/*===---- __clang_cuda_runtime_wrapper.h - CUDA runtime support -------------=== * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * *===-----------------------------------------------------------------------=== */ /* * WARNING: This header is intended to be directly -include'd by * the compiler and is not supposed to be included by users. * * CUDA headers are implemented in a way that currently makes it * impossible for user code to #include directly when compiling with * Clang. They present different view of CUDA-supplied functions * depending on where in NVCC's compilation pipeline the headers are * included. Neither of these modes provides function definitions with * correct attributes, so we use preprocessor to force the headers * into a form that Clang can use. * * Similarly to NVCC which -include's cuda_runtime.h, Clang -include's * this file during every CUDA compilation. */ #ifndef __CLANG_CUDA_RUNTIME_WRAPPER_H__ #define __CLANG_CUDA_RUNTIME_WRAPPER_H__ #if defined(__CUDA__) && defined(__clang__) // Include some forward declares that must come before cmath. #include <__clang_cuda_math_forward_declares.h> // Include some standard headers to avoid CUDA headers including them // while some required macros (like __THROW) are in a weird state. #include <cmath> #include <cstdlib> #include <stdlib.h> // Preserve common macros that will be changed below by us or by CUDA // headers. #pragma push_macro("__THROW") #pragma push_macro("__CUDA_ARCH__") // WARNING: Preprocessor hacks below are based on specific details of // CUDA-7.x headers and are not expected to work with any other // version of CUDA headers. #include "cuda.h" #if !defined(CUDA_VERSION) #error "cuda.h did not define CUDA_VERSION" #elif CUDA_VERSION < 7000 || CUDA_VERSION > 7050 #error "Unsupported CUDA version!" #endif // Make largest subset of device functions available during host // compilation -- SM_35 for the time being. #ifndef __CUDA_ARCH__ #define __CUDA_ARCH__ 350 #endif #include "cuda_builtin_vars.h" // No need for device_launch_parameters.h as cuda_builtin_vars.h above // has taken care of builtin variables declared in the file. #define __DEVICE_LAUNCH_PARAMETERS_H__ // {math,device}_functions.h only have declarations of the // functions. We don't need them as we're going to pull in their // definitions from .hpp files. #define __DEVICE_FUNCTIONS_H__ #define __MATH_FUNCTIONS_H__ #define __COMMON_FUNCTIONS_H__ #undef __CUDACC__ #define __CUDABE__ // Disables definitions of device-side runtime support stubs in // cuda_device_runtime_api.h #include "driver_types.h" #include "host_config.h" #include "host_defines.h" #undef __CUDABE__ #define __CUDACC__ #include "cuda_runtime.h" #undef __CUDACC__ #define __CUDABE__ // CUDA headers use __nvvm_memcpy and __nvvm_memset which Clang does // not have at the moment. Emulate them with a builtin memcpy/memset. #define __nvvm_memcpy(s, d, n, a) __builtin_memcpy(s, d, n) #define __nvvm_memset(d, c, n, a) __builtin_memset(d, c, n) #include "crt/device_runtime.h" #include "crt/host_runtime.h" // device_runtime.h defines __cxa_* macros that will conflict with // cxxabi.h. // FIXME: redefine these as __device__ functions. #undef __cxa_vec_ctor #undef __cxa_vec_cctor #undef __cxa_vec_dtor #undef __cxa_vec_new2 #undef __cxa_vec_new3 #undef __cxa_vec_delete2 #undef __cxa_vec_delete #undef __cxa_vec_delete3 #undef __cxa_pure_virtual // We need decls for functions in CUDA's libdevice with __device__ // attribute only. Alas they come either as __host__ __device__ or // with no attributes at all. To work around that, define __CUDA_RTC__ // which produces HD variant and undef __host__ which gives us desided // decls with __device__ attribute. #pragma push_macro("__host__") #define __host__ #define __CUDACC_RTC__ #include "device_functions_decls.h" #undef __CUDACC_RTC__ // Temporarily poison __host__ macro to ensure it's not used by any of // the headers we're about to include. #define __host__ UNEXPECTED_HOST_ATTRIBUTE // device_functions.hpp and math_functions*.hpp use 'static // __forceinline__' (with no __device__) for definitions of device // functions. Temporarily redefine __forceinline__ to include // __device__. #pragma push_macro("__forceinline__") #define __forceinline__ __device__ __inline__ __attribute__((always_inline)) #include "device_functions.hpp" // math_function.hpp uses the __USE_FAST_MATH__ macro to determine whether we // get the slow-but-accurate or fast-but-inaccurate versions of functions like // sin and exp. This is controlled in clang by -fcuda-approx-transcendentals. // // device_functions.hpp uses __USE_FAST_MATH__ for a different purpose (fast vs. // slow divides), so we need to scope our define carefully here. #pragma push_macro("__USE_FAST_MATH__") #if defined(__CLANG_CUDA_APPROX_TRANSCENDENTALS__) #define __USE_FAST_MATH__ #endif #include "math_functions.hpp" #pragma pop_macro("__USE_FAST_MATH__") #include "math_functions_dbl_ptx3.hpp" #pragma pop_macro("__forceinline__") // Pull in host-only functions that are only available when neither // __CUDACC__ nor __CUDABE__ are defined. #undef __MATH_FUNCTIONS_HPP__ #undef __CUDABE__ #include "math_functions.hpp" // Alas, additional overloads for these functions are hard to get to. // Considering that we only need these overloads for a few functions, // we can provide them here. static inline float rsqrt(float __a) { return rsqrtf(__a); } static inline float rcbrt(float __a) { return rcbrtf(__a); } static inline float sinpi(float __a) { return sinpif(__a); } static inline float cospi(float __a) { return cospif(__a); } static inline void sincospi(float __a, float *__b, float *__c) { return sincospif(__a, __b, __c); } static inline float erfcinv(float __a) { return erfcinvf(__a); } static inline float normcdfinv(float __a) { return normcdfinvf(__a); } static inline float normcdf(float __a) { return normcdff(__a); } static inline float erfcx(float __a) { return erfcxf(__a); } // For some reason single-argument variant is not always declared by // CUDA headers. Alas, device_functions.hpp included below needs it. static inline __device__ void __brkpt(int __c) { __brkpt(); } // Now include *.hpp with definitions of various GPU functions. Alas, // a lot of thins get declared/defined with __host__ attribute which // we don't want and we have to define it out. We also have to include // {device,math}_functions.hpp again in order to extract the other // branch of #if/else inside. #define __host__ #undef __CUDABE__ #define __CUDACC__ #undef __DEVICE_FUNCTIONS_HPP__ #include "device_atomic_functions.hpp" #include "device_functions.hpp" #include "sm_20_atomic_functions.hpp" #include "sm_20_intrinsics.hpp" #include "sm_32_atomic_functions.hpp" // Don't include sm_30_intrinsics.h and sm_32_intrinsics.h. These define the // __shfl and __ldg intrinsics using inline (volatile) asm, but we want to // define them using builtins so that the optimizer can reason about and across // these instructions. In particular, using intrinsics for ldg gets us the // [addr+imm] addressing mode, which, although it doesn't actually exist in the // hardware, seems to generate faster machine code because ptxas can more easily // reason about our code. #undef __MATH_FUNCTIONS_HPP__ // math_functions.hpp defines ::signbit as a __host__ __device__ function. This // conflicts with libstdc++'s constexpr ::signbit, so we have to rename // math_function.hpp's ::signbit. It's guarded by #undef signbit, but that's // conditional on __GNUC__. :) #pragma push_macro("signbit") #pragma push_macro("__GNUC__") #undef __GNUC__ #define signbit __ignored_cuda_signbit #include "math_functions.hpp" #pragma pop_macro("__GNUC__") #pragma pop_macro("signbit") #pragma pop_macro("__host__") #include "texture_indirect_functions.h" // Restore state of __CUDA_ARCH__ and __THROW we had on entry. #pragma pop_macro("__CUDA_ARCH__") #pragma pop_macro("__THROW") // Set up compiler macros expected to be seen during compilation. #undef __CUDABE__ #define __CUDACC__ extern "C" { // Device-side CUDA system calls. // http://docs.nvidia.com/cuda/ptx-writers-guide-to-interoperability/index.html#system-calls // We need these declarations and wrappers for device-side // malloc/free/printf calls to work without relying on // -fcuda-disable-target-call-checks option. __device__ int vprintf(const char *, const char *); __device__ void free(void *) __attribute((nothrow)); __device__ void *malloc(size_t) __attribute((nothrow)) __attribute__((malloc)); __device__ void __assertfail(const char *__message, const char *__file, unsigned __line, const char *__function, size_t __charSize) __attribute__((noreturn)); // In order for standard assert() macro on linux to work we need to // provide device-side __assert_fail() __device__ static inline void __assert_fail(const char *__message, const char *__file, unsigned __line, const char *__function) { __assertfail(__message, __file, __line, __function, sizeof(char)); } // Clang will convert printf into vprintf, but we still need // device-side declaration for it. __device__ int printf(const char *, ...); } // extern "C" // We also need device-side std::malloc and std::free. namespace std { __device__ static inline void free(void *__ptr) { ::free(__ptr); } __device__ static inline void *malloc(size_t __size) { return ::malloc(__size); } } // namespace std // Out-of-line implementations from cuda_builtin_vars.h. These need to come // after we've pulled in the definition of uint3 and dim3. __device__ inline __cuda_builtin_threadIdx_t::operator uint3() const { uint3 ret; ret.x = x; ret.y = y; ret.z = z; return ret; } __device__ inline __cuda_builtin_blockIdx_t::operator uint3() const { uint3 ret; ret.x = x; ret.y = y; ret.z = z; return ret; } __device__ inline __cuda_builtin_blockDim_t::operator dim3() const { return dim3(x, y, z); } __device__ inline __cuda_builtin_gridDim_t::operator dim3() const { return dim3(x, y, z); } #include <__clang_cuda_cmath.h> #include <__clang_cuda_intrinsics.h> // curand_mtgp32_kernel helpfully redeclares blockDim and threadIdx in host // mode, giving them their "proper" types of dim3 and uint3. This is // incompatible with the types we give in cuda_builtin_vars.h. As as hack, // force-include the header (nvcc doesn't include it by default) but redefine // dim3 and uint3 to our builtin types. (Thankfully dim3 and uint3 are only // used here for the redeclarations of blockDim and threadIdx.) #pragma push_macro("dim3") #pragma push_macro("uint3") #define dim3 __cuda_builtin_blockDim_t #define uint3 __cuda_builtin_threadIdx_t #include "curand_mtgp32_kernel.h" #pragma pop_macro("dim3") #pragma pop_macro("uint3") #pragma pop_macro("__USE_FAST_MATH__") #endif // __CUDA__ #endif // __CLANG_CUDA_RUNTIME_WRAPPER_H__