << " " << getPrecisionName(resultPrec) << " " << getDataTypeName(resultType) << " res = " << getOperationName(m_op) << "(" << operationValue0 << ", " << operationValue1 << ");\n"; break; case OPERATIONTYPE_ASSIGNMENT: op << " " << getPrecisionName(resultPrec) << " " << getDataTypeName(resultType) << " res = " << operationValue0 << ";\n"; op << " res " << getOperationName(m_op) << " " << operationValue1 << ";\n"; break; default: DE_ASSERT(DE_FALSE); } // Reduction to vec3 (rgb). Check the used value too if it was modified. op << " " << (m_isVertexCase ? "v_color" : "gl_FragColor") << " = "; if (isOperationValueModifying(m_op)) op << "vec4(" << genGLSLMatToVec3Reduction(resultType, "res") << ", 1.0) + vec4(" << genGLSLMatToVec3Reduction(resultType, "tmpValue") << ", 0.0);\n"; else op << "vec4(" << genGLSLMatToVec3Reduction(resultType, "res") << ", 1.0);\n"; vtx << "}\n"; frag << "}\n"; m_vertShaderSource = vtx.str(); m_fragShaderSource = frag.str(); // \todo [2012-02-14 pyry] Compute better values for matrix tests. m_userAttribTransforms.resize(4); for (int attribNdx = 0; attribNdx < 4; attribNdx++) { m_userAttribTransforms[attribNdx] = Mat4(0.0f); m_userAttribTransforms[attribNdx]((0 + attribNdx) % 4, 0) = 1.0f; m_userAttribTransforms[attribNdx]((1 + attribNdx) % 4, 1) = 1.0f; m_userAttribTransforms[attribNdx]((2 + attribNdx) % 4, 2) = 1.0f; m_userAttribTransforms[attribNdx]((3 + attribNdx) % 4, 3) = 1.0f; } // prevent bad reference cases such as black result images by fine-tuning used matrices if (getOperationTestMatrixType(m_op) != TESTMATRIXTYPE_DEFAULT) { for (int attribNdx = 0; attribNdx < 4; attribNdx++) { for (int row = 0; row < 4; row++) for (int col = 0; col < 4; col++) { switch (getOperationTestMatrixType(m_op)) { case TESTMATRIXTYPE_NEGATED: m_userAttribTransforms[attribNdx](row, col) = -m_userAttribTransforms[attribNdx](row, col); break; case TESTMATRIXTYPE_INCREMENTED: m_userAttribTransforms[attribNdx](row, col) += 0.3f; break; case TESTMATRIXTYPE_DECREMENTED: m_userAttribTransforms[attribNdx](row, col) -= 0.1f; break; default: DE_ASSERT(DE_FALSE); break; } } } } ShaderRenderCase::init(); } std::string ShaderMatrixCase::genGLSLMatToVec3Reduction (const glu::DataType& matType, const char* varName) { std::ostringstream op; switch (matType) { case TYPE_FLOAT: op << varName << ", " << varName << ", " << varName << ""; break; case TYPE_FLOAT_VEC2: op << varName << ".x, " << varName << ".y, " << varName << ".x"; break; case TYPE_FLOAT_VEC3: op << varName << ""; break; case TYPE_FLOAT_VEC4: op << varName << ".x, " << varName << ".y, " << varName << ".z+" << varName << ".w"; break; case TYPE_FLOAT_MAT2: op << varName << "[0][0], " << varName << "[1][0], " << varName << "[0][1]+" << varName << "[1][1]"; break; case TYPE_FLOAT_MAT3: op << varName << "[0]+" << varName << "[1]+" << varName << "[2]"; break; case TYPE_FLOAT_MAT4: op << varName << "[0].xyz+" << varName << "[1].yzw+" << varName << "[2].zwx+" << varName << "[3].wxy"; break; default: DE_ASSERT(DE_FALSE); } return op.str(); } void ShaderMatrixCase::setupUniforms (int programID, const tcu::Vec4& constCoords) { const glw::Functions& gl = m_renderCtx.getFunctions(); DE_UNREF(constCoords); for (int inNdx = 0; inNdx < 2; inNdx++) { const ShaderInput& in = inNdx > 0 ? m_in1 : m_in0; if (in.inputType == INPUTTYPE_UNIFORM) { int loc = gl.getUniformLocation(programID, (string("u_in") + de::toString(inNdx)).c_str()); if (loc < 0) continue; switch (in.dataType) { case TYPE_FLOAT: gl.uniform1f(loc, s_constInFloat[inNdx]); break; case TYPE_FLOAT_VEC2: gl.uniform2fv(loc, 1, s_constInVec2[inNdx].getPtr()); break; case TYPE_FLOAT_VEC3: gl.uniform3fv(loc, 1, s_constInVec3[inNdx].getPtr()); break; case TYPE_FLOAT_VEC4: gl.uniform4fv(loc, 1, s_constInVec4[inNdx].getPtr()); break; case TYPE_FLOAT_MAT2: gl.uniformMatrix2fv(loc, 1, GL_FALSE, s_constInMat2[inNdx].getColumnMajorData().getPtr()); break; case TYPE_FLOAT_MAT3: gl.uniformMatrix3fv(loc, 1, GL_FALSE, s_constInMat3[inNdx].getColumnMajorData().getPtr()); break; case TYPE_FLOAT_MAT4: gl.uniformMatrix4fv(loc, 1, GL_FALSE, s_constInMat4[inNdx].getColumnMajorData().getPtr()); break; default: DE_ASSERT(false); } } } } ShaderMatrixTests::ShaderMatrixTests (Context& context) : TestCaseGroup(context, "matrix", "Matrix Tests") { } ShaderMatrixTests::~ShaderMatrixTests (void) { } void ShaderMatrixTests::init (void) { static const struct { const char* name; const char* desc; MatrixOp op; bool extendedInputTypeCases; // !< test with const and uniform types too } ops[] = { { "add", "Matrix addition tests", OP_ADD, true }, { "sub", "Matrix subtraction tests", OP_SUB, true }, { "mul", "Matrix multiplication tests", OP_MUL, true }, { "div", "Matrix division tests", OP_DIV, true }, { "matrixcompmult", "Matrix component-wise multiplication tests", OP_COMP_MUL, false }, { "unary_addition", "Matrix unary addition tests", OP_UNARY_PLUS, false }, { "negation", "Matrix negation tests", OP_NEGATION, false }, { "pre_increment", "Matrix prefix increment tests", OP_PRE_INCREMENT, false }, { "pre_decrement", "Matrix prefix decrement tests", OP_PRE_DECREMENT, false }, { "post_increment", "Matrix postfix increment tests", OP_POST_INCREMENT, false }, { "post_decrement", "Matrix postfix decrement tests", OP_POST_DECREMENT, false }, { "add_assign", "Matrix add into tests", OP_ADD_INTO, false }, { "sub_assign", "Matrix subtract from tests", OP_SUBTRACT_FROM, false }, { "mul_assign", "Matrix multiply into tests", OP_MULTIPLY_INTO, false }, { "div_assign", "Matrix divide into tests", OP_DIVIDE_INTO, false }, }; struct InputTypeSpec { const char* name; const char* desc; InputType type; }; static const InputTypeSpec extendedInputTypes[] = { { "const", "Constant matrix input", INPUTTYPE_CONST }, { "uniform", "Uniform matrix input", INPUTTYPE_UNIFORM }, { "dynamic", "Dynamic matrix input", INPUTTYPE_DYNAMIC } }; static const InputTypeSpec reducedInputTypes[] = { { "dynamic", "Dynamic matrix input", INPUTTYPE_DYNAMIC } }; static const DataType matrixTypes[] = { TYPE_FLOAT_MAT2, TYPE_FLOAT_MAT3, TYPE_FLOAT_MAT4 }; static const Precision precisions[] = { PRECISION_LOWP, PRECISION_MEDIUMP, PRECISION_HIGHP }; for (int opNdx = 0; opNdx < DE_LENGTH_OF_ARRAY(ops); opNdx++) { const InputTypeSpec* inTypeList = (ops[opNdx].extendedInputTypeCases) ? (extendedInputTypes) : (reducedInputTypes); const int inTypeListSize = (ops[opNdx].extendedInputTypeCases) ? (DE_LENGTH_OF_ARRAY(extendedInputTypes)) : (DE_LENGTH_OF_ARRAY(reducedInputTypes)); const MatrixOp op = ops[opNdx].op; tcu::TestCaseGroup* opGroup = new tcu::TestCaseGroup(m_testCtx, ops[opNdx].name, ops[opNdx].desc); addChild(opGroup); for (int inTypeNdx = 0; inTypeNdx < inTypeListSize; inTypeNdx++) { const InputType inputType = inTypeList[inTypeNdx].type; for (int matTypeNdx = 0; matTypeNdx < DE_LENGTH_OF_ARRAY(matrixTypes); matTypeNdx++) { DataType matType = matrixTypes[matTypeNdx]; const char* matTypeName = getDataTypeName(matType); for (int precNdx = 0; precNdx < DE_LENGTH_OF_ARRAY(precisions); precNdx++) { Precision precision = precisions[precNdx]; const char* precName = getPrecisionName(precision); string baseName = string(inTypeList[inTypeNdx].name) + "_" + precName + "_" + matTypeName + "_"; ShaderInput matIn (inputType, matType, precision); if (isOperationMatrixScalar(op)) { // Matrix-scalar \note For div cases we use uniform input. ShaderInput scalarIn(op == OP_DIV ? INPUTTYPE_UNIFORM : INPUTTYPE_DYNAMIC, TYPE_FLOAT, precision); opGroup->addChild(new ShaderMatrixCase(m_context, (baseName + "float_vertex").c_str(), "Matrix-scalar case", matIn, scalarIn, op, true)); opGroup->addChild(new ShaderMatrixCase(m_context, (baseName + "float_fragment").c_str(), "Matrix-scalar case", matIn, scalarIn, op, false)); } if (isOperationMatrixVector(op)) { // Matrix-vector. DataType vecType = getDataTypeFloatVec(getDataTypeMatrixNumColumns(matType)); ShaderInput vecIn (op == OP_DIV ? INPUTTYPE_UNIFORM : INPUTTYPE_DYNAMIC, vecType, precision); opGroup->addChild(new ShaderMatrixCase(m_context, (baseName + getDataTypeName(vecType) + "_vertex").c_str(), "Matrix-vector case", matIn, vecIn, op, true)); opGroup->addChild(new ShaderMatrixCase(m_context, (baseName + getDataTypeName(vecType) + "_fragment").c_str(), "Matrix-vector case", matIn, vecIn, op, false)); // Vector-matrix. string vecMatName = string(inTypeList[inTypeNdx].name) + "_" + precName + "_" + getDataTypeName(vecType) + "_" + matTypeName; opGroup->addChild(new ShaderMatrixCase(m_context, (vecMatName + "_vertex").c_str(), "Vector-matrix case", vecIn, matIn, op, true)); opGroup->addChild(new ShaderMatrixCase(m_context, (vecMatName + "_fragment").c_str(), "Vector-matrix case", vecIn, matIn, op, false)); } if (isOperationMatrixMatrix(op)) { // Matrix-matrix. ShaderInput otherMatIn(inputType == INPUTTYPE_DYNAMIC ? INPUTTYPE_UNIFORM : inputType, matType, precision); opGroup->addChild(new ShaderMatrixCase(m_context, (baseName + matTypeName + "_vertex").c_str(), "Matrix-matrix case", matIn, otherMatIn, op, true)); opGroup->addChild(new ShaderMatrixCase(m_context, (baseName + matTypeName + "_fragment").c_str(), "Matrix-matrix case", matIn, otherMatIn, op, false)); } if (isOperationUnary(op)) { // op matrix ShaderInput voidInput(INPUTTYPE_LAST, TYPE_LAST, PRECISION_LAST); opGroup->addChild(new ShaderMatrixCase(m_context, (baseName + "vertex").c_str(), "Matrix case", matIn, voidInput, op, true)); opGroup->addChild(new ShaderMatrixCase(m_context, (baseName + "fragment").c_str(), "Matrix case", matIn, voidInput, op, false)); } if (isOperationAssignment(op)) { ShaderInput otherMatIn(inputType == INPUTTYPE_DYNAMIC ? INPUTTYPE_UNIFORM : inputType, matType, precision); opGroup->addChild(new ShaderMatrixCase(m_context, (baseName + "vertex").c_str(), "Matrix assignment case", matIn, otherMatIn, op, true)); opGroup->addChild(new ShaderMatrixCase(m_context, (baseName + "fragment").c_str(), "Matrix assignment case", matIn, otherMatIn, op, false)); } } } } } } } // Functional } // gles2 } // deqp