//= RValues.cpp - Abstract RValues for Path-Sens. Value Tracking -*- C++ -*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines SVal, Loc, and NonLoc, classes that represent // abstract r-values for use with path-sensitive value tracking. // //===----------------------------------------------------------------------===// #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" #include "clang/AST/ExprObjC.h" #include "clang/Basic/IdentifierTable.h" #include "llvm/Support/raw_ostream.h" using namespace clang; using namespace ento; using llvm::APSInt; //===----------------------------------------------------------------------===// // Symbol iteration within an SVal. //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Utility methods. //===----------------------------------------------------------------------===// bool SVal::hasConjuredSymbol() const { if (Optional<nonloc::SymbolVal> SV = getAs<nonloc::SymbolVal>()) { SymbolRef sym = SV->getSymbol(); if (isa<SymbolConjured>(sym)) return true; } if (Optional<loc::MemRegionVal> RV = getAs<loc::MemRegionVal>()) { const MemRegion *R = RV->getRegion(); if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) { SymbolRef sym = SR->getSymbol(); if (isa<SymbolConjured>(sym)) return true; } } return false; } const FunctionDecl *SVal::getAsFunctionDecl() const { if (Optional<loc::MemRegionVal> X = getAs<loc::MemRegionVal>()) { const MemRegion* R = X->getRegion(); if (const FunctionCodeRegion *CTR = R->getAs<FunctionCodeRegion>()) if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CTR->getDecl())) return FD; } return nullptr; } /// \brief If this SVal is a location (subclasses Loc) and wraps a symbol, /// return that SymbolRef. Otherwise return 0. /// /// Implicit casts (ex: void* -> char*) can turn Symbolic region into Element /// region. If that is the case, gets the underlining region. /// When IncludeBaseRegions is set to true and the SubRegion is non-symbolic, /// the first symbolic parent region is returned. SymbolRef SVal::getAsLocSymbol(bool IncludeBaseRegions) const { // FIXME: should we consider SymbolRef wrapped in CodeTextRegion? if (Optional<nonloc::LocAsInteger> X = getAs<nonloc::LocAsInteger>()) return X->getLoc().getAsLocSymbol(); if (Optional<loc::MemRegionVal> X = getAs<loc::MemRegionVal>()) { const MemRegion *R = X->getRegion(); if (const SymbolicRegion *SymR = IncludeBaseRegions ? R->getSymbolicBase() : dyn_cast<SymbolicRegion>(R->StripCasts())) return SymR->getSymbol(); } return nullptr; } /// Get the symbol in the SVal or its base region. SymbolRef SVal::getLocSymbolInBase() const { Optional<loc::MemRegionVal> X = getAs<loc::MemRegionVal>(); if (!X) return nullptr; const MemRegion *R = X->getRegion(); while (const SubRegion *SR = dyn_cast<SubRegion>(R)) { if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(SR)) return SymR->getSymbol(); else R = SR->getSuperRegion(); } return nullptr; } // TODO: The next 3 functions have to be simplified. /// \brief If this SVal wraps a symbol return that SymbolRef. /// Otherwise, return 0. /// /// Casts are ignored during lookup. /// \param IncludeBaseRegions The boolean that controls whether the search /// should continue to the base regions if the region is not symbolic. SymbolRef SVal::getAsSymbol(bool IncludeBaseRegion) const { // FIXME: should we consider SymbolRef wrapped in CodeTextRegion? if (Optional<nonloc::SymbolVal> X = getAs<nonloc::SymbolVal>()) return X->getSymbol(); return getAsLocSymbol(IncludeBaseRegion); } /// getAsSymbolicExpression - If this Sval wraps a symbolic expression then /// return that expression. Otherwise return NULL. const SymExpr *SVal::getAsSymbolicExpression() const { if (Optional<nonloc::SymbolVal> X = getAs<nonloc::SymbolVal>()) return X->getSymbol(); return getAsSymbol(); } const SymExpr* SVal::getAsSymExpr() const { const SymExpr* Sym = getAsSymbol(); if (!Sym) Sym = getAsSymbolicExpression(); return Sym; } const MemRegion *SVal::getAsRegion() const { if (Optional<loc::MemRegionVal> X = getAs<loc::MemRegionVal>()) return X->getRegion(); if (Optional<nonloc::LocAsInteger> X = getAs<nonloc::LocAsInteger>()) return X->getLoc().getAsRegion(); return nullptr; } const MemRegion *loc::MemRegionVal::stripCasts(bool StripBaseCasts) const { const MemRegion *R = getRegion(); return R ? R->StripCasts(StripBaseCasts) : nullptr; } const void *nonloc::LazyCompoundVal::getStore() const { return static_cast<const LazyCompoundValData*>(Data)->getStore(); } const TypedValueRegion *nonloc::LazyCompoundVal::getRegion() const { return static_cast<const LazyCompoundValData*>(Data)->getRegion(); } //===----------------------------------------------------------------------===// // Other Iterators. //===----------------------------------------------------------------------===// nonloc::CompoundVal::iterator nonloc::CompoundVal::begin() const { return getValue()->begin(); } nonloc::CompoundVal::iterator nonloc::CompoundVal::end() const { return getValue()->end(); } //===----------------------------------------------------------------------===// // Useful predicates. //===----------------------------------------------------------------------===// bool SVal::isConstant() const { return getAs<nonloc::ConcreteInt>() || getAs<loc::ConcreteInt>(); } bool SVal::isConstant(int I) const { if (Optional<loc::ConcreteInt> LV = getAs<loc::ConcreteInt>()) return LV->getValue() == I; if (Optional<nonloc::ConcreteInt> NV = getAs<nonloc::ConcreteInt>()) return NV->getValue() == I; return false; } bool SVal::isZeroConstant() const { return isConstant(0); } //===----------------------------------------------------------------------===// // Transfer function dispatch for Non-Locs. //===----------------------------------------------------------------------===// SVal nonloc::ConcreteInt::evalBinOp(SValBuilder &svalBuilder, BinaryOperator::Opcode Op, const nonloc::ConcreteInt& R) const { const llvm::APSInt* X = svalBuilder.getBasicValueFactory().evalAPSInt(Op, getValue(), R.getValue()); if (X) return nonloc::ConcreteInt(*X); else return UndefinedVal(); } nonloc::ConcreteInt nonloc::ConcreteInt::evalComplement(SValBuilder &svalBuilder) const { return svalBuilder.makeIntVal(~getValue()); } nonloc::ConcreteInt nonloc::ConcreteInt::evalMinus(SValBuilder &svalBuilder) const { return svalBuilder.makeIntVal(-getValue()); } //===----------------------------------------------------------------------===// // Transfer function dispatch for Locs. //===----------------------------------------------------------------------===// SVal loc::ConcreteInt::evalBinOp(BasicValueFactory& BasicVals, BinaryOperator::Opcode Op, const loc::ConcreteInt& R) const { assert(BinaryOperator::isComparisonOp(Op) || Op == BO_Sub); const llvm::APSInt *X = BasicVals.evalAPSInt(Op, getValue(), R.getValue()); if (X) return nonloc::ConcreteInt(*X); else return UndefinedVal(); } //===----------------------------------------------------------------------===// // Pretty-Printing. //===----------------------------------------------------------------------===// LLVM_DUMP_METHOD void SVal::dump() const { dumpToStream(llvm::errs()); } void SVal::dumpToStream(raw_ostream &os) const { switch (getBaseKind()) { case UnknownValKind: os << "Unknown"; break; case NonLocKind: castAs<NonLoc>().dumpToStream(os); break; case LocKind: castAs<Loc>().dumpToStream(os); break; case UndefinedValKind: os << "Undefined"; break; } } void NonLoc::dumpToStream(raw_ostream &os) const { switch (getSubKind()) { case nonloc::ConcreteIntKind: { const nonloc::ConcreteInt& C = castAs<nonloc::ConcreteInt>(); if (C.getValue().isUnsigned()) os << C.getValue().getZExtValue(); else os << C.getValue().getSExtValue(); os << ' ' << (C.getValue().isUnsigned() ? 'U' : 'S') << C.getValue().getBitWidth() << 'b'; break; } case nonloc::SymbolValKind: { os << castAs<nonloc::SymbolVal>().getSymbol(); break; } case nonloc::LocAsIntegerKind: { const nonloc::LocAsInteger& C = castAs<nonloc::LocAsInteger>(); os << C.getLoc() << " [as " << C.getNumBits() << " bit integer]"; break; } case nonloc::CompoundValKind: { const nonloc::CompoundVal& C = castAs<nonloc::CompoundVal>(); os << "compoundVal{"; bool first = true; for (nonloc::CompoundVal::iterator I=C.begin(), E=C.end(); I!=E; ++I) { if (first) { os << ' '; first = false; } else os << ", "; (*I).dumpToStream(os); } os << "}"; break; } case nonloc::LazyCompoundValKind: { const nonloc::LazyCompoundVal &C = castAs<nonloc::LazyCompoundVal>(); os << "lazyCompoundVal{" << const_cast<void *>(C.getStore()) << ',' << C.getRegion() << '}'; break; } default: assert (false && "Pretty-printed not implemented for this NonLoc."); break; } } void Loc::dumpToStream(raw_ostream &os) const { switch (getSubKind()) { case loc::ConcreteIntKind: os << castAs<loc::ConcreteInt>().getValue().getZExtValue() << " (Loc)"; break; case loc::GotoLabelKind: os << "&&" << castAs<loc::GotoLabel>().getLabel()->getName(); break; case loc::MemRegionValKind: os << '&' << castAs<loc::MemRegionVal>().getRegion()->getString(); break; default: llvm_unreachable("Pretty-printing not implemented for this Loc."); } }