//===-- tsan_clock_test.cc ------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of ThreadSanitizer (TSan), a race detector. // //===----------------------------------------------------------------------===// #include "tsan_clock.h" #include "tsan_rtl.h" #include "gtest/gtest.h" #include <sys/time.h> #include <time.h> namespace __tsan { ClockCache cache; TEST(Clock, VectorBasic) { ThreadClock clk(0); ASSERT_EQ(clk.size(), 1U); clk.tick(); ASSERT_EQ(clk.size(), 1U); ASSERT_EQ(clk.get(0), 1U); clk.set(3, clk.get(3) + 1); ASSERT_EQ(clk.size(), 4U); ASSERT_EQ(clk.get(0), 1U); ASSERT_EQ(clk.get(1), 0U); ASSERT_EQ(clk.get(2), 0U); ASSERT_EQ(clk.get(3), 1U); clk.set(3, clk.get(3) + 1); ASSERT_EQ(clk.get(3), 2U); } TEST(Clock, ChunkedBasic) { ThreadClock vector(0); SyncClock chunked; ASSERT_EQ(vector.size(), 1U); ASSERT_EQ(chunked.size(), 0U); vector.acquire(&cache, &chunked); ASSERT_EQ(vector.size(), 1U); ASSERT_EQ(chunked.size(), 0U); vector.release(&cache, &chunked); ASSERT_EQ(vector.size(), 1U); ASSERT_EQ(chunked.size(), 1U); vector.acq_rel(&cache, &chunked); ASSERT_EQ(vector.size(), 1U); ASSERT_EQ(chunked.size(), 1U); chunked.Reset(&cache); } TEST(Clock, AcquireRelease) { ThreadClock vector1(100); vector1.tick(); SyncClock chunked; vector1.release(&cache, &chunked); ASSERT_EQ(chunked.size(), 101U); ThreadClock vector2(0); vector2.acquire(&cache, &chunked); ASSERT_EQ(vector2.size(), 101U); ASSERT_EQ(vector2.get(0), 0U); ASSERT_EQ(vector2.get(1), 0U); ASSERT_EQ(vector2.get(99), 0U); ASSERT_EQ(vector2.get(100), 1U); chunked.Reset(&cache); } TEST(Clock, RepeatedAcquire) { ThreadClock thr1(1); thr1.tick(); ThreadClock thr2(2); thr2.tick(); SyncClock sync; thr1.ReleaseStore(&cache, &sync); thr2.acquire(&cache, &sync); thr2.acquire(&cache, &sync); sync.Reset(&cache); } TEST(Clock, ManyThreads) { SyncClock chunked; for (unsigned i = 0; i < 100; i++) { ThreadClock vector(0); vector.tick(); vector.set(i, 1); vector.release(&cache, &chunked); ASSERT_EQ(i + 1, chunked.size()); vector.acquire(&cache, &chunked); ASSERT_EQ(i + 1, vector.size()); } for (unsigned i = 0; i < 100; i++) ASSERT_EQ(1U, chunked.get(i)); ThreadClock vector(1); vector.acquire(&cache, &chunked); ASSERT_EQ(100U, vector.size()); for (unsigned i = 0; i < 100; i++) ASSERT_EQ(1U, vector.get(i)); chunked.Reset(&cache); } TEST(Clock, DifferentSizes) { { ThreadClock vector1(10); vector1.tick(); ThreadClock vector2(20); vector2.tick(); { SyncClock chunked; vector1.release(&cache, &chunked); ASSERT_EQ(chunked.size(), 11U); vector2.release(&cache, &chunked); ASSERT_EQ(chunked.size(), 21U); chunked.Reset(&cache); } { SyncClock chunked; vector2.release(&cache, &chunked); ASSERT_EQ(chunked.size(), 21U); vector1.release(&cache, &chunked); ASSERT_EQ(chunked.size(), 21U); chunked.Reset(&cache); } { SyncClock chunked; vector1.release(&cache, &chunked); vector2.acquire(&cache, &chunked); ASSERT_EQ(vector2.size(), 21U); chunked.Reset(&cache); } { SyncClock chunked; vector2.release(&cache, &chunked); vector1.acquire(&cache, &chunked); ASSERT_EQ(vector1.size(), 21U); chunked.Reset(&cache); } } } TEST(Clock, Growth) { { ThreadClock vector(10); vector.tick(); vector.set(5, 42); SyncClock sync; vector.release(&cache, &sync); ASSERT_EQ(sync.size(), 11U); ASSERT_EQ(sync.get(0), 0ULL); ASSERT_EQ(sync.get(1), 0ULL); ASSERT_EQ(sync.get(5), 42ULL); ASSERT_EQ(sync.get(9), 0ULL); ASSERT_EQ(sync.get(10), 1ULL); sync.Reset(&cache); } { ThreadClock vector1(10); vector1.tick(); ThreadClock vector2(20); vector2.tick(); SyncClock sync; vector1.release(&cache, &sync); vector2.release(&cache, &sync); ASSERT_EQ(sync.size(), 21U); ASSERT_EQ(sync.get(0), 0ULL); ASSERT_EQ(sync.get(10), 1ULL); ASSERT_EQ(sync.get(19), 0ULL); ASSERT_EQ(sync.get(20), 1ULL); sync.Reset(&cache); } { ThreadClock vector(100); vector.tick(); vector.set(5, 42); vector.set(90, 84); SyncClock sync; vector.release(&cache, &sync); ASSERT_EQ(sync.size(), 101U); ASSERT_EQ(sync.get(0), 0ULL); ASSERT_EQ(sync.get(1), 0ULL); ASSERT_EQ(sync.get(5), 42ULL); ASSERT_EQ(sync.get(60), 0ULL); ASSERT_EQ(sync.get(70), 0ULL); ASSERT_EQ(sync.get(90), 84ULL); ASSERT_EQ(sync.get(99), 0ULL); ASSERT_EQ(sync.get(100), 1ULL); sync.Reset(&cache); } { ThreadClock vector1(10); vector1.tick(); ThreadClock vector2(100); vector2.tick(); SyncClock sync; vector1.release(&cache, &sync); vector2.release(&cache, &sync); ASSERT_EQ(sync.size(), 101U); ASSERT_EQ(sync.get(0), 0ULL); ASSERT_EQ(sync.get(10), 1ULL); ASSERT_EQ(sync.get(99), 0ULL); ASSERT_EQ(sync.get(100), 1ULL); sync.Reset(&cache); } } const uptr kThreads = 4; const uptr kClocks = 4; // SimpleSyncClock and SimpleThreadClock implement the same thing as // SyncClock and ThreadClock, but in a very simple way. struct SimpleSyncClock { u64 clock[kThreads]; uptr size; SimpleSyncClock() { Reset(); } void Reset() { size = 0; for (uptr i = 0; i < kThreads; i++) clock[i] = 0; } bool verify(const SyncClock *other) const { for (uptr i = 0; i < min(size, other->size()); i++) { if (clock[i] != other->get(i)) return false; } for (uptr i = min(size, other->size()); i < max(size, other->size()); i++) { if (i < size && clock[i] != 0) return false; if (i < other->size() && other->get(i) != 0) return false; } return true; } }; struct SimpleThreadClock { u64 clock[kThreads]; uptr size; unsigned tid; explicit SimpleThreadClock(unsigned tid) { this->tid = tid; size = tid + 1; for (uptr i = 0; i < kThreads; i++) clock[i] = 0; } void tick() { clock[tid]++; } void acquire(const SimpleSyncClock *src) { if (size < src->size) size = src->size; for (uptr i = 0; i < kThreads; i++) clock[i] = max(clock[i], src->clock[i]); } void release(SimpleSyncClock *dst) const { if (dst->size < size) dst->size = size; for (uptr i = 0; i < kThreads; i++) dst->clock[i] = max(dst->clock[i], clock[i]); } void acq_rel(SimpleSyncClock *dst) { acquire(dst); release(dst); } void ReleaseStore(SimpleSyncClock *dst) const { if (dst->size < size) dst->size = size; for (uptr i = 0; i < kThreads; i++) dst->clock[i] = clock[i]; } bool verify(const ThreadClock *other) const { for (uptr i = 0; i < min(size, other->size()); i++) { if (clock[i] != other->get(i)) return false; } for (uptr i = min(size, other->size()); i < max(size, other->size()); i++) { if (i < size && clock[i] != 0) return false; if (i < other->size() && other->get(i) != 0) return false; } return true; } }; static bool ClockFuzzer(bool printing) { // Create kThreads thread clocks. SimpleThreadClock *thr0[kThreads]; ThreadClock *thr1[kThreads]; unsigned reused[kThreads]; for (unsigned i = 0; i < kThreads; i++) { reused[i] = 0; thr0[i] = new SimpleThreadClock(i); thr1[i] = new ThreadClock(i, reused[i]); } // Create kClocks sync clocks. SimpleSyncClock *sync0[kClocks]; SyncClock *sync1[kClocks]; for (unsigned i = 0; i < kClocks; i++) { sync0[i] = new SimpleSyncClock(); sync1[i] = new SyncClock(); } // Do N random operations (acquire, release, etc) and compare results // for SimpleThread/SyncClock and real Thread/SyncClock. for (int i = 0; i < 10000; i++) { unsigned tid = rand() % kThreads; unsigned cid = rand() % kClocks; thr0[tid]->tick(); thr1[tid]->tick(); switch (rand() % 6) { case 0: if (printing) printf("acquire thr%d <- clk%d\n", tid, cid); thr0[tid]->acquire(sync0[cid]); thr1[tid]->acquire(&cache, sync1[cid]); break; case 1: if (printing) printf("release thr%d -> clk%d\n", tid, cid); thr0[tid]->release(sync0[cid]); thr1[tid]->release(&cache, sync1[cid]); break; case 2: if (printing) printf("acq_rel thr%d <> clk%d\n", tid, cid); thr0[tid]->acq_rel(sync0[cid]); thr1[tid]->acq_rel(&cache, sync1[cid]); break; case 3: if (printing) printf("rel_str thr%d >> clk%d\n", tid, cid); thr0[tid]->ReleaseStore(sync0[cid]); thr1[tid]->ReleaseStore(&cache, sync1[cid]); break; case 4: if (printing) printf("reset clk%d\n", cid); sync0[cid]->Reset(); sync1[cid]->Reset(&cache); break; case 5: if (printing) printf("reset thr%d\n", tid); u64 epoch = thr0[tid]->clock[tid] + 1; reused[tid]++; delete thr0[tid]; thr0[tid] = new SimpleThreadClock(tid); thr0[tid]->clock[tid] = epoch; delete thr1[tid]; thr1[tid] = new ThreadClock(tid, reused[tid]); thr1[tid]->set(epoch); break; } if (printing) { for (unsigned i = 0; i < kThreads; i++) { printf("thr%d: ", i); thr1[i]->DebugDump(printf); printf("\n"); } for (unsigned i = 0; i < kClocks; i++) { printf("clk%d: ", i); sync1[i]->DebugDump(printf); printf("\n"); } printf("\n"); } if (!thr0[tid]->verify(thr1[tid]) || !sync0[cid]->verify(sync1[cid])) { if (!printing) return false; printf("differs with model:\n"); for (unsigned i = 0; i < kThreads; i++) { printf("thr%d: clock=[", i); for (uptr j = 0; j < thr0[i]->size; j++) printf("%s%llu", j == 0 ? "" : ",", thr0[i]->clock[j]); printf("]\n"); } for (unsigned i = 0; i < kClocks; i++) { printf("clk%d: clock=[", i); for (uptr j = 0; j < sync0[i]->size; j++) printf("%s%llu", j == 0 ? "" : ",", sync0[i]->clock[j]); printf("]\n"); } return false; } } for (unsigned i = 0; i < kClocks; i++) { sync1[i]->Reset(&cache); } return true; } TEST(Clock, Fuzzer) { struct timeval tv; gettimeofday(&tv, NULL); int seed = tv.tv_sec + tv.tv_usec; printf("seed=%d\n", seed); srand(seed); if (!ClockFuzzer(false)) { // Redo the test with the same seed, but logging operations. srand(seed); ClockFuzzer(true); ASSERT_TRUE(false); } } } // namespace __tsan