/*===---- avxintrin.h - AVX intrinsics -------------------------------------=== * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * *===-----------------------------------------------------------------------=== */ #ifndef __IMMINTRIN_H #error "Never use <avxintrin.h> directly; include <immintrin.h> instead." #endif #ifndef __AVXINTRIN_H #define __AVXINTRIN_H typedef double __v4df __attribute__ ((__vector_size__ (32))); typedef float __v8sf __attribute__ ((__vector_size__ (32))); typedef long long __v4di __attribute__ ((__vector_size__ (32))); typedef int __v8si __attribute__ ((__vector_size__ (32))); typedef short __v16hi __attribute__ ((__vector_size__ (32))); typedef char __v32qi __attribute__ ((__vector_size__ (32))); /* Unsigned types */ typedef unsigned long long __v4du __attribute__ ((__vector_size__ (32))); typedef unsigned int __v8su __attribute__ ((__vector_size__ (32))); typedef unsigned short __v16hu __attribute__ ((__vector_size__ (32))); typedef unsigned char __v32qu __attribute__ ((__vector_size__ (32))); /* We need an explicitly signed variant for char. Note that this shouldn't * appear in the interface though. */ typedef signed char __v32qs __attribute__((__vector_size__(32))); typedef float __m256 __attribute__ ((__vector_size__ (32))); typedef double __m256d __attribute__((__vector_size__(32))); typedef long long __m256i __attribute__((__vector_size__(32))); /* Define the default attributes for the functions in this file. */ #define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__, __target__("avx"))) /* Arithmetic */ /// \brief Adds two 256-bit vectors of [4 x double]. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VADDPD / ADDPD instruction. /// /// \param __a /// A 256-bit vector of [4 x double] containing one of the source operands. /// \param __b /// A 256-bit vector of [4 x double] containing one of the source operands. /// \returns A 256-bit vector of [4 x double] containing the sums of both /// operands. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_add_pd(__m256d __a, __m256d __b) { return (__m256d)((__v4df)__a+(__v4df)__b); } /// \brief Adds two 256-bit vectors of [8 x float]. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VADDPS / ADDPS instruction. /// /// \param __a /// A 256-bit vector of [8 x float] containing one of the source operands. /// \param __b /// A 256-bit vector of [8 x float] containing one of the source operands. /// \returns A 256-bit vector of [8 x float] containing the sums of both /// operands. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_add_ps(__m256 __a, __m256 __b) { return (__m256)((__v8sf)__a+(__v8sf)__b); } /// \brief Subtracts two 256-bit vectors of [4 x double]. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VSUBPD / SUBPD instruction. /// /// \param __a /// A 256-bit vector of [4 x double] containing the minuend. /// \param __b /// A 256-bit vector of [4 x double] containing the subtrahend. /// \returns A 256-bit vector of [4 x double] containing the differences between /// both operands. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_sub_pd(__m256d __a, __m256d __b) { return (__m256d)((__v4df)__a-(__v4df)__b); } /// \brief Subtracts two 256-bit vectors of [8 x float]. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VSUBPS / SUBPS instruction. /// /// \param __a /// A 256-bit vector of [8 x float] containing the minuend. /// \param __b /// A 256-bit vector of [8 x float] containing the subtrahend. /// \returns A 256-bit vector of [8 x float] containing the differences between /// both operands. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_sub_ps(__m256 __a, __m256 __b) { return (__m256)((__v8sf)__a-(__v8sf)__b); } /// \brief Adds the even-indexed values and subtracts the odd-indexed values of /// two 256-bit vectors of [4 x double]. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VADDSUBPD / ADDSUBPD instruction. /// /// \param __a /// A 256-bit vector of [4 x double] containing the left source operand. /// \param __b /// A 256-bit vector of [4 x double] containing the right source operand. /// \returns A 256-bit vector of [4 x double] containing the alternating sums /// and differences between both operands. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_addsub_pd(__m256d __a, __m256d __b) { return (__m256d)__builtin_ia32_addsubpd256((__v4df)__a, (__v4df)__b); } /// \brief Adds the even-indexed values and subtracts the odd-indexed values of /// two 256-bit vectors of [8 x float]. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VADDSUBPS / ADDSUBPS instruction. /// /// \param __a /// A 256-bit vector of [8 x float] containing the left source operand. /// \param __b /// A 256-bit vector of [8 x float] containing the right source operand. /// \returns A 256-bit vector of [8 x float] containing the alternating sums and /// differences between both operands. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_addsub_ps(__m256 __a, __m256 __b) { return (__m256)__builtin_ia32_addsubps256((__v8sf)__a, (__v8sf)__b); } /// \brief Divides two 256-bit vectors of [4 x double]. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VDIVPD / DIVPD instruction. /// /// \param __a /// A 256-bit vector of [4 x double] containing the dividend. /// \param __b /// A 256-bit vector of [4 x double] containing the divisor. /// \returns A 256-bit vector of [4 x double] containing the quotients of both /// operands. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_div_pd(__m256d __a, __m256d __b) { return (__m256d)((__v4df)__a/(__v4df)__b); } /// \brief Divides two 256-bit vectors of [8 x float]. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VDIVPS / DIVPS instruction. /// /// \param __a /// A 256-bit vector of [8 x float] containing the dividend. /// \param __b /// A 256-bit vector of [8 x float] containing the divisor. /// \returns A 256-bit vector of [8 x float] containing the quotients of both /// operands. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_div_ps(__m256 __a, __m256 __b) { return (__m256)((__v8sf)__a/(__v8sf)__b); } /// \brief Compares two 256-bit vectors of [4 x double] and returns the greater /// of each pair of values. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VMAXPD / MAXPD instruction. /// /// \param __a /// A 256-bit vector of [4 x double] containing one of the operands. /// \param __b /// A 256-bit vector of [4 x double] containing one of the operands. /// \returns A 256-bit vector of [4 x double] containing the maximum values /// between both operands. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_max_pd(__m256d __a, __m256d __b) { return (__m256d)__builtin_ia32_maxpd256((__v4df)__a, (__v4df)__b); } /// \brief Compares two 256-bit vectors of [8 x float] and returns the greater /// of each pair of values. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VMAXPS / MAXPS instruction. /// /// \param __a /// A 256-bit vector of [8 x float] containing one of the operands. /// \param __b /// A 256-bit vector of [8 x float] containing one of the operands. /// \returns A 256-bit vector of [8 x float] containing the maximum values /// between both operands. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_max_ps(__m256 __a, __m256 __b) { return (__m256)__builtin_ia32_maxps256((__v8sf)__a, (__v8sf)__b); } /// \brief Compares two 256-bit vectors of [4 x double] and returns the lesser /// of each pair of values. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VMINPD / MINPD instruction. /// /// \param __a /// A 256-bit vector of [4 x double] containing one of the operands. /// \param __b /// A 256-bit vector of [4 x double] containing one of the operands. /// \returns A 256-bit vector of [4 x double] containing the minimum values /// between both operands. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_min_pd(__m256d __a, __m256d __b) { return (__m256d)__builtin_ia32_minpd256((__v4df)__a, (__v4df)__b); } /// \brief Compares two 256-bit vectors of [8 x float] and returns the lesser /// of each pair of values. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VMINPS / MINPS instruction. /// /// \param __a /// A 256-bit vector of [8 x float] containing one of the operands. /// \param __b /// A 256-bit vector of [8 x float] containing one of the operands. /// \returns A 256-bit vector of [8 x float] containing the minimum values /// between both operands. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_min_ps(__m256 __a, __m256 __b) { return (__m256)__builtin_ia32_minps256((__v8sf)__a, (__v8sf)__b); } /// \brief Multiplies two 256-bit vectors of [4 x double]. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VMULPD / MULPD instruction. /// /// \param __a /// A 256-bit vector of [4 x double] containing one of the operands. /// \param __b /// A 256-bit vector of [4 x double] containing one of the operands. /// \returns A 256-bit vector of [4 x double] containing the products of both /// operands. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_mul_pd(__m256d __a, __m256d __b) { return (__m256d)((__v4df)__a * (__v4df)__b); } /// \brief Multiplies two 256-bit vectors of [8 x float]. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VMULPS / MULPS instruction. /// /// \param __a /// A 256-bit vector of [8 x float] containing one of the operands. /// \param __b /// A 256-bit vector of [8 x float] containing one of the operands. /// \returns A 256-bit vector of [8 x float] containing the products of both /// operands. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_mul_ps(__m256 __a, __m256 __b) { return (__m256)((__v8sf)__a * (__v8sf)__b); } /// \brief Calculates the square roots of the values in a 256-bit vector of /// [4 x double]. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VSQRTPD / SQRTPD instruction. /// /// \param __a /// A 256-bit vector of [4 x double]. /// \returns A 256-bit vector of [4 x double] containing the square roots of the /// values in the operand. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_sqrt_pd(__m256d __a) { return (__m256d)__builtin_ia32_sqrtpd256((__v4df)__a); } /// \brief Calculates the square roots of the values in a 256-bit vector of /// [8 x float]. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VSQRTPS / SQRTPS instruction. /// /// \param __a /// A 256-bit vector of [8 x float]. /// \returns A 256-bit vector of [8 x float] containing the square roots of the /// values in the operand. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_sqrt_ps(__m256 __a) { return (__m256)__builtin_ia32_sqrtps256((__v8sf)__a); } /// \brief Calculates the reciprocal square roots of the values in a 256-bit /// vector of [8 x float]. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VRSQRTPS / RSQRTPS instruction. /// /// \param __a /// A 256-bit vector of [8 x float]. /// \returns A 256-bit vector of [8 x float] containing the reciprocal square /// roots of the values in the operand. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_rsqrt_ps(__m256 __a) { return (__m256)__builtin_ia32_rsqrtps256((__v8sf)__a); } /// \brief Calculates the reciprocals of the values in a 256-bit vector of /// [8 x float]. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VRCPPS / RCPPS instruction. /// /// \param __a /// A 256-bit vector of [8 x float]. /// \returns A 256-bit vector of [8 x float] containing the reciprocals of the /// values in the operand. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_rcp_ps(__m256 __a) { return (__m256)__builtin_ia32_rcpps256((__v8sf)__a); } /// \brief Rounds the values in a 256-bit vector of [4 x double] as specified /// by the byte operand. The source values are rounded to integer values and /// returned as 64-bit double-precision floating-point values. /// /// \headerfile <x86intrin.h> /// /// \code /// __m256d _mm256_round_pd(__m256d V, const int M); /// \endcode /// /// This intrinsic corresponds to the \c VROUNDPD / ROUNDPD instruction. /// /// \param V /// A 256-bit vector of [4 x double]. /// \param M /// An integer value that specifies the rounding operation. /// Bits [7:4] are reserved. /// Bit [3] is a precision exception value: /// 0: A normal PE exception is used. /// 1: The PE field is not updated. /// Bit [2] is the rounding control source: /// 0: Use bits [1:0] of M. /// 1: Use the current MXCSR setting. /// Bits [1:0] contain the rounding control definition: /// 00: Nearest. /// 01: Downward (toward negative infinity). /// 10: Upward (toward positive infinity). /// 11: Truncated. /// \returns A 256-bit vector of [4 x double] containing the rounded values. #define _mm256_round_pd(V, M) __extension__ ({ \ (__m256d)__builtin_ia32_roundpd256((__v4df)(__m256d)(V), (M)); }) /// \brief Rounds the values stored in a 256-bit vector of [8 x float] as /// specified by the byte operand. The source values are rounded to integer /// values and returned as floating-point values. /// /// \headerfile <x86intrin.h> /// /// \code /// __m256 _mm256_round_ps(__m256 V, const int M); /// \endcode /// /// This intrinsic corresponds to the \c VROUNDPS / ROUNDPS instruction. /// /// \param V /// A 256-bit vector of [8 x float]. /// \param M /// An integer value that specifies the rounding operation. /// Bits [7:4] are reserved. /// Bit [3] is a precision exception value: /// 0: A normal PE exception is used. /// 1: The PE field is not updated. /// Bit [2] is the rounding control source: /// 0: Use bits [1:0] of M. /// 1: Use the current MXCSR setting. /// Bits [1:0] contain the rounding control definition: /// 00: Nearest. /// 01: Downward (toward negative infinity). /// 10: Upward (toward positive infinity). /// 11: Truncated. /// \returns A 256-bit vector of [8 x float] containing the rounded values. #define _mm256_round_ps(V, M) __extension__ ({ \ (__m256)__builtin_ia32_roundps256((__v8sf)(__m256)(V), (M)); }) /// \brief Rounds up the values stored in a 256-bit vector of [4 x double]. The /// source values are rounded up to integer values and returned as 64-bit /// double-precision floating-point values. /// /// \headerfile <x86intrin.h> /// /// \code /// __m256d _mm256_ceil_pd(__m256d V); /// \endcode /// /// This intrinsic corresponds to the \c VROUNDPD / ROUNDPD instruction. /// /// \param V /// A 256-bit vector of [4 x double]. /// \returns A 256-bit vector of [4 x double] containing the rounded up values. #define _mm256_ceil_pd(V) _mm256_round_pd((V), _MM_FROUND_CEIL) /// \brief Rounds down the values stored in a 256-bit vector of [4 x double]. /// The source values are rounded down to integer values and returned as /// 64-bit double-precision floating-point values. /// /// \headerfile <x86intrin.h> /// /// \code /// __m256d _mm256_floor_pd(__m256d V); /// \endcode /// /// This intrinsic corresponds to the \c VROUNDPD / ROUNDPD instruction. /// /// \param V /// A 256-bit vector of [4 x double]. /// \returns A 256-bit vector of [4 x double] containing the rounded down /// values. #define _mm256_floor_pd(V) _mm256_round_pd((V), _MM_FROUND_FLOOR) /// \brief Rounds up the values stored in a 256-bit vector of [8 x float]. The /// source values are rounded up to integer values and returned as /// floating-point values. /// /// \headerfile <x86intrin.h> /// /// \code /// __m256 _mm256_ceil_ps(__m256 V); /// \endcode /// /// This intrinsic corresponds to the \c VROUNDPS / ROUNDPS instruction. /// /// \param V /// A 256-bit vector of [8 x float]. /// \returns A 256-bit vector of [8 x float] containing the rounded up values. #define _mm256_ceil_ps(V) _mm256_round_ps((V), _MM_FROUND_CEIL) /// \brief Rounds down the values stored in a 256-bit vector of [8 x float]. The /// source values are rounded down to integer values and returned as /// floating-point values. /// /// \headerfile <x86intrin.h> /// /// \code /// __m256 _mm256_floor_ps(__m256 V); /// \endcode /// /// This intrinsic corresponds to the \c VROUNDPS / ROUNDPS instruction. /// /// \param V /// A 256-bit vector of [8 x float]. /// \returns A 256-bit vector of [8 x float] containing the rounded down values. #define _mm256_floor_ps(V) _mm256_round_ps((V), _MM_FROUND_FLOOR) /* Logical */ /// \brief Performs a bitwise AND of two 256-bit vectors of [4 x double]. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VANDPD / ANDPD instruction. /// /// \param __a /// A 256-bit vector of [4 x double] containing one of the source operands. /// \param __b /// A 256-bit vector of [4 x double] containing one of the source operands. /// \returns A 256-bit vector of [4 x double] containing the bitwise AND of the /// values between both operands. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_and_pd(__m256d __a, __m256d __b) { return (__m256d)((__v4du)__a & (__v4du)__b); } /// \brief Performs a bitwise AND of two 256-bit vectors of [8 x float]. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VANDPS / ANDPS instruction. /// /// \param __a /// A 256-bit vector of [8 x float] containing one of the source operands. /// \param __b /// A 256-bit vector of [8 x float] containing one of the source operands. /// \returns A 256-bit vector of [8 x float] containing the bitwise AND of the /// values between both operands. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_and_ps(__m256 __a, __m256 __b) { return (__m256)((__v8su)__a & (__v8su)__b); } /// \brief Performs a bitwise AND of two 256-bit vectors of [4 x double], using /// the one's complement of the values contained in the first source operand. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VANDNPD / ANDNPD instruction. /// /// \param __a /// A 256-bit vector of [4 x double] containing the left source operand. The /// one's complement of this value is used in the bitwise AND. /// \param __b /// A 256-bit vector of [4 x double] containing the right source operand. /// \returns A 256-bit vector of [4 x double] containing the bitwise AND of the /// values of the second operand and the one's complement of the first /// operand. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_andnot_pd(__m256d __a, __m256d __b) { return (__m256d)(~(__v4du)__a & (__v4du)__b); } /// \brief Performs a bitwise AND of two 256-bit vectors of [8 x float], using /// the one's complement of the values contained in the first source operand. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VANDNPS / ANDNPS instruction. /// /// \param __a /// A 256-bit vector of [8 x float] containing the left source operand. The /// one's complement of this value is used in the bitwise AND. /// \param __b /// A 256-bit vector of [8 x float] containing the right source operand. /// \returns A 256-bit vector of [8 x float] containing the bitwise AND of the /// values of the second operand and the one's complement of the first /// operand. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_andnot_ps(__m256 __a, __m256 __b) { return (__m256)(~(__v8su)__a & (__v8su)__b); } /// \brief Performs a bitwise OR of two 256-bit vectors of [4 x double]. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VORPD / ORPD instruction. /// /// \param __a /// A 256-bit vector of [4 x double] containing one of the source operands. /// \param __b /// A 256-bit vector of [4 x double] containing one of the source operands. /// \returns A 256-bit vector of [4 x double] containing the bitwise OR of the /// values between both operands. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_or_pd(__m256d __a, __m256d __b) { return (__m256d)((__v4du)__a | (__v4du)__b); } /// \brief Performs a bitwise OR of two 256-bit vectors of [8 x float]. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VORPS / ORPS instruction. /// /// \param __a /// A 256-bit vector of [8 x float] containing one of the source operands. /// \param __b /// A 256-bit vector of [8 x float] containing one of the source operands. /// \returns A 256-bit vector of [8 x float] containing the bitwise OR of the /// values between both operands. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_or_ps(__m256 __a, __m256 __b) { return (__m256)((__v8su)__a | (__v8su)__b); } /// \brief Performs a bitwise XOR of two 256-bit vectors of [4 x double]. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VXORPD / XORPD instruction. /// /// \param __a /// A 256-bit vector of [4 x double] containing one of the source operands. /// \param __b /// A 256-bit vector of [4 x double] containing one of the source operands. /// \returns A 256-bit vector of [4 x double] containing the bitwise XOR of the /// values between both operands. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_xor_pd(__m256d __a, __m256d __b) { return (__m256d)((__v4du)__a ^ (__v4du)__b); } /// \brief Performs a bitwise XOR of two 256-bit vectors of [8 x float]. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VXORPS / XORPS instruction. /// /// \param __a /// A 256-bit vector of [8 x float] containing one of the source operands. /// \param __b /// A 256-bit vector of [8 x float] containing one of the source operands. /// \returns A 256-bit vector of [8 x float] containing the bitwise XOR of the /// values between both operands. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_xor_ps(__m256 __a, __m256 __b) { return (__m256)((__v8su)__a ^ (__v8su)__b); } /* Horizontal arithmetic */ /// \brief Horizontally adds the adjacent pairs of values contained in two /// 256-bit vectors of [4 x double]. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VHADDPD / HADDPD instruction. /// /// \param __a /// A 256-bit vector of [4 x double] containing one of the source operands. /// The horizontal sums of the values are returned in the even-indexed /// elements of a vector of [4 x double]. /// \param __b /// A 256-bit vector of [4 x double] containing one of the source operands. /// The horizontal sums of the values are returned in the odd-indexed /// elements of a vector of [4 x double]. /// \returns A 256-bit vector of [4 x double] containing the horizontal sums of /// both operands. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_hadd_pd(__m256d __a, __m256d __b) { return (__m256d)__builtin_ia32_haddpd256((__v4df)__a, (__v4df)__b); } /// \brief Horizontally adds the adjacent pairs of values contained in two /// 256-bit vectors of [8 x float]. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VHADDPS / HADDPS instruction. /// /// \param __a /// A 256-bit vector of [8 x float] containing one of the source operands. /// The horizontal sums of the values are returned in the elements with /// index 0, 1, 4, 5 of a vector of [8 x float]. /// \param __b /// A 256-bit vector of [8 x float] containing one of the source operands. /// The horizontal sums of the values are returned in the elements with /// index 2, 3, 6, 7 of a vector of [8 x float]. /// \returns A 256-bit vector of [8 x float] containing the horizontal sums of /// both operands. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_hadd_ps(__m256 __a, __m256 __b) { return (__m256)__builtin_ia32_haddps256((__v8sf)__a, (__v8sf)__b); } /// \brief Horizontally subtracts the adjacent pairs of values contained in two /// 256-bit vectors of [4 x double]. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VHSUBPD / HSUBPD instruction. /// /// \param __a /// A 256-bit vector of [4 x double] containing one of the source operands. /// The horizontal differences between the values are returned in the /// even-indexed elements of a vector of [4 x double]. /// \param __b /// A 256-bit vector of [4 x double] containing one of the source operands. /// The horizontal differences between the values are returned in the /// odd-indexed elements of a vector of [4 x double]. /// \returns A 256-bit vector of [4 x double] containing the horizontal /// differences of both operands. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_hsub_pd(__m256d __a, __m256d __b) { return (__m256d)__builtin_ia32_hsubpd256((__v4df)__a, (__v4df)__b); } /// \brief Horizontally subtracts the adjacent pairs of values contained in two /// 256-bit vectors of [8 x float]. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VHSUBPS / HSUBPS instruction. /// /// \param __a /// A 256-bit vector of [8 x float] containing one of the source operands. /// The horizontal differences between the values are returned in the /// elements with index 0, 1, 4, 5 of a vector of [8 x float]. /// \param __b /// A 256-bit vector of [8 x float] containing one of the source operands. /// The horizontal differences between the values are returned in the /// elements with index 2, 3, 6, 7 of a vector of [8 x float]. /// \returns A 256-bit vector of [8 x float] containing the horizontal /// differences of both operands. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_hsub_ps(__m256 __a, __m256 __b) { return (__m256)__builtin_ia32_hsubps256((__v8sf)__a, (__v8sf)__b); } /* Vector permutations */ /// \brief Copies the values in a 128-bit vector of [2 x double] as specified /// by the 128-bit integer vector operand. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VPERMILPD / PERMILPD instruction. /// /// \param __a /// A 128-bit vector of [2 x double]. /// \param __c /// A 128-bit integer vector operand specifying how the values are to be /// copied. /// Bit [1]: /// 0: Bits [63:0] of the source are copied to bits [63:0] of the /// returned vector. /// 1: Bits [127:64] of the source are copied to bits [63:0] of the /// returned vector. /// Bit [65]: /// 0: Bits [63:0] of the source are copied to bits [127:64] of the /// returned vector. /// 1: Bits [127:64] of the source are copied to bits [127:64] of the /// returned vector. /// \returns A 128-bit vector of [2 x double] containing the copied values. static __inline __m128d __DEFAULT_FN_ATTRS _mm_permutevar_pd(__m128d __a, __m128i __c) { return (__m128d)__builtin_ia32_vpermilvarpd((__v2df)__a, (__v2di)__c); } /// \brief Copies the values in a 256-bit vector of [4 x double] as /// specified by the 256-bit integer vector operand. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VPERMILPD / PERMILPD instruction. /// /// \param __a /// A 256-bit vector of [4 x double]. /// \param __c /// A 256-bit integer vector operand specifying how the values are to be /// copied. /// Bit [1]: /// 0: Bits [63:0] of the source are copied to bits [63:0] of the /// returned vector. /// 1: Bits [127:64] of the source are copied to bits [63:0] of the /// returned vector. /// Bit [65]: /// 0: Bits [63:0] of the source are copied to bits [127:64] of the /// returned vector. /// 1: Bits [127:64] of the source are copied to bits [127:64] of the /// returned vector. /// Bit [129]: /// 0: Bits [191:128] of the source are copied to bits [191:128] of the /// returned vector. /// 1: Bits [255:192] of the source are copied to bits [191:128] of the /// returned vector. /// Bit [193]: /// 0: Bits [191:128] of the source are copied to bits [255:192] of the /// returned vector. /// 1: Bits [255:192] of the source are copied to bits [255:192] of the /// returned vector. /// \returns A 256-bit vector of [4 x double] containing the copied values. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_permutevar_pd(__m256d __a, __m256i __c) { return (__m256d)__builtin_ia32_vpermilvarpd256((__v4df)__a, (__v4di)__c); } /// \brief Copies the values stored in a 128-bit vector of [4 x float] as /// specified by the 128-bit integer vector operand. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VPERMILPS / PERMILPS instruction. /// /// \param __a /// A 128-bit vector of [4 x float]. /// \param __c /// A 128-bit integer vector operand specifying how the values are to be /// copied. /// Bits [1:0]: /// 00: Bits [31:0] of the source are copied to bits [31:0] of the /// returned vector. /// 01: Bits [63:32] of the source are copied to bits [31:0] of the /// returned vector. /// 10: Bits [95:64] of the source are copied to bits [31:0] of the /// returned vector. /// 11: Bits [127:96] of the source are copied to bits [31:0] of the /// returned vector. /// Bits [33:32]: /// 00: Bits [31:0] of the source are copied to bits [63:32] of the /// returned vector. /// 01: Bits [63:32] of the source are copied to bits [63:32] of the /// returned vector. /// 10: Bits [95:64] of the source are copied to bits [63:32] of the /// returned vector. /// 11: Bits [127:96] of the source are copied to bits [63:32] of the /// returned vector. /// Bits [65:64]: /// 00: Bits [31:0] of the source are copied to bits [95:64] of the /// returned vector. /// 01: Bits [63:32] of the source are copied to bits [95:64] of the /// returned vector. /// 10: Bits [95:64] of the source are copied to bits [95:64] of the /// returned vector. /// 11: Bits [127:96] of the source are copied to bits [95:64] of the /// returned vector. /// Bits [97:96]: /// 00: Bits [31:0] of the source are copied to bits [127:96] of the /// returned vector. /// 01: Bits [63:32] of the source are copied to bits [127:96] of the /// returned vector. /// 10: Bits [95:64] of the source are copied to bits [127:96] of the /// returned vector. /// 11: Bits [127:96] of the source are copied to bits [127:96] of the /// returned vector. /// \returns A 128-bit vector of [4 x float] containing the copied values. static __inline __m128 __DEFAULT_FN_ATTRS _mm_permutevar_ps(__m128 __a, __m128i __c) { return (__m128)__builtin_ia32_vpermilvarps((__v4sf)__a, (__v4si)__c); } /// \brief Copies the values stored in a 256-bit vector of [8 x float] as /// specified by the 256-bit integer vector operand. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VPERMILPS / PERMILPS instruction. /// /// \param __a /// A 256-bit vector of [8 x float]. /// \param __c /// A 256-bit integer vector operand specifying how the values are to be /// copied. /// Bits [1:0]: /// 00: Bits [31:0] of the source are copied to bits [31:0] of the /// returned vector. /// 01: Bits [63:32] of the source are copied to bits [31:0] of the /// returned vector. /// 10: Bits [95:64] of the source are copied to bits [31:0] of the /// returned vector. /// 11: Bits [127:96] of the source are copied to bits [31:0] of the /// returned vector. /// Bits [33:32]: /// 00: Bits [31:0] of the source are copied to bits [63:32] of the /// returned vector. /// 01: Bits [63:32] of the source are copied to bits [63:32] of the /// returned vector. /// 10: Bits [95:64] of the source are copied to bits [63:32] of the /// returned vector. /// 11: Bits [127:96] of the source are copied to bits [63:32] of the /// returned vector. /// Bits [65:64]: /// 00: Bits [31:0] of the source are copied to bits [95:64] of the /// returned vector. /// 01: Bits [63:32] of the source are copied to bits [95:64] of the /// returned vector. /// 10: Bits [95:64] of the source are copied to bits [95:64] of the /// returned vector. /// 11: Bits [127:96] of the source are copied to bits [95:64] of the /// returned vector. /// Bits [97:96]: /// 00: Bits [31:0] of the source are copied to bits [127:96] of the /// returned vector. /// 01: Bits [63:32] of the source are copied to bits [127:96] of the /// returned vector. /// 10: Bits [95:64] of the source are copied to bits [127:96] of the /// returned vector. /// 11: Bits [127:96] of the source are copied to bits [127:96] of the /// returned vector. /// Bits [129:128]: /// 00: Bits [159:128] of the source are copied to bits [159:128] of the /// returned vector. /// 01: Bits [191:160] of the source are copied to bits [159:128] of the /// returned vector. /// 10: Bits [223:192] of the source are copied to bits [159:128] of the /// returned vector. /// 11: Bits [255:224] of the source are copied to bits [159:128] of the /// returned vector. /// Bits [161:160]: /// 00: Bits [159:128] of the source are copied to bits [191:160] of the /// returned vector. /// 01: Bits [191:160] of the source are copied to bits [191:160] of the /// returned vector. /// 10: Bits [223:192] of the source are copied to bits [191:160] of the /// returned vector. /// 11: Bits [255:224] of the source are copied to bits [191:160] of the /// returned vector. /// Bits [193:192]: /// 00: Bits [159:128] of the source are copied to bits [223:192] of the /// returned vector. /// 01: Bits [191:160] of the source are copied to bits [223:192] of the /// returned vector. /// 10: Bits [223:192] of the source are copied to bits [223:192] of the /// returned vector. /// 11: Bits [255:224] of the source are copied to bits [223:192] of the /// returned vector. /// Bits [225:224]: /// 00: Bits [159:128] of the source are copied to bits [255:224] of the /// returned vector. /// 01: Bits [191:160] of the source are copied to bits [255:224] of the /// returned vector. /// 10: Bits [223:192] of the source are copied to bits [255:224] of the /// returned vector. /// 11: Bits [255:224] of the source are copied to bits [255:224] of the /// returned vector. /// \returns A 256-bit vector of [8 x float] containing the copied values. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_permutevar_ps(__m256 __a, __m256i __c) { return (__m256)__builtin_ia32_vpermilvarps256((__v8sf)__a, (__v8si)__c); } /// \brief Copies the values in a 128-bit vector of [2 x double] as /// specified by the immediate integer operand. /// /// \headerfile <x86intrin.h> /// /// \code /// __m128d _mm_permute_pd(__m128d A, const int C); /// \endcode /// /// This intrinsic corresponds to the \c VPERMILPD / PERMILPD instruction. /// /// \param A /// A 128-bit vector of [2 x double]. /// \param C /// An immediate integer operand specifying how the values are to be copied. /// Bit [0]: /// 0: Bits [63:0] of the source are copied to bits [63:0] of the /// returned vector. /// 1: Bits [127:64] of the source are copied to bits [63:0] of the /// returned vector. /// Bit [1]: /// 0: Bits [63:0] of the source are copied to bits [127:64] of the /// returned vector. /// 1: Bits [127:64] of the source are copied to bits [127:64] of the /// returned vector. /// \returns A 128-bit vector of [2 x double] containing the copied values. #define _mm_permute_pd(A, C) __extension__ ({ \ (__m128d)__builtin_shufflevector((__v2df)(__m128d)(A), \ (__v2df)_mm_undefined_pd(), \ ((C) >> 0) & 0x1, ((C) >> 1) & 0x1); }) /// \brief Copies the values in a 256-bit vector of [4 x double] as /// specified by the immediate integer operand. /// /// \headerfile <x86intrin.h> /// /// \code /// __m256d _mm256_permute_pd(__m256d A, const int C); /// \endcode /// /// This intrinsic corresponds to the \c VPERMILPD / PERMILPD instruction. /// /// \param A /// A 256-bit vector of [4 x double]. /// \param C /// An immediate integer operand specifying how the values are to be copied. /// Bit [0]: /// 0: Bits [63:0] of the source are copied to bits [63:0] of the /// returned vector. /// 1: Bits [127:64] of the source are copied to bits [63:0] of the /// returned vector. /// Bit [1]: /// 0: Bits [63:0] of the source are copied to bits [127:64] of the /// returned vector. /// 1: Bits [127:64] of the source are copied to bits [127:64] of the /// returned vector. /// Bit [2]: /// 0: Bits [191:128] of the source are copied to bits [191:128] of the /// returned vector. /// 1: Bits [255:192] of the source are copied to bits [191:128] of the /// returned vector. /// Bit [3]: /// 0: Bits [191:128] of the source are copied to bits [255:192] of the /// returned vector. /// 1: Bits [255:192] of the source are copied to bits [255:192] of the /// returned vector. /// \returns A 256-bit vector of [4 x double] containing the copied values. #define _mm256_permute_pd(A, C) __extension__ ({ \ (__m256d)__builtin_shufflevector((__v4df)(__m256d)(A), \ (__v4df)_mm256_undefined_pd(), \ 0 + (((C) >> 0) & 0x1), \ 0 + (((C) >> 1) & 0x1), \ 2 + (((C) >> 2) & 0x1), \ 2 + (((C) >> 3) & 0x1)); }) /// \brief Copies the values in a 128-bit vector of [4 x float] as /// specified by the immediate integer operand. /// /// \headerfile <x86intrin.h> /// /// \code /// __m128 _mm_permute_ps(__m128 A, const int C); /// \endcode /// /// This intrinsic corresponds to the \c VPERMILPS / PERMILPS instruction. /// /// \param A /// A 128-bit vector of [4 x float]. /// \param C /// An immediate integer operand specifying how the values are to be copied. /// Bits [1:0]: /// 00: Bits [31:0] of the source are copied to bits [31:0] of the /// returned vector. /// 01: Bits [63:32] of the source are copied to bits [31:0] of the /// returned vector. /// 10: Bits [95:64] of the source are copied to bits [31:0] of the /// returned vector. /// 11: Bits [127:96] of the source are copied to bits [31:0] of the /// returned vector. /// Bits [3:2]: /// 00: Bits [31:0] of the source are copied to bits [63:32] of the /// returned vector. /// 01: Bits [63:32] of the source are copied to bits [63:32] of the /// returned vector. /// 10: Bits [95:64] of the source are copied to bits [63:32] of the /// returned vector. /// 11: Bits [127:96] of the source are copied to bits [63:32] of the /// returned vector. /// Bits [5:4]: /// 00: Bits [31:0] of the source are copied to bits [95:64] of the /// returned vector. /// 01: Bits [63:32] of the source are copied to bits [95:64] of the /// returned vector. /// 10: Bits [95:64] of the source are copied to bits [95:64] of the /// returned vector. /// 11: Bits [127:96] of the source are copied to bits [95:64] of the /// returned vector. /// Bits [7:6]: /// 00: Bits [31:0] of the source are copied to bits [127:96] of the /// returned vector. /// 01: Bits [63:32] of the source are copied to bits [127:96] of the /// returned vector. /// 10: Bits [95:64] of the source are copied to bits [127:96] of the /// returned vector. /// 11: Bits [127:96] of the source are copied to bits [127:96] of the /// returned vector. /// \returns A 128-bit vector of [4 x float] containing the copied values. #define _mm_permute_ps(A, C) __extension__ ({ \ (__m128)__builtin_shufflevector((__v4sf)(__m128)(A), \ (__v4sf)_mm_undefined_ps(), \ ((C) >> 0) & 0x3, ((C) >> 2) & 0x3, \ ((C) >> 4) & 0x3, ((C) >> 6) & 0x3); }) /// \brief Copies the values in a 256-bit vector of [8 x float] as /// specified by the immediate integer operand. /// /// \headerfile <x86intrin.h> /// /// \code /// __m256 _mm256_permute_ps(__m256 A, const int C); /// \endcode /// /// This intrinsic corresponds to the \c VPERMILPS / PERMILPS instruction. /// /// \param A /// A 256-bit vector of [8 x float]. /// \param C /// An immediate integer operand specifying how the values are to be copied. /// Bits [1:0]: /// 00: Bits [31:0] of the source are copied to bits [31:0] of the /// returned vector. /// 01: Bits [63:32] of the source are copied to bits [31:0] of the /// returned vector. /// 10: Bits [95:64] of the source are copied to bits [31:0] of the /// returned vector. /// 11: Bits [127:96] of the source are copied to bits [31:0] of the /// returned vector. /// Bits [3:2]: /// 00: Bits [31:0] of the source are copied to bits [63:32] of the /// returned vector. /// 01: Bits [63:32] of the source are copied to bits [63:32] of the /// returned vector. /// 10: Bits [95:64] of the source are copied to bits [63:32] of the /// returned vector. /// 11: Bits [127:96] of the source are copied to bits [63:32] of the /// returned vector. /// Bits [5:4]: /// 00: Bits [31:0] of the source are copied to bits [95:64] of the /// returned vector. /// 01: Bits [63:32] of the source are copied to bits [95:64] of the /// returned vector. /// 10: Bits [95:64] of the source are copied to bits [95:64] of the /// returned vector. /// 11: Bits [127:96] of the source are copied to bits [95:64] of the /// returned vector. /// Bits [7:6]: /// 00: Bits [31:0] of the source are copied to bits [127:96] of the /// returned vector. /// 01: Bits [63:32] of the source are copied to bits [127:96] of the /// returned vector. /// 10: Bits [95:64] of the source are copied to bits [127:96] of the /// returned vector. /// 11: Bits [127:96] of the source are copied to bits [127:96] of the /// returned vector. /// Bits [1:0]: /// 00: Bits [159:128] of the source are copied to bits [159:128] of the /// returned vector. /// 01: Bits [191:160] of the source are copied to bits [159:128] of the /// returned vector. /// 10: Bits [223:192] of the source are copied to bits [159:128] of the /// returned vector. /// 11: Bits [255:224] of the source are copied to bits [159:128] of the /// returned vector. /// Bits [3:2]: /// 00: Bits [159:128] of the source are copied to bits [191:160] of the /// returned vector. /// 01: Bits [191:160] of the source are copied to bits [191:160] of the /// returned vector. /// 10: Bits [223:192] of the source are copied to bits [191:160] of the /// returned vector. /// 11: Bits [255:224] of the source are copied to bits [191:160] of the /// returned vector. /// Bits [5:4]: /// 00: Bits [159:128] of the source are copied to bits [223:192] of the /// returned vector. /// 01: Bits [191:160] of the source are copied to bits [223:192] of the /// returned vector. /// 10: Bits [223:192] of the source are copied to bits [223:192] of the /// returned vector. /// 11: Bits [255:224] of the source are copied to bits [223:192] of the /// returned vector. /// Bits [7:6]: /// 00: Bits [159:128] of the source are copied to bits [255:224] of the /// returned vector. /// 01: Bits [191:160] of the source are copied to bits [255:224] of the /// returned vector. /// 10: Bits [223:192] of the source are copied to bits [255:224] of the /// returned vector. /// 11: Bits [255:224] of the source are copied to bits [255:224] of the /// returned vector. /// \returns A 256-bit vector of [8 x float] containing the copied values. #define _mm256_permute_ps(A, C) __extension__ ({ \ (__m256)__builtin_shufflevector((__v8sf)(__m256)(A), \ (__v8sf)_mm256_undefined_ps(), \ 0 + (((C) >> 0) & 0x3), \ 0 + (((C) >> 2) & 0x3), \ 0 + (((C) >> 4) & 0x3), \ 0 + (((C) >> 6) & 0x3), \ 4 + (((C) >> 0) & 0x3), \ 4 + (((C) >> 2) & 0x3), \ 4 + (((C) >> 4) & 0x3), \ 4 + (((C) >> 6) & 0x3)); }) /// \brief Permutes 128-bit data values stored in two 256-bit vectors of /// [4 x double], as specified by the immediate integer operand. /// /// \headerfile <x86intrin.h> /// /// \code /// __m256d _mm256_permute2f128_pd(__m256d V1, __m256d V2, const int M); /// \endcode /// /// This intrinsic corresponds to the \c VPERM2F128 / PERM2F128 instruction. /// /// \param V1 /// A 256-bit vector of [4 x double]. /// \param V2 /// A 256-bit vector of [4 x double. /// \param M /// An immediate integer operand specifying how the values are to be /// permuted. /// Bits [1:0]: /// 00: Bits [127:0] of operand V1 are copied to bits [127:0] of the /// destination. /// 01: Bits [255:128] of operand V1 are copied to bits [127:0] of the /// destination. /// 10: Bits [127:0] of operand V2 are copied to bits [127:0] of the /// destination. /// 11: Bits [255:128] of operand V2 are copied to bits [127:0] of the /// destination. /// Bits [5:4]: /// 00: Bits [127:0] of operand V1 are copied to bits [255:128] of the /// destination. /// 01: Bits [255:128] of operand V1 are copied to bits [255:128] of the /// destination. /// 10: Bits [127:0] of operand V2 are copied to bits [255:128] of the /// destination. /// 11: Bits [255:128] of operand V2 are copied to bits [255:128] of the /// destination. /// \returns A 256-bit vector of [4 x double] containing the copied values. #define _mm256_permute2f128_pd(V1, V2, M) __extension__ ({ \ (__m256d)__builtin_ia32_vperm2f128_pd256((__v4df)(__m256d)(V1), \ (__v4df)(__m256d)(V2), (M)); }) /// \brief Permutes 128-bit data values stored in two 256-bit vectors of /// [8 x float], as specified by the immediate integer operand. /// /// \headerfile <x86intrin.h> /// /// \code /// __m256 _mm256_permute2f128_ps(__m256 V1, __m256 V2, const int M); /// \endcode /// /// This intrinsic corresponds to the \c VPERM2F128 / PERM2F128 instruction. /// /// \param V1 /// A 256-bit vector of [8 x float]. /// \param V2 /// A 256-bit vector of [8 x float]. /// \param M /// An immediate integer operand specifying how the values are to be /// permuted. /// Bits [1:0]: /// 00: Bits [127:0] of operand V1 are copied to bits [127:0] of the /// destination. /// 01: Bits [255:128] of operand V1 are copied to bits [127:0] of the /// destination. /// 10: Bits [127:0] of operand V2 are copied to bits [127:0] of the /// destination. /// 11: Bits [255:128] of operand V2 are copied to bits [127:0] of the /// destination. /// Bits [5:4]: /// 00: Bits [127:0] of operand V1 are copied to bits [255:128] of the /// destination. /// 01: Bits [255:128] of operand V1 are copied to bits [255:128] of the /// destination. /// 10: Bits [127:0] of operand V2 are copied to bits [255:128] of the /// destination. /// 11: Bits [255:128] of operand V2 are copied to bits [255:128] of the /// destination. /// \returns A 256-bit vector of [8 x float] containing the copied values. #define _mm256_permute2f128_ps(V1, V2, M) __extension__ ({ \ (__m256)__builtin_ia32_vperm2f128_ps256((__v8sf)(__m256)(V1), \ (__v8sf)(__m256)(V2), (M)); }) /// \brief Permutes 128-bit data values stored in two 256-bit integer vectors, /// as specified by the immediate integer operand. /// /// \headerfile <x86intrin.h> /// /// \code /// __m256i _mm256_permute2f128_si256(__m256i V1, __m256i V2, const int M); /// \endcode /// /// This intrinsic corresponds to the \c VPERM2F128 / PERM2F128 instruction. /// /// \param V1 /// A 256-bit integer vector. /// \param V2 /// A 256-bit integer vector. /// \param M /// An immediate integer operand specifying how the values are to be copied. /// Bits [1:0]: /// 00: Bits [127:0] of operand V1 are copied to bits [127:0] of the /// destination. /// 01: Bits [255:128] of operand V1 are copied to bits [127:0] of the /// destination. /// 10: Bits [127:0] of operand V2 are copied to bits [127:0] of the /// destination. /// 11: Bits [255:128] of operand V2 are copied to bits [127:0] of the /// destination. /// Bits [5:4]: /// 00: Bits [127:0] of operand V1 are copied to bits [255:128] of the /// destination. /// 01: Bits [255:128] of operand V1 are copied to bits [255:128] of the /// destination. /// 10: Bits [127:0] of operand V2 are copied to bits [255:128] of the /// destination. /// 11: Bits [255:128] of operand V2 are copied to bits [255:128] of the /// destination. /// \returns A 256-bit integer vector containing the copied values. #define _mm256_permute2f128_si256(V1, V2, M) __extension__ ({ \ (__m256i)__builtin_ia32_vperm2f128_si256((__v8si)(__m256i)(V1), \ (__v8si)(__m256i)(V2), (M)); }) /* Vector Blend */ /// \brief Merges 64-bit double-precision data values stored in either of the /// two 256-bit vectors of [4 x double], as specified by the immediate /// integer operand. /// /// \headerfile <x86intrin.h> /// /// \code /// __m256d _mm256_blend_pd(__m256d V1, __m256d V2, const int M); /// \endcode /// /// This intrinsic corresponds to the \c VBLENDPD / BLENDPD instruction. /// /// \param V1 /// A 256-bit vector of [4 x double]. /// \param V2 /// A 256-bit vector of [4 x double]. /// \param M /// An immediate integer operand, with mask bits [3:0] specifying how the /// values are to be copied. The position of the mask bit corresponds to the /// index of a copied value. When a mask bit is 0, the corresponding 64-bit /// element in operand V1 is copied to the same position in the destination. /// When a mask bit is 1, the corresponding 64-bit element in operand V2 is /// copied to the same position in the destination. /// \returns A 256-bit vector of [4 x double] containing the copied values. #define _mm256_blend_pd(V1, V2, M) __extension__ ({ \ (__m256d)__builtin_shufflevector((__v4df)(__m256d)(V1), \ (__v4df)(__m256d)(V2), \ (((M) & 0x01) ? 4 : 0), \ (((M) & 0x02) ? 5 : 1), \ (((M) & 0x04) ? 6 : 2), \ (((M) & 0x08) ? 7 : 3)); }) /// \brief Merges 32-bit single-precision data values stored in either of the /// two 256-bit vectors of [8 x float], as specified by the immediate /// integer operand. /// /// \headerfile <x86intrin.h> /// /// \code /// __m256 _mm256_blend_ps(__m256 V1, __m256 V2, const int M); /// \endcode /// /// This intrinsic corresponds to the \c VBLENDPS / BLENDPS instruction. /// /// \param V1 /// A 256-bit vector of [8 x float]. /// \param V2 /// A 256-bit vector of [8 x float]. /// \param M /// An immediate integer operand, with mask bits [7:0] specifying how the /// values are to be copied. The position of the mask bit corresponds to the /// index of a copied value. When a mask bit is 0, the corresponding 32-bit /// element in operand V1 is copied to the same position in the destination. /// When a mask bit is 1, the corresponding 32-bit element in operand V2 is /// copied to the same position in the destination. /// \returns A 256-bit vector of [8 x float] containing the copied values. #define _mm256_blend_ps(V1, V2, M) __extension__ ({ \ (__m256)__builtin_shufflevector((__v8sf)(__m256)(V1), \ (__v8sf)(__m256)(V2), \ (((M) & 0x01) ? 8 : 0), \ (((M) & 0x02) ? 9 : 1), \ (((M) & 0x04) ? 10 : 2), \ (((M) & 0x08) ? 11 : 3), \ (((M) & 0x10) ? 12 : 4), \ (((M) & 0x20) ? 13 : 5), \ (((M) & 0x40) ? 14 : 6), \ (((M) & 0x80) ? 15 : 7)); }) /// \brief Merges 64-bit double-precision data values stored in either of the /// two 256-bit vectors of [4 x double], as specified by the 256-bit vector /// operand. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VBLENDVPD / BLENDVPD instruction. /// /// \param __a /// A 256-bit vector of [4 x double]. /// \param __b /// A 256-bit vector of [4 x double]. /// \param __c /// A 256-bit vector operand, with mask bits 255, 191, 127, and 63 specifying /// how the values are to be copied. The position of the mask bit corresponds /// to the most significant bit of a copied value. When a mask bit is 0, the /// corresponding 64-bit element in operand __a is copied to the same /// position in the destination. When a mask bit is 1, the corresponding /// 64-bit element in operand __b is copied to the same position in the /// destination. /// \returns A 256-bit vector of [4 x double] containing the copied values. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_blendv_pd(__m256d __a, __m256d __b, __m256d __c) { return (__m256d)__builtin_ia32_blendvpd256( (__v4df)__a, (__v4df)__b, (__v4df)__c); } /// \brief Merges 32-bit single-precision data values stored in either of the /// two 256-bit vectors of [8 x float], as specified by the 256-bit vector /// operand. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VBLENDVPS / BLENDVPS instruction. /// /// \param __a /// A 256-bit vector of [8 x float]. /// \param __b /// A 256-bit vector of [8 x float]. /// \param __c /// A 256-bit vector operand, with mask bits 255, 223, 191, 159, 127, 95, 63, /// and 31 specifying how the values are to be copied. The position of the /// mask bit corresponds to the most significant bit of a copied value. When /// a mask bit is 0, the corresponding 32-bit element in operand __a is /// copied to the same position in the destination. When a mask bit is 1, the /// corresponding 32-bit element in operand __b is copied to the same /// position in the destination. /// \returns A 256-bit vector of [8 x float] containing the copied values. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_blendv_ps(__m256 __a, __m256 __b, __m256 __c) { return (__m256)__builtin_ia32_blendvps256( (__v8sf)__a, (__v8sf)__b, (__v8sf)__c); } /* Vector Dot Product */ /// \brief Computes two dot products in parallel, using the lower and upper /// halves of two [8 x float] vectors as input to the two computations, and /// returning the two dot products in the lower and upper halves of the /// [8 x float] result. The immediate integer operand controls which /// input elements will contribute to the dot product, and where the final /// results are returned. In general, for each dot product, the four /// corresponding elements of the input vectors are multiplied; the first /// two and second two products are summed, then the two sums are added to /// form the final result. /// /// \headerfile <x86intrin.h> /// /// \code /// __m256 _mm256_dp_ps(__m256 V1, __m256 V2, const int M); /// \endcode /// /// This intrinsic corresponds to the \c VDPPS / DPPS instruction. /// /// \param V1 /// A vector of [8 x float] values, treated as two [4 x float] vectors. /// \param V2 /// A vector of [8 x float] values, treated as two [4 x float] vectors. /// \param M /// An immediate integer argument. Bits [7:4] determine which elements of /// the input vectors are used, with bit [4] corresponding to the lowest /// element and bit [7] corresponding to the highest element of each [4 x /// float] subvector. If a bit is set, the corresponding elements from the /// two input vectors are used as an input for dot product; otherwise that /// input is treated as zero. Bits [3:0] determine which elements of the /// result will receive a copy of the final dot product, with bit [0] /// corresponding to the lowest element and bit [3] corresponding to the /// highest element of each [4 x float] subvector. If a bit is set, the dot /// product is returned in the corresponding element; otherwise that element /// is set to zero. The bitmask is applied in the same way to each of the /// two parallel dot product computations. /// \returns A 256-bit vector of [8 x float] containing the two dot products. #define _mm256_dp_ps(V1, V2, M) __extension__ ({ \ (__m256)__builtin_ia32_dpps256((__v8sf)(__m256)(V1), \ (__v8sf)(__m256)(V2), (M)); }) /* Vector shuffle */ /// \brief Selects 8 float values from the 256-bit operands of [8 x float], as /// specified by the immediate value operand. The four selected elements in /// each operand are copied to the destination according to the bits /// specified in the immediate operand. The selected elements from the first /// 256-bit operand are copied to bits [63:0] and bits [191:128] of the /// destination, and the selected elements from the second 256-bit operand /// are copied to bits [127:64] and bits [255:192] of the destination. For /// example, if bits [7:0] of the immediate operand contain a value of 0xFF, /// the 256-bit destination vector would contain the following values: b[7], /// b[7], a[7], a[7], b[3], b[3], a[3], a[3]. /// /// \headerfile <x86intrin.h> /// /// \code /// __m256 _mm256_shuffle_ps(__m256 a, __m256 b, const int mask); /// \endcode /// /// This intrinsic corresponds to the \c VSHUFPS / SHUFPS instruction. /// /// \param a /// A 256-bit vector of [8 x float]. The four selected elements in this /// operand are copied to bits [63:0] and bits [191:128] in the destination, /// according to the bits specified in the immediate operand. /// \param b /// A 256-bit vector of [8 x float]. The four selected elements in this /// operand are copied to bits [127:64] and bits [255:192] in the /// destination, according to the bits specified in the immediate operand. /// \param mask /// An immediate value containing an 8-bit value specifying which elements to /// copy from a and b. Bits [3:0] specify the values copied from operand a. /// Bits [7:4] specify the values copied from operand b. /// The destinations within the 256-bit destination are assigned values as /// follows, according to the bit value assignments described below: /// Bits [1:0] are used to assign values to bits [31:0] and [159:128] in the /// destination. /// Bits [3:2] are used to assign values to bits [63:32] and [191:160] in the /// destination. /// Bits [5:4] are used to assign values to bits [95:64] and [223:192] in the /// destination. /// Bits [7:6] are used to assign values to bits [127:96] and [255:224] in /// the destination. /// Bit value assignments: /// 00: Bits [31:0] and [159:128] are copied from the selected operand. /// 01: Bits [63:32] and [191:160] are copied from the selected operand. /// 10: Bits [95:64] and [223:192] are copied from the selected operand. /// 11: Bits [127:96] and [255:224] are copied from the selected operand. /// \returns A 256-bit vector of [8 x float] containing the shuffled values. #define _mm256_shuffle_ps(a, b, mask) __extension__ ({ \ (__m256)__builtin_shufflevector((__v8sf)(__m256)(a), \ (__v8sf)(__m256)(b), \ 0 + (((mask) >> 0) & 0x3), \ 0 + (((mask) >> 2) & 0x3), \ 8 + (((mask) >> 4) & 0x3), \ 8 + (((mask) >> 6) & 0x3), \ 4 + (((mask) >> 0) & 0x3), \ 4 + (((mask) >> 2) & 0x3), \ 12 + (((mask) >> 4) & 0x3), \ 12 + (((mask) >> 6) & 0x3)); }) /// \brief Selects four double-precision values from the 256-bit operands of /// [4 x double], as specified by the immediate value operand. The selected /// elements from the first 256-bit operand are copied to bits [63:0] and /// bits [191:128] in the destination, and the selected elements from the /// second 256-bit operand are copied to bits [127:64] and bits [255:192] in /// the destination. For example, if bits [3:0] of the immediate operand /// contain a value of 0xF, the 256-bit destination vector would contain the /// following values: b[3], a[3], b[1], a[1]. /// /// \headerfile <x86intrin.h> /// /// \code /// __m256d _mm256_shuffle_pd(__m256d a, __m256d b, const int mask); /// \endcode /// /// This intrinsic corresponds to the \c VSHUFPD / SHUFPD instruction. /// /// \param a /// A 256-bit vector of [4 x double]. /// \param b /// A 256-bit vector of [4 x double]. /// \param mask /// An immediate value containing 8-bit values specifying which elements to /// copy from a and b: /// Bit [0]=0: Bits [63:0] are copied from a to bits [63:0] of the /// destination. /// Bit [0]=1: Bits [127:64] are copied from a to bits [63:0] of the /// destination. /// Bit [1]=0: Bits [63:0] are copied from b to bits [127:64] of the /// destination. /// Bit [1]=1: Bits [127:64] are copied from b to bits [127:64] of the /// destination. /// Bit [2]=0: Bits [191:128] are copied from a to bits [191:128] of the /// destination. /// Bit [2]=1: Bits [255:192] are copied from a to bits [191:128] of the /// destination. /// Bit [3]=0: Bits [191:128] are copied from b to bits [255:192] of the /// destination. /// Bit [3]=1: Bits [255:192] are copied from b to bits [255:192] of the /// destination. /// \returns A 256-bit vector of [4 x double] containing the shuffled values. #define _mm256_shuffle_pd(a, b, mask) __extension__ ({ \ (__m256d)__builtin_shufflevector((__v4df)(__m256d)(a), \ (__v4df)(__m256d)(b), \ 0 + (((mask) >> 0) & 0x1), \ 4 + (((mask) >> 1) & 0x1), \ 2 + (((mask) >> 2) & 0x1), \ 6 + (((mask) >> 3) & 0x1)); }) /* Compare */ #define _CMP_EQ_OQ 0x00 /* Equal (ordered, non-signaling) */ #define _CMP_LT_OS 0x01 /* Less-than (ordered, signaling) */ #define _CMP_LE_OS 0x02 /* Less-than-or-equal (ordered, signaling) */ #define _CMP_UNORD_Q 0x03 /* Unordered (non-signaling) */ #define _CMP_NEQ_UQ 0x04 /* Not-equal (unordered, non-signaling) */ #define _CMP_NLT_US 0x05 /* Not-less-than (unordered, signaling) */ #define _CMP_NLE_US 0x06 /* Not-less-than-or-equal (unordered, signaling) */ #define _CMP_ORD_Q 0x07 /* Ordered (nonsignaling) */ #define _CMP_EQ_UQ 0x08 /* Equal (unordered, non-signaling) */ #define _CMP_NGE_US 0x09 /* Not-greater-than-or-equal (unord, signaling) */ #define _CMP_NGT_US 0x0a /* Not-greater-than (unordered, signaling) */ #define _CMP_FALSE_OQ 0x0b /* False (ordered, non-signaling) */ #define _CMP_NEQ_OQ 0x0c /* Not-equal (ordered, non-signaling) */ #define _CMP_GE_OS 0x0d /* Greater-than-or-equal (ordered, signaling) */ #define _CMP_GT_OS 0x0e /* Greater-than (ordered, signaling) */ #define _CMP_TRUE_UQ 0x0f /* True (unordered, non-signaling) */ #define _CMP_EQ_OS 0x10 /* Equal (ordered, signaling) */ #define _CMP_LT_OQ 0x11 /* Less-than (ordered, non-signaling) */ #define _CMP_LE_OQ 0x12 /* Less-than-or-equal (ordered, non-signaling) */ #define _CMP_UNORD_S 0x13 /* Unordered (signaling) */ #define _CMP_NEQ_US 0x14 /* Not-equal (unordered, signaling) */ #define _CMP_NLT_UQ 0x15 /* Not-less-than (unordered, non-signaling) */ #define _CMP_NLE_UQ 0x16 /* Not-less-than-or-equal (unord, non-signaling) */ #define _CMP_ORD_S 0x17 /* Ordered (signaling) */ #define _CMP_EQ_US 0x18 /* Equal (unordered, signaling) */ #define _CMP_NGE_UQ 0x19 /* Not-greater-than-or-equal (unord, non-sign) */ #define _CMP_NGT_UQ 0x1a /* Not-greater-than (unordered, non-signaling) */ #define _CMP_FALSE_OS 0x1b /* False (ordered, signaling) */ #define _CMP_NEQ_OS 0x1c /* Not-equal (ordered, signaling) */ #define _CMP_GE_OQ 0x1d /* Greater-than-or-equal (ordered, non-signaling) */ #define _CMP_GT_OQ 0x1e /* Greater-than (ordered, non-signaling) */ #define _CMP_TRUE_US 0x1f /* True (unordered, signaling) */ /// \brief Compares each of the corresponding double-precision values of two /// 128-bit vectors of [2 x double], using the operation specified by the /// immediate integer operand. Returns a [2 x double] vector consisting of /// two doubles corresponding to the two comparison results: zero if the /// comparison is false, and all 1's if the comparison is true. /// /// \headerfile <x86intrin.h> /// /// \code /// __m128d _mm_cmp_pd(__m128d a, __m128d b, const int c); /// \endcode /// /// This intrinsic corresponds to the \c VCMPPD / CMPPD instruction. /// /// \param a /// A 128-bit vector of [2 x double]. /// \param b /// A 128-bit vector of [2 x double]. /// \param c /// An immediate integer operand, with bits [4:0] specifying which comparison /// operation to use: /// 00h, 08h, 10h, 18h: Equal /// 01h, 09h, 11h, 19h: Less than /// 02h, 0Ah, 12h, 1Ah: Less than or equal / Greater than or equal (swapped /// operands) /// 03h, 0Bh, 13h, 1Bh: Unordered /// 04h, 0Ch, 14h, 1Ch: Not equal /// 05h, 0Dh, 15h, 1Dh: Not less than / Not greater than (swapped operands) /// 06h, 0Eh, 16h, 1Eh: Not less than or equal / Not greater than or equal /// (swapped operands) /// 07h, 0Fh, 17h, 1Fh: Ordered /// \returns A 128-bit vector of [2 x double] containing the comparison results. #define _mm_cmp_pd(a, b, c) __extension__ ({ \ (__m128d)__builtin_ia32_cmppd((__v2df)(__m128d)(a), \ (__v2df)(__m128d)(b), (c)); }) /// \brief Compares each of the corresponding values of two 128-bit vectors of /// [4 x float], using the operation specified by the immediate integer /// operand. Returns a [4 x float] vector consisting of four floats /// corresponding to the four comparison results: zero if the comparison is /// false, and all 1's if the comparison is true. /// /// \headerfile <x86intrin.h> /// /// \code /// __m128 _mm_cmp_ps(__m128 a, __m128 b, const int c); /// \endcode /// /// This intrinsic corresponds to the \c VCMPPS / CMPPS instruction. /// /// \param a /// A 128-bit vector of [4 x float]. /// \param b /// A 128-bit vector of [4 x float]. /// \param c /// An immediate integer operand, with bits [4:0] specifying which comparison /// operation to use: /// 00h, 08h, 10h, 18h: Equal /// 01h, 09h, 11h, 19h: Less than /// 02h, 0Ah, 12h, 1Ah: Less than or equal / Greater than or equal (swapped /// operands) /// 03h, 0Bh, 13h, 1Bh: Unordered /// 04h, 0Ch, 14h, 1Ch: Not equal /// 05h, 0Dh, 15h, 1Dh: Not less than / Not greater than (swapped operands) /// 06h, 0Eh, 16h, 1Eh: Not less than or equal / Not greater than or equal /// (swapped operands) /// 07h, 0Fh, 17h, 1Fh: Ordered /// \returns A 128-bit vector of [4 x float] containing the comparison results. #define _mm_cmp_ps(a, b, c) __extension__ ({ \ (__m128)__builtin_ia32_cmpps((__v4sf)(__m128)(a), \ (__v4sf)(__m128)(b), (c)); }) /// \brief Compares each of the corresponding double-precision values of two /// 256-bit vectors of [4 x double], using the operation specified by the /// immediate integer operand. Returns a [4 x double] vector consisting of /// four doubles corresponding to the four comparison results: zero if the /// comparison is false, and all 1's if the comparison is true. /// /// \headerfile <x86intrin.h> /// /// \code /// __m256d _mm256_cmp_pd(__m256d a, __m256d b, const int c); /// \endcode /// /// This intrinsic corresponds to the \c VCMPPD / CMPPD instruction. /// /// \param a /// A 256-bit vector of [4 x double]. /// \param b /// A 256-bit vector of [4 x double]. /// \param c /// An immediate integer operand, with bits [4:0] specifying which comparison /// operation to use: /// 00h, 08h, 10h, 18h: Equal /// 01h, 09h, 11h, 19h: Less than /// 02h, 0Ah, 12h, 1Ah: Less than or equal / Greater than or equal (swapped /// operands) /// 03h, 0Bh, 13h, 1Bh: Unordered /// 04h, 0Ch, 14h, 1Ch: Not equal /// 05h, 0Dh, 15h, 1Dh: Not less than / Not greater than (swapped operands) /// 06h, 0Eh, 16h, 1Eh: Not less than or equal / Not greater than or equal /// (swapped operands) /// 07h, 0Fh, 17h, 1Fh: Ordered /// \returns A 256-bit vector of [4 x double] containing the comparison results. #define _mm256_cmp_pd(a, b, c) __extension__ ({ \ (__m256d)__builtin_ia32_cmppd256((__v4df)(__m256d)(a), \ (__v4df)(__m256d)(b), (c)); }) /// \brief Compares each of the corresponding values of two 256-bit vectors of /// [8 x float], using the operation specified by the immediate integer /// operand. Returns a [8 x float] vector consisting of eight floats /// corresponding to the eight comparison results: zero if the comparison is /// false, and all 1's if the comparison is true. /// /// \headerfile <x86intrin.h> /// /// \code /// __m256 _mm256_cmp_ps(__m256 a, __m256 b, const int c); /// \endcode /// /// This intrinsic corresponds to the \c VCMPPS / CMPPS instruction. /// /// \param a /// A 256-bit vector of [8 x float]. /// \param b /// A 256-bit vector of [8 x float]. /// \param c /// An immediate integer operand, with bits [4:0] specifying which comparison /// operation to use: /// 00h, 08h, 10h, 18h: Equal /// 01h, 09h, 11h, 19h: Less than /// 02h, 0Ah, 12h, 1Ah: Less than or equal / Greater than or equal (swapped /// operands) /// 03h, 0Bh, 13h, 1Bh: Unordered /// 04h, 0Ch, 14h, 1Ch: Not equal /// 05h, 0Dh, 15h, 1Dh: Not less than / Not greater than (swapped operands) /// 06h, 0Eh, 16h, 1Eh: Not less than or equal / Not greater than or equal /// (swapped operands) /// 07h, 0Fh, 17h, 1Fh: Ordered /// \returns A 256-bit vector of [8 x float] containing the comparison results. #define _mm256_cmp_ps(a, b, c) __extension__ ({ \ (__m256)__builtin_ia32_cmpps256((__v8sf)(__m256)(a), \ (__v8sf)(__m256)(b), (c)); }) /// \brief Compares each of the corresponding scalar double-precision values of /// two 128-bit vectors of [2 x double], using the operation specified by the /// immediate integer operand. If the result is true, all 64 bits of the /// destination vector are set; otherwise they are cleared. /// /// \headerfile <x86intrin.h> /// /// \code /// __m128d _mm_cmp_sd(__m128d a, __m128d b, const int c); /// \endcode /// /// This intrinsic corresponds to the \c VCMPSD / CMPSD instruction. /// /// \param a /// A 128-bit vector of [2 x double]. /// \param b /// A 128-bit vector of [2 x double]. /// \param c /// An immediate integer operand, with bits [4:0] specifying which comparison /// operation to use: /// 00h, 08h, 10h, 18h: Equal /// 01h, 09h, 11h, 19h: Less than /// 02h, 0Ah, 12h, 1Ah: Less than or equal / Greater than or equal (swapped /// operands) /// 03h, 0Bh, 13h, 1Bh: Unordered /// 04h, 0Ch, 14h, 1Ch: Not equal /// 05h, 0Dh, 15h, 1Dh: Not less than / Not greater than (swapped operands) /// 06h, 0Eh, 16h, 1Eh: Not less than or equal / Not greater than or equal /// (swapped operands) /// 07h, 0Fh, 17h, 1Fh: Ordered /// \returns A 128-bit vector of [2 x double] containing the comparison results. #define _mm_cmp_sd(a, b, c) __extension__ ({ \ (__m128d)__builtin_ia32_cmpsd((__v2df)(__m128d)(a), \ (__v2df)(__m128d)(b), (c)); }) /// \brief Compares each of the corresponding scalar values of two 128-bit /// vectors of [4 x float], using the operation specified by the immediate /// integer operand. If the result is true, all 32 bits of the destination /// vector are set; otherwise they are cleared. /// /// \headerfile <x86intrin.h> /// /// \code /// __m128 _mm_cmp_ss(__m128 a, __m128 b, const int c); /// \endcode /// /// This intrinsic corresponds to the \c VCMPSS / CMPSS instruction. /// /// \param a /// A 128-bit vector of [4 x float]. /// \param b /// A 128-bit vector of [4 x float]. /// \param c /// An immediate integer operand, with bits [4:0] specifying which comparison /// operation to use: /// 00h, 08h, 10h, 18h: Equal /// 01h, 09h, 11h, 19h: Less than /// 02h, 0Ah, 12h, 1Ah: Less than or equal / Greater than or equal (swapped /// operands) /// 03h, 0Bh, 13h, 1Bh: Unordered /// 04h, 0Ch, 14h, 1Ch: Not equal /// 05h, 0Dh, 15h, 1Dh: Not less than / Not greater than (swapped operands) /// 06h, 0Eh, 16h, 1Eh: Not less than or equal / Not greater than or equal /// (swapped operands) /// 07h, 0Fh, 17h, 1Fh: Ordered /// \returns A 128-bit vector of [4 x float] containing the comparison results. #define _mm_cmp_ss(a, b, c) __extension__ ({ \ (__m128)__builtin_ia32_cmpss((__v4sf)(__m128)(a), \ (__v4sf)(__m128)(b), (c)); }) /// \brief Takes a [8 x i32] vector and returns the vector element value /// indexed by the immediate constant operand. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VEXTRACTF128+COMPOSITE / /// EXTRACTF128+COMPOSITE instruction. /// /// \param __a /// A 256-bit vector of [8 x i32]. /// \param __imm /// An immediate integer operand with bits [2:0] determining which vector /// element is extracted and returned. /// \returns A 32-bit integer containing the extracted 32 bits of extended /// packed data. static __inline int __DEFAULT_FN_ATTRS _mm256_extract_epi32(__m256i __a, const int __imm) { __v8si __b = (__v8si)__a; return __b[__imm & 7]; } /// \brief Takes a [16 x i16] vector and returns the vector element value /// indexed by the immediate constant operand. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VEXTRACTF128+COMPOSITE / /// EXTRACTF128+COMPOSITE instruction. /// /// \param __a /// A 256-bit integer vector of [16 x i16]. /// \param __imm /// An immediate integer operand with bits [3:0] determining which vector /// element is extracted and returned. /// \returns A 32-bit integer containing the extracted 16 bits of zero extended /// packed data. static __inline int __DEFAULT_FN_ATTRS _mm256_extract_epi16(__m256i __a, const int __imm) { __v16hi __b = (__v16hi)__a; return (unsigned short)__b[__imm & 15]; } /// \brief Takes a [32 x i8] vector and returns the vector element value /// indexed by the immediate constant operand. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VEXTRACTF128+COMPOSITE / /// EXTRACTF128+COMPOSITE instruction. /// /// \param __a /// A 256-bit integer vector of [32 x i8]. /// \param __imm /// An immediate integer operand with bits [4:0] determining which vector /// element is extracted and returned. /// \returns A 32-bit integer containing the extracted 8 bits of zero extended /// packed data. static __inline int __DEFAULT_FN_ATTRS _mm256_extract_epi8(__m256i __a, const int __imm) { __v32qi __b = (__v32qi)__a; return (unsigned char)__b[__imm & 31]; } #ifdef __x86_64__ /// \brief Takes a [4 x i64] vector and returns the vector element value /// indexed by the immediate constant operand. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VEXTRACTF128+COMPOSITE / /// EXTRACTF128+COMPOSITE instruction. /// /// \param __a /// A 256-bit integer vector of [4 x i64]. /// \param __imm /// An immediate integer operand with bits [1:0] determining which vector /// element is extracted and returned. /// \returns A 64-bit integer containing the extracted 64 bits of extended /// packed data. static __inline long long __DEFAULT_FN_ATTRS _mm256_extract_epi64(__m256i __a, const int __imm) { __v4di __b = (__v4di)__a; return __b[__imm & 3]; } #endif /// \brief Takes a [8 x i32] vector and replaces the vector element value /// indexed by the immediate constant operand by a new value. Returns the /// modified vector. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VINSERTF128+COMPOSITE / /// INSERTF128+COMPOSITE instruction. /// /// \param __a /// A vector of [8 x i32] to be used by the insert operation. /// \param __b /// An integer value. The replacement value for the insert operation. /// \param __imm /// An immediate integer specifying the index of the vector element to be /// replaced. /// \returns A copy of vector __a, after replacing its element indexed by __imm /// with __b. static __inline __m256i __DEFAULT_FN_ATTRS _mm256_insert_epi32(__m256i __a, int __b, int const __imm) { __v8si __c = (__v8si)__a; __c[__imm & 7] = __b; return (__m256i)__c; } /// \brief Takes a [16 x i16] vector and replaces the vector element value /// indexed by the immediate constant operand with a new value. Returns the /// modified vector. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VINSERTF128+COMPOSITE / /// INSERTF128+COMPOSITE instruction. /// /// \param __a /// A vector of [16 x i16] to be used by the insert operation. /// \param __b /// An i16 integer value. The replacement value for the insert operation. /// \param __imm /// An immediate integer specifying the index of the vector element to be /// replaced. /// \returns A copy of vector __a, after replacing its element indexed by __imm /// with __b. static __inline __m256i __DEFAULT_FN_ATTRS _mm256_insert_epi16(__m256i __a, int __b, int const __imm) { __v16hi __c = (__v16hi)__a; __c[__imm & 15] = __b; return (__m256i)__c; } /// \brief Takes a [32 x i8] vector and replaces the vector element value /// indexed by the immediate constant operand with a new value. Returns the /// modified vector. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VINSERTF128+COMPOSITE / /// INSERTF128+COMPOSITE instruction. /// /// \param __a /// A vector of [32 x i8] to be used by the insert operation. /// \param __b /// An i8 integer value. The replacement value for the insert operation. /// \param __imm /// An immediate integer specifying the index of the vector element to be /// replaced. /// \returns A copy of vector __a, after replacing its element indexed by __imm /// with __b. static __inline __m256i __DEFAULT_FN_ATTRS _mm256_insert_epi8(__m256i __a, int __b, int const __imm) { __v32qi __c = (__v32qi)__a; __c[__imm & 31] = __b; return (__m256i)__c; } #ifdef __x86_64__ /// \brief Takes a [4 x i64] vector and replaces the vector element value /// indexed by the immediate constant operand with a new value. Returns the /// modified vector. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VINSERTF128+COMPOSITE / /// INSERTF128+COMPOSITE instruction. /// /// \param __a /// A vector of [4 x i64] to be used by the insert operation. /// \param __b /// A 64-bit integer value. The replacement value for the insert operation. /// \param __imm /// An immediate integer specifying the index of the vector element to be /// replaced. /// \returns A copy of vector __a, after replacing its element indexed by __imm /// with __b. static __inline __m256i __DEFAULT_FN_ATTRS _mm256_insert_epi64(__m256i __a, long long __b, int const __imm) { __v4di __c = (__v4di)__a; __c[__imm & 3] = __b; return (__m256i)__c; } #endif /* Conversion */ /// \brief Converts a vector of [4 x i32] into a vector of [4 x double]. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VCVTDQ2PD / CVTDQ2PD instruction. /// /// \param __a /// A 128-bit integer vector of [4 x i32]. /// \returns A 256-bit vector of [4 x double] containing the converted values. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_cvtepi32_pd(__m128i __a) { return (__m256d)__builtin_convertvector((__v4si)__a, __v4df); } /// \brief Converts a vector of [8 x i32] into a vector of [8 x float]. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VCVTDQ2PS / CVTDQ2PS instruction. /// /// \param __a /// A 256-bit integer vector. /// \returns A 256-bit vector of [8 x float] containing the converted values. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_cvtepi32_ps(__m256i __a) { return (__m256)__builtin_ia32_cvtdq2ps256((__v8si) __a); } /// \brief Converts a 256-bit vector of [4 x double] into a 128-bit vector of /// [4 x float]. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VCVTPD2PS / CVTPD2PS instruction. /// /// \param __a /// A 256-bit vector of [4 x double]. /// \returns A 128-bit vector of [4 x float] containing the converted values. static __inline __m128 __DEFAULT_FN_ATTRS _mm256_cvtpd_ps(__m256d __a) { return (__m128)__builtin_ia32_cvtpd2ps256((__v4df) __a); } /// \brief Converts a vector of [8 x float] into a vector of [8 x i32]. /// /// \headerfile <x86intrin.h> /// /// This intrinsic corresponds to the \c VCVTPS2DQ / CVTPS2DQ instruction. /// /// \param __a /// A 256-bit vector of [8 x float]. /// \returns A 256-bit integer vector containing the converted values. static __inline __m256i __DEFAULT_FN_ATTRS _mm256_cvtps_epi32(__m256 __a) { return (__m256i)__builtin_ia32_cvtps2dq256((__v8sf) __a); } static __inline __m256d __DEFAULT_FN_ATTRS _mm256_cvtps_pd(__m128 __a) { return (__m256d)__builtin_convertvector((__v4sf)__a, __v4df); } static __inline __m128i __DEFAULT_FN_ATTRS _mm256_cvttpd_epi32(__m256d __a) { return (__m128i)__builtin_convertvector((__v4df) __a, __v4si); } static __inline __m128i __DEFAULT_FN_ATTRS _mm256_cvtpd_epi32(__m256d __a) { return (__m128i)__builtin_ia32_cvtpd2dq256((__v4df) __a); } static __inline __m256i __DEFAULT_FN_ATTRS _mm256_cvttps_epi32(__m256 __a) { return (__m256i)__builtin_convertvector((__v8sf) __a, __v8si); } static __inline double __DEFAULT_FN_ATTRS _mm256_cvtsd_f64(__m256d __a) { return __a[0]; } static __inline int __DEFAULT_FN_ATTRS _mm256_cvtsi256_si32(__m256i __a) { __v8si __b = (__v8si)__a; return __b[0]; } static __inline float __DEFAULT_FN_ATTRS _mm256_cvtss_f32(__m256 __a) { return __a[0]; } /* Vector replicate */ static __inline __m256 __DEFAULT_FN_ATTRS _mm256_movehdup_ps(__m256 __a) { return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 1, 1, 3, 3, 5, 5, 7, 7); } static __inline __m256 __DEFAULT_FN_ATTRS _mm256_moveldup_ps(__m256 __a) { return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 0, 0, 2, 2, 4, 4, 6, 6); } static __inline __m256d __DEFAULT_FN_ATTRS _mm256_movedup_pd(__m256d __a) { return __builtin_shufflevector((__v4df)__a, (__v4df)__a, 0, 0, 2, 2); } /* Unpack and Interleave */ static __inline __m256d __DEFAULT_FN_ATTRS _mm256_unpackhi_pd(__m256d __a, __m256d __b) { return __builtin_shufflevector((__v4df)__a, (__v4df)__b, 1, 5, 1+2, 5+2); } static __inline __m256d __DEFAULT_FN_ATTRS _mm256_unpacklo_pd(__m256d __a, __m256d __b) { return __builtin_shufflevector((__v4df)__a, (__v4df)__b, 0, 4, 0+2, 4+2); } static __inline __m256 __DEFAULT_FN_ATTRS _mm256_unpackhi_ps(__m256 __a, __m256 __b) { return __builtin_shufflevector((__v8sf)__a, (__v8sf)__b, 2, 10, 2+1, 10+1, 6, 14, 6+1, 14+1); } static __inline __m256 __DEFAULT_FN_ATTRS _mm256_unpacklo_ps(__m256 __a, __m256 __b) { return __builtin_shufflevector((__v8sf)__a, (__v8sf)__b, 0, 8, 0+1, 8+1, 4, 12, 4+1, 12+1); } /* Bit Test */ static __inline int __DEFAULT_FN_ATTRS _mm_testz_pd(__m128d __a, __m128d __b) { return __builtin_ia32_vtestzpd((__v2df)__a, (__v2df)__b); } static __inline int __DEFAULT_FN_ATTRS _mm_testc_pd(__m128d __a, __m128d __b) { return __builtin_ia32_vtestcpd((__v2df)__a, (__v2df)__b); } static __inline int __DEFAULT_FN_ATTRS _mm_testnzc_pd(__m128d __a, __m128d __b) { return __builtin_ia32_vtestnzcpd((__v2df)__a, (__v2df)__b); } static __inline int __DEFAULT_FN_ATTRS _mm_testz_ps(__m128 __a, __m128 __b) { return __builtin_ia32_vtestzps((__v4sf)__a, (__v4sf)__b); } static __inline int __DEFAULT_FN_ATTRS _mm_testc_ps(__m128 __a, __m128 __b) { return __builtin_ia32_vtestcps((__v4sf)__a, (__v4sf)__b); } static __inline int __DEFAULT_FN_ATTRS _mm_testnzc_ps(__m128 __a, __m128 __b) { return __builtin_ia32_vtestnzcps((__v4sf)__a, (__v4sf)__b); } static __inline int __DEFAULT_FN_ATTRS _mm256_testz_pd(__m256d __a, __m256d __b) { return __builtin_ia32_vtestzpd256((__v4df)__a, (__v4df)__b); } static __inline int __DEFAULT_FN_ATTRS _mm256_testc_pd(__m256d __a, __m256d __b) { return __builtin_ia32_vtestcpd256((__v4df)__a, (__v4df)__b); } static __inline int __DEFAULT_FN_ATTRS _mm256_testnzc_pd(__m256d __a, __m256d __b) { return __builtin_ia32_vtestnzcpd256((__v4df)__a, (__v4df)__b); } static __inline int __DEFAULT_FN_ATTRS _mm256_testz_ps(__m256 __a, __m256 __b) { return __builtin_ia32_vtestzps256((__v8sf)__a, (__v8sf)__b); } static __inline int __DEFAULT_FN_ATTRS _mm256_testc_ps(__m256 __a, __m256 __b) { return __builtin_ia32_vtestcps256((__v8sf)__a, (__v8sf)__b); } static __inline int __DEFAULT_FN_ATTRS _mm256_testnzc_ps(__m256 __a, __m256 __b) { return __builtin_ia32_vtestnzcps256((__v8sf)__a, (__v8sf)__b); } static __inline int __DEFAULT_FN_ATTRS _mm256_testz_si256(__m256i __a, __m256i __b) { return __builtin_ia32_ptestz256((__v4di)__a, (__v4di)__b); } static __inline int __DEFAULT_FN_ATTRS _mm256_testc_si256(__m256i __a, __m256i __b) { return __builtin_ia32_ptestc256((__v4di)__a, (__v4di)__b); } static __inline int __DEFAULT_FN_ATTRS _mm256_testnzc_si256(__m256i __a, __m256i __b) { return __builtin_ia32_ptestnzc256((__v4di)__a, (__v4di)__b); } /* Vector extract sign mask */ static __inline int __DEFAULT_FN_ATTRS _mm256_movemask_pd(__m256d __a) { return __builtin_ia32_movmskpd256((__v4df)__a); } static __inline int __DEFAULT_FN_ATTRS _mm256_movemask_ps(__m256 __a) { return __builtin_ia32_movmskps256((__v8sf)__a); } /* Vector __zero */ static __inline void __DEFAULT_FN_ATTRS _mm256_zeroall(void) { __builtin_ia32_vzeroall(); } static __inline void __DEFAULT_FN_ATTRS _mm256_zeroupper(void) { __builtin_ia32_vzeroupper(); } /* Vector load with broadcast */ static __inline __m128 __DEFAULT_FN_ATTRS _mm_broadcast_ss(float const *__a) { float __f = *__a; return (__m128)(__v4sf){ __f, __f, __f, __f }; } static __inline __m256d __DEFAULT_FN_ATTRS _mm256_broadcast_sd(double const *__a) { double __d = *__a; return (__m256d)(__v4df){ __d, __d, __d, __d }; } static __inline __m256 __DEFAULT_FN_ATTRS _mm256_broadcast_ss(float const *__a) { float __f = *__a; return (__m256)(__v8sf){ __f, __f, __f, __f, __f, __f, __f, __f }; } static __inline __m256d __DEFAULT_FN_ATTRS _mm256_broadcast_pd(__m128d const *__a) { return (__m256d)__builtin_ia32_vbroadcastf128_pd256((__v2df const *)__a); } static __inline __m256 __DEFAULT_FN_ATTRS _mm256_broadcast_ps(__m128 const *__a) { return (__m256)__builtin_ia32_vbroadcastf128_ps256((__v4sf const *)__a); } /* SIMD load ops */ static __inline __m256d __DEFAULT_FN_ATTRS _mm256_load_pd(double const *__p) { return *(__m256d *)__p; } static __inline __m256 __DEFAULT_FN_ATTRS _mm256_load_ps(float const *__p) { return *(__m256 *)__p; } static __inline __m256d __DEFAULT_FN_ATTRS _mm256_loadu_pd(double const *__p) { struct __loadu_pd { __m256d __v; } __attribute__((__packed__, __may_alias__)); return ((struct __loadu_pd*)__p)->__v; } static __inline __m256 __DEFAULT_FN_ATTRS _mm256_loadu_ps(float const *__p) { struct __loadu_ps { __m256 __v; } __attribute__((__packed__, __may_alias__)); return ((struct __loadu_ps*)__p)->__v; } static __inline __m256i __DEFAULT_FN_ATTRS _mm256_load_si256(__m256i const *__p) { return *__p; } static __inline __m256i __DEFAULT_FN_ATTRS _mm256_loadu_si256(__m256i const *__p) { struct __loadu_si256 { __m256i __v; } __attribute__((__packed__, __may_alias__)); return ((struct __loadu_si256*)__p)->__v; } static __inline __m256i __DEFAULT_FN_ATTRS _mm256_lddqu_si256(__m256i const *__p) { return (__m256i)__builtin_ia32_lddqu256((char const *)__p); } /* SIMD store ops */ static __inline void __DEFAULT_FN_ATTRS _mm256_store_pd(double *__p, __m256d __a) { *(__m256d *)__p = __a; } static __inline void __DEFAULT_FN_ATTRS _mm256_store_ps(float *__p, __m256 __a) { *(__m256 *)__p = __a; } static __inline void __DEFAULT_FN_ATTRS _mm256_storeu_pd(double *__p, __m256d __a) { struct __storeu_pd { __m256d __v; } __attribute__((__packed__, __may_alias__)); ((struct __storeu_pd*)__p)->__v = __a; } static __inline void __DEFAULT_FN_ATTRS _mm256_storeu_ps(float *__p, __m256 __a) { struct __storeu_ps { __m256 __v; } __attribute__((__packed__, __may_alias__)); ((struct __storeu_ps*)__p)->__v = __a; } static __inline void __DEFAULT_FN_ATTRS _mm256_store_si256(__m256i *__p, __m256i __a) { *__p = __a; } static __inline void __DEFAULT_FN_ATTRS _mm256_storeu_si256(__m256i *__p, __m256i __a) { struct __storeu_si256 { __m256i __v; } __attribute__((__packed__, __may_alias__)); ((struct __storeu_si256*)__p)->__v = __a; } /* Conditional load ops */ static __inline __m128d __DEFAULT_FN_ATTRS _mm_maskload_pd(double const *__p, __m128i __m) { return (__m128d)__builtin_ia32_maskloadpd((const __v2df *)__p, (__v2di)__m); } static __inline __m256d __DEFAULT_FN_ATTRS _mm256_maskload_pd(double const *__p, __m256i __m) { return (__m256d)__builtin_ia32_maskloadpd256((const __v4df *)__p, (__v4di)__m); } static __inline __m128 __DEFAULT_FN_ATTRS _mm_maskload_ps(float const *__p, __m128i __m) { return (__m128)__builtin_ia32_maskloadps((const __v4sf *)__p, (__v4si)__m); } static __inline __m256 __DEFAULT_FN_ATTRS _mm256_maskload_ps(float const *__p, __m256i __m) { return (__m256)__builtin_ia32_maskloadps256((const __v8sf *)__p, (__v8si)__m); } /* Conditional store ops */ static __inline void __DEFAULT_FN_ATTRS _mm256_maskstore_ps(float *__p, __m256i __m, __m256 __a) { __builtin_ia32_maskstoreps256((__v8sf *)__p, (__v8si)__m, (__v8sf)__a); } static __inline void __DEFAULT_FN_ATTRS _mm_maskstore_pd(double *__p, __m128i __m, __m128d __a) { __builtin_ia32_maskstorepd((__v2df *)__p, (__v2di)__m, (__v2df)__a); } static __inline void __DEFAULT_FN_ATTRS _mm256_maskstore_pd(double *__p, __m256i __m, __m256d __a) { __builtin_ia32_maskstorepd256((__v4df *)__p, (__v4di)__m, (__v4df)__a); } static __inline void __DEFAULT_FN_ATTRS _mm_maskstore_ps(float *__p, __m128i __m, __m128 __a) { __builtin_ia32_maskstoreps((__v4sf *)__p, (__v4si)__m, (__v4sf)__a); } /* Cacheability support ops */ static __inline void __DEFAULT_FN_ATTRS _mm256_stream_si256(__m256i *__a, __m256i __b) { __builtin_nontemporal_store((__v4di)__b, (__v4di*)__a); } static __inline void __DEFAULT_FN_ATTRS _mm256_stream_pd(double *__a, __m256d __b) { __builtin_nontemporal_store((__v4df)__b, (__v4df*)__a); } static __inline void __DEFAULT_FN_ATTRS _mm256_stream_ps(float *__p, __m256 __a) { __builtin_nontemporal_store((__v8sf)__a, (__v8sf*)__p); } /* Create vectors */ static __inline__ __m256d __DEFAULT_FN_ATTRS _mm256_undefined_pd(void) { return (__m256d)__builtin_ia32_undef256(); } static __inline__ __m256 __DEFAULT_FN_ATTRS _mm256_undefined_ps(void) { return (__m256)__builtin_ia32_undef256(); } static __inline__ __m256i __DEFAULT_FN_ATTRS _mm256_undefined_si256(void) { return (__m256i)__builtin_ia32_undef256(); } static __inline __m256d __DEFAULT_FN_ATTRS _mm256_set_pd(double __a, double __b, double __c, double __d) { return (__m256d){ __d, __c, __b, __a }; } static __inline __m256 __DEFAULT_FN_ATTRS _mm256_set_ps(float __a, float __b, float __c, float __d, float __e, float __f, float __g, float __h) { return (__m256){ __h, __g, __f, __e, __d, __c, __b, __a }; } static __inline __m256i __DEFAULT_FN_ATTRS _mm256_set_epi32(int __i0, int __i1, int __i2, int __i3, int __i4, int __i5, int __i6, int __i7) { return (__m256i)(__v8si){ __i7, __i6, __i5, __i4, __i3, __i2, __i1, __i0 }; } static __inline __m256i __DEFAULT_FN_ATTRS _mm256_set_epi16(short __w15, short __w14, short __w13, short __w12, short __w11, short __w10, short __w09, short __w08, short __w07, short __w06, short __w05, short __w04, short __w03, short __w02, short __w01, short __w00) { return (__m256i)(__v16hi){ __w00, __w01, __w02, __w03, __w04, __w05, __w06, __w07, __w08, __w09, __w10, __w11, __w12, __w13, __w14, __w15 }; } static __inline __m256i __DEFAULT_FN_ATTRS _mm256_set_epi8(char __b31, char __b30, char __b29, char __b28, char __b27, char __b26, char __b25, char __b24, char __b23, char __b22, char __b21, char __b20, char __b19, char __b18, char __b17, char __b16, char __b15, char __b14, char __b13, char __b12, char __b11, char __b10, char __b09, char __b08, char __b07, char __b06, char __b05, char __b04, char __b03, char __b02, char __b01, char __b00) { return (__m256i)(__v32qi){ __b00, __b01, __b02, __b03, __b04, __b05, __b06, __b07, __b08, __b09, __b10, __b11, __b12, __b13, __b14, __b15, __b16, __b17, __b18, __b19, __b20, __b21, __b22, __b23, __b24, __b25, __b26, __b27, __b28, __b29, __b30, __b31 }; } static __inline __m256i __DEFAULT_FN_ATTRS _mm256_set_epi64x(long long __a, long long __b, long long __c, long long __d) { return (__m256i)(__v4di){ __d, __c, __b, __a }; } /* Create vectors with elements in reverse order */ static __inline __m256d __DEFAULT_FN_ATTRS _mm256_setr_pd(double __a, double __b, double __c, double __d) { return (__m256d){ __a, __b, __c, __d }; } static __inline __m256 __DEFAULT_FN_ATTRS _mm256_setr_ps(float __a, float __b, float __c, float __d, float __e, float __f, float __g, float __h) { return (__m256){ __a, __b, __c, __d, __e, __f, __g, __h }; } static __inline __m256i __DEFAULT_FN_ATTRS _mm256_setr_epi32(int __i0, int __i1, int __i2, int __i3, int __i4, int __i5, int __i6, int __i7) { return (__m256i)(__v8si){ __i0, __i1, __i2, __i3, __i4, __i5, __i6, __i7 }; } static __inline __m256i __DEFAULT_FN_ATTRS _mm256_setr_epi16(short __w15, short __w14, short __w13, short __w12, short __w11, short __w10, short __w09, short __w08, short __w07, short __w06, short __w05, short __w04, short __w03, short __w02, short __w01, short __w00) { return (__m256i)(__v16hi){ __w15, __w14, __w13, __w12, __w11, __w10, __w09, __w08, __w07, __w06, __w05, __w04, __w03, __w02, __w01, __w00 }; } static __inline __m256i __DEFAULT_FN_ATTRS _mm256_setr_epi8(char __b31, char __b30, char __b29, char __b28, char __b27, char __b26, char __b25, char __b24, char __b23, char __b22, char __b21, char __b20, char __b19, char __b18, char __b17, char __b16, char __b15, char __b14, char __b13, char __b12, char __b11, char __b10, char __b09, char __b08, char __b07, char __b06, char __b05, char __b04, char __b03, char __b02, char __b01, char __b00) { return (__m256i)(__v32qi){ __b31, __b30, __b29, __b28, __b27, __b26, __b25, __b24, __b23, __b22, __b21, __b20, __b19, __b18, __b17, __b16, __b15, __b14, __b13, __b12, __b11, __b10, __b09, __b08, __b07, __b06, __b05, __b04, __b03, __b02, __b01, __b00 }; } static __inline __m256i __DEFAULT_FN_ATTRS _mm256_setr_epi64x(long long __a, long long __b, long long __c, long long __d) { return (__m256i)(__v4di){ __a, __b, __c, __d }; } /* Create vectors with repeated elements */ static __inline __m256d __DEFAULT_FN_ATTRS _mm256_set1_pd(double __w) { return (__m256d){ __w, __w, __w, __w }; } static __inline __m256 __DEFAULT_FN_ATTRS _mm256_set1_ps(float __w) { return (__m256){ __w, __w, __w, __w, __w, __w, __w, __w }; } static __inline __m256i __DEFAULT_FN_ATTRS _mm256_set1_epi32(int __i) { return (__m256i)(__v8si){ __i, __i, __i, __i, __i, __i, __i, __i }; } static __inline __m256i __DEFAULT_FN_ATTRS _mm256_set1_epi16(short __w) { return (__m256i)(__v16hi){ __w, __w, __w, __w, __w, __w, __w, __w, __w, __w, __w, __w, __w, __w, __w, __w }; } static __inline __m256i __DEFAULT_FN_ATTRS _mm256_set1_epi8(char __b) { return (__m256i)(__v32qi){ __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b }; } static __inline __m256i __DEFAULT_FN_ATTRS _mm256_set1_epi64x(long long __q) { return (__m256i)(__v4di){ __q, __q, __q, __q }; } /* Create __zeroed vectors */ static __inline __m256d __DEFAULT_FN_ATTRS _mm256_setzero_pd(void) { return (__m256d){ 0, 0, 0, 0 }; } static __inline __m256 __DEFAULT_FN_ATTRS _mm256_setzero_ps(void) { return (__m256){ 0, 0, 0, 0, 0, 0, 0, 0 }; } static __inline __m256i __DEFAULT_FN_ATTRS _mm256_setzero_si256(void) { return (__m256i){ 0LL, 0LL, 0LL, 0LL }; } /* Cast between vector types */ static __inline __m256 __DEFAULT_FN_ATTRS _mm256_castpd_ps(__m256d __a) { return (__m256)__a; } static __inline __m256i __DEFAULT_FN_ATTRS _mm256_castpd_si256(__m256d __a) { return (__m256i)__a; } static __inline __m256d __DEFAULT_FN_ATTRS _mm256_castps_pd(__m256 __a) { return (__m256d)__a; } static __inline __m256i __DEFAULT_FN_ATTRS _mm256_castps_si256(__m256 __a) { return (__m256i)__a; } static __inline __m256 __DEFAULT_FN_ATTRS _mm256_castsi256_ps(__m256i __a) { return (__m256)__a; } static __inline __m256d __DEFAULT_FN_ATTRS _mm256_castsi256_pd(__m256i __a) { return (__m256d)__a; } static __inline __m128d __DEFAULT_FN_ATTRS _mm256_castpd256_pd128(__m256d __a) { return __builtin_shufflevector((__v4df)__a, (__v4df)__a, 0, 1); } static __inline __m128 __DEFAULT_FN_ATTRS _mm256_castps256_ps128(__m256 __a) { return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 0, 1, 2, 3); } static __inline __m128i __DEFAULT_FN_ATTRS _mm256_castsi256_si128(__m256i __a) { return __builtin_shufflevector((__v4di)__a, (__v4di)__a, 0, 1); } static __inline __m256d __DEFAULT_FN_ATTRS _mm256_castpd128_pd256(__m128d __a) { return __builtin_shufflevector((__v2df)__a, (__v2df)__a, 0, 1, -1, -1); } static __inline __m256 __DEFAULT_FN_ATTRS _mm256_castps128_ps256(__m128 __a) { return __builtin_shufflevector((__v4sf)__a, (__v4sf)__a, 0, 1, 2, 3, -1, -1, -1, -1); } static __inline __m256i __DEFAULT_FN_ATTRS _mm256_castsi128_si256(__m128i __a) { return __builtin_shufflevector((__v2di)__a, (__v2di)__a, 0, 1, -1, -1); } /* Vector insert. We use macros rather than inlines because we only want to accept invocations where the immediate M is a constant expression. */ #define _mm256_insertf128_ps(V1, V2, M) __extension__ ({ \ (__m256)__builtin_shufflevector( \ (__v8sf)(__m256)(V1), \ (__v8sf)_mm256_castps128_ps256((__m128)(V2)), \ (((M) & 1) ? 0 : 8), \ (((M) & 1) ? 1 : 9), \ (((M) & 1) ? 2 : 10), \ (((M) & 1) ? 3 : 11), \ (((M) & 1) ? 8 : 4), \ (((M) & 1) ? 9 : 5), \ (((M) & 1) ? 10 : 6), \ (((M) & 1) ? 11 : 7) );}) #define _mm256_insertf128_pd(V1, V2, M) __extension__ ({ \ (__m256d)__builtin_shufflevector( \ (__v4df)(__m256d)(V1), \ (__v4df)_mm256_castpd128_pd256((__m128d)(V2)), \ (((M) & 1) ? 0 : 4), \ (((M) & 1) ? 1 : 5), \ (((M) & 1) ? 4 : 2), \ (((M) & 1) ? 5 : 3) );}) #define _mm256_insertf128_si256(V1, V2, M) __extension__ ({ \ (__m256i)__builtin_shufflevector( \ (__v4di)(__m256i)(V1), \ (__v4di)_mm256_castsi128_si256((__m128i)(V2)), \ (((M) & 1) ? 0 : 4), \ (((M) & 1) ? 1 : 5), \ (((M) & 1) ? 4 : 2), \ (((M) & 1) ? 5 : 3) );}) /* Vector extract. We use macros rather than inlines because we only want to accept invocations where the immediate M is a constant expression. */ #define _mm256_extractf128_ps(V, M) __extension__ ({ \ (__m128)__builtin_shufflevector( \ (__v8sf)(__m256)(V), \ (__v8sf)(_mm256_undefined_ps()), \ (((M) & 1) ? 4 : 0), \ (((M) & 1) ? 5 : 1), \ (((M) & 1) ? 6 : 2), \ (((M) & 1) ? 7 : 3) );}) #define _mm256_extractf128_pd(V, M) __extension__ ({ \ (__m128d)__builtin_shufflevector( \ (__v4df)(__m256d)(V), \ (__v4df)(_mm256_undefined_pd()), \ (((M) & 1) ? 2 : 0), \ (((M) & 1) ? 3 : 1) );}) #define _mm256_extractf128_si256(V, M) __extension__ ({ \ (__m128i)__builtin_shufflevector( \ (__v4di)(__m256i)(V), \ (__v4di)(_mm256_undefined_si256()), \ (((M) & 1) ? 2 : 0), \ (((M) & 1) ? 3 : 1) );}) /* SIMD load ops (unaligned) */ static __inline __m256 __DEFAULT_FN_ATTRS _mm256_loadu2_m128(float const *__addr_hi, float const *__addr_lo) { __m256 __v256 = _mm256_castps128_ps256(_mm_loadu_ps(__addr_lo)); return _mm256_insertf128_ps(__v256, _mm_loadu_ps(__addr_hi), 1); } static __inline __m256d __DEFAULT_FN_ATTRS _mm256_loadu2_m128d(double const *__addr_hi, double const *__addr_lo) { __m256d __v256 = _mm256_castpd128_pd256(_mm_loadu_pd(__addr_lo)); return _mm256_insertf128_pd(__v256, _mm_loadu_pd(__addr_hi), 1); } static __inline __m256i __DEFAULT_FN_ATTRS _mm256_loadu2_m128i(__m128i const *__addr_hi, __m128i const *__addr_lo) { __m256i __v256 = _mm256_castsi128_si256(_mm_loadu_si128(__addr_lo)); return _mm256_insertf128_si256(__v256, _mm_loadu_si128(__addr_hi), 1); } /* SIMD store ops (unaligned) */ static __inline void __DEFAULT_FN_ATTRS _mm256_storeu2_m128(float *__addr_hi, float *__addr_lo, __m256 __a) { __m128 __v128; __v128 = _mm256_castps256_ps128(__a); _mm_storeu_ps(__addr_lo, __v128); __v128 = _mm256_extractf128_ps(__a, 1); _mm_storeu_ps(__addr_hi, __v128); } static __inline void __DEFAULT_FN_ATTRS _mm256_storeu2_m128d(double *__addr_hi, double *__addr_lo, __m256d __a) { __m128d __v128; __v128 = _mm256_castpd256_pd128(__a); _mm_storeu_pd(__addr_lo, __v128); __v128 = _mm256_extractf128_pd(__a, 1); _mm_storeu_pd(__addr_hi, __v128); } static __inline void __DEFAULT_FN_ATTRS _mm256_storeu2_m128i(__m128i *__addr_hi, __m128i *__addr_lo, __m256i __a) { __m128i __v128; __v128 = _mm256_castsi256_si128(__a); _mm_storeu_si128(__addr_lo, __v128); __v128 = _mm256_extractf128_si256(__a, 1); _mm_storeu_si128(__addr_hi, __v128); } static __inline __m256 __DEFAULT_FN_ATTRS _mm256_set_m128 (__m128 __hi, __m128 __lo) { return (__m256) __builtin_shufflevector((__v4sf)__lo, (__v4sf)__hi, 0, 1, 2, 3, 4, 5, 6, 7); } static __inline __m256d __DEFAULT_FN_ATTRS _mm256_set_m128d (__m128d __hi, __m128d __lo) { return (__m256d)_mm256_set_m128((__m128)__hi, (__m128)__lo); } static __inline __m256i __DEFAULT_FN_ATTRS _mm256_set_m128i (__m128i __hi, __m128i __lo) { return (__m256i)_mm256_set_m128((__m128)__hi, (__m128)__lo); } static __inline __m256 __DEFAULT_FN_ATTRS _mm256_setr_m128 (__m128 __lo, __m128 __hi) { return _mm256_set_m128(__hi, __lo); } static __inline __m256d __DEFAULT_FN_ATTRS _mm256_setr_m128d (__m128d __lo, __m128d __hi) { return (__m256d)_mm256_set_m128((__m128)__hi, (__m128)__lo); } static __inline __m256i __DEFAULT_FN_ATTRS _mm256_setr_m128i (__m128i __lo, __m128i __hi) { return (__m256i)_mm256_set_m128((__m128)__hi, (__m128)__lo); } #undef __DEFAULT_FN_ATTRS #endif /* __AVXINTRIN_H */