//===--- Module.cpp - Describe a module -----------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the Module class, which describes a module in the source // code. // //===----------------------------------------------------------------------===// #include "clang/Basic/Module.h" #include "clang/Basic/FileManager.h" #include "clang/Basic/LangOptions.h" #include "clang/Basic/TargetInfo.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" using namespace clang; Module::Module(StringRef Name, SourceLocation DefinitionLoc, Module *Parent, bool IsFramework, bool IsExplicit, unsigned VisibilityID) : Name(Name), DefinitionLoc(DefinitionLoc), Parent(Parent), Directory(), Umbrella(), Signature(0), ASTFile(nullptr), VisibilityID(VisibilityID), IsMissingRequirement(false), HasIncompatibleModuleFile(false), IsAvailable(true), IsFromModuleFile(false), IsFramework(IsFramework), IsExplicit(IsExplicit), IsSystem(false), IsExternC(false), IsInferred(false), InferSubmodules(false), InferExplicitSubmodules(false), InferExportWildcard(false), ConfigMacrosExhaustive(false), NameVisibility(Hidden) { if (Parent) { if (!Parent->isAvailable()) IsAvailable = false; if (Parent->IsSystem) IsSystem = true; if (Parent->IsExternC) IsExternC = true; IsMissingRequirement = Parent->IsMissingRequirement; Parent->SubModuleIndex[Name] = Parent->SubModules.size(); Parent->SubModules.push_back(this); } } Module::~Module() { for (submodule_iterator I = submodule_begin(), IEnd = submodule_end(); I != IEnd; ++I) { delete *I; } } /// \brief Determine whether a translation unit built using the current /// language options has the given feature. static bool hasFeature(StringRef Feature, const LangOptions &LangOpts, const TargetInfo &Target) { bool HasFeature = llvm::StringSwitch<bool>(Feature) .Case("altivec", LangOpts.AltiVec) .Case("blocks", LangOpts.Blocks) .Case("cplusplus", LangOpts.CPlusPlus) .Case("cplusplus11", LangOpts.CPlusPlus11) .Case("objc", LangOpts.ObjC1) .Case("objc_arc", LangOpts.ObjCAutoRefCount) .Case("opencl", LangOpts.OpenCL) .Case("tls", Target.isTLSSupported()) .Case("zvector", LangOpts.ZVector) .Default(Target.hasFeature(Feature)); if (!HasFeature) HasFeature = std::find(LangOpts.ModuleFeatures.begin(), LangOpts.ModuleFeatures.end(), Feature) != LangOpts.ModuleFeatures.end(); return HasFeature; } bool Module::isAvailable(const LangOptions &LangOpts, const TargetInfo &Target, Requirement &Req, UnresolvedHeaderDirective &MissingHeader) const { if (IsAvailable) return true; for (const Module *Current = this; Current; Current = Current->Parent) { for (unsigned I = 0, N = Current->Requirements.size(); I != N; ++I) { if (hasFeature(Current->Requirements[I].first, LangOpts, Target) != Current->Requirements[I].second) { Req = Current->Requirements[I]; return false; } } if (!Current->MissingHeaders.empty()) { MissingHeader = Current->MissingHeaders.front(); return false; } } llvm_unreachable("could not find a reason why module is unavailable"); } bool Module::isSubModuleOf(const Module *Other) const { const Module *This = this; do { if (This == Other) return true; This = This->Parent; } while (This); return false; } const Module *Module::getTopLevelModule() const { const Module *Result = this; while (Result->Parent) Result = Result->Parent; return Result; } std::string Module::getFullModuleName() const { SmallVector<StringRef, 2> Names; // Build up the set of module names (from innermost to outermost). for (const Module *M = this; M; M = M->Parent) Names.push_back(M->Name); std::string Result; for (SmallVectorImpl<StringRef>::reverse_iterator I = Names.rbegin(), IEnd = Names.rend(); I != IEnd; ++I) { if (!Result.empty()) Result += '.'; Result += *I; } return Result; } bool Module::fullModuleNameIs(ArrayRef<StringRef> nameParts) const { for (const Module *M = this; M; M = M->Parent) { if (nameParts.empty() || M->Name != nameParts.back()) return false; nameParts = nameParts.drop_back(); } return nameParts.empty(); } Module::DirectoryName Module::getUmbrellaDir() const { if (Header U = getUmbrellaHeader()) return {"", U.Entry->getDir()}; return {UmbrellaAsWritten, Umbrella.dyn_cast<const DirectoryEntry *>()}; } ArrayRef<const FileEntry *> Module::getTopHeaders(FileManager &FileMgr) { if (!TopHeaderNames.empty()) { for (std::vector<std::string>::iterator I = TopHeaderNames.begin(), E = TopHeaderNames.end(); I != E; ++I) { if (const FileEntry *FE = FileMgr.getFile(*I)) TopHeaders.insert(FE); } TopHeaderNames.clear(); } return llvm::makeArrayRef(TopHeaders.begin(), TopHeaders.end()); } bool Module::directlyUses(const Module *Requested) const { auto *Top = getTopLevelModule(); // A top-level module implicitly uses itself. if (Requested->isSubModuleOf(Top)) return true; for (auto *Use : Top->DirectUses) if (Requested->isSubModuleOf(Use)) return true; return false; } void Module::addRequirement(StringRef Feature, bool RequiredState, const LangOptions &LangOpts, const TargetInfo &Target) { Requirements.push_back(Requirement(Feature, RequiredState)); // If this feature is currently available, we're done. if (hasFeature(Feature, LangOpts, Target) == RequiredState) return; markUnavailable(/*MissingRequirement*/true); } void Module::markUnavailable(bool MissingRequirement) { auto needUpdate = [MissingRequirement](Module *M) { return M->IsAvailable || (!M->IsMissingRequirement && MissingRequirement); }; if (!needUpdate(this)) return; SmallVector<Module *, 2> Stack; Stack.push_back(this); while (!Stack.empty()) { Module *Current = Stack.back(); Stack.pop_back(); if (!needUpdate(Current)) continue; Current->IsAvailable = false; Current->IsMissingRequirement |= MissingRequirement; for (submodule_iterator Sub = Current->submodule_begin(), SubEnd = Current->submodule_end(); Sub != SubEnd; ++Sub) { if (needUpdate(*Sub)) Stack.push_back(*Sub); } } } Module *Module::findSubmodule(StringRef Name) const { llvm::StringMap<unsigned>::const_iterator Pos = SubModuleIndex.find(Name); if (Pos == SubModuleIndex.end()) return nullptr; return SubModules[Pos->getValue()]; } static void printModuleId(raw_ostream &OS, const ModuleId &Id) { for (unsigned I = 0, N = Id.size(); I != N; ++I) { if (I) OS << "."; OS << Id[I].first; } } void Module::getExportedModules(SmallVectorImpl<Module *> &Exported) const { // All non-explicit submodules are exported. for (std::vector<Module *>::const_iterator I = SubModules.begin(), E = SubModules.end(); I != E; ++I) { Module *Mod = *I; if (!Mod->IsExplicit) Exported.push_back(Mod); } // Find re-exported modules by filtering the list of imported modules. bool AnyWildcard = false; bool UnrestrictedWildcard = false; SmallVector<Module *, 4> WildcardRestrictions; for (unsigned I = 0, N = Exports.size(); I != N; ++I) { Module *Mod = Exports[I].getPointer(); if (!Exports[I].getInt()) { // Export a named module directly; no wildcards involved. Exported.push_back(Mod); continue; } // Wildcard export: export all of the imported modules that match // the given pattern. AnyWildcard = true; if (UnrestrictedWildcard) continue; if (Module *Restriction = Exports[I].getPointer()) WildcardRestrictions.push_back(Restriction); else { WildcardRestrictions.clear(); UnrestrictedWildcard = true; } } // If there were any wildcards, push any imported modules that were // re-exported by the wildcard restriction. if (!AnyWildcard) return; for (unsigned I = 0, N = Imports.size(); I != N; ++I) { Module *Mod = Imports[I]; bool Acceptable = UnrestrictedWildcard; if (!Acceptable) { // Check whether this module meets one of the restrictions. for (unsigned R = 0, NR = WildcardRestrictions.size(); R != NR; ++R) { Module *Restriction = WildcardRestrictions[R]; if (Mod == Restriction || Mod->isSubModuleOf(Restriction)) { Acceptable = true; break; } } } if (!Acceptable) continue; Exported.push_back(Mod); } } void Module::buildVisibleModulesCache() const { assert(VisibleModulesCache.empty() && "cache does not need building"); // This module is visible to itself. VisibleModulesCache.insert(this); // Every imported module is visible. SmallVector<Module *, 16> Stack(Imports.begin(), Imports.end()); while (!Stack.empty()) { Module *CurrModule = Stack.pop_back_val(); // Every module transitively exported by an imported module is visible. if (VisibleModulesCache.insert(CurrModule).second) CurrModule->getExportedModules(Stack); } } void Module::print(raw_ostream &OS, unsigned Indent) const { OS.indent(Indent); if (IsFramework) OS << "framework "; if (IsExplicit) OS << "explicit "; OS << "module " << Name; if (IsSystem || IsExternC) { OS.indent(Indent + 2); if (IsSystem) OS << " [system]"; if (IsExternC) OS << " [extern_c]"; } OS << " {\n"; if (!Requirements.empty()) { OS.indent(Indent + 2); OS << "requires "; for (unsigned I = 0, N = Requirements.size(); I != N; ++I) { if (I) OS << ", "; if (!Requirements[I].second) OS << "!"; OS << Requirements[I].first; } OS << "\n"; } if (Header H = getUmbrellaHeader()) { OS.indent(Indent + 2); OS << "umbrella header \""; OS.write_escaped(H.NameAsWritten); OS << "\"\n"; } else if (DirectoryName D = getUmbrellaDir()) { OS.indent(Indent + 2); OS << "umbrella \""; OS.write_escaped(D.NameAsWritten); OS << "\"\n"; } if (!ConfigMacros.empty() || ConfigMacrosExhaustive) { OS.indent(Indent + 2); OS << "config_macros "; if (ConfigMacrosExhaustive) OS << "[exhaustive]"; for (unsigned I = 0, N = ConfigMacros.size(); I != N; ++I) { if (I) OS << ", "; OS << ConfigMacros[I]; } OS << "\n"; } struct { StringRef Prefix; HeaderKind Kind; } Kinds[] = {{"", HK_Normal}, {"textual ", HK_Textual}, {"private ", HK_Private}, {"private textual ", HK_PrivateTextual}, {"exclude ", HK_Excluded}}; for (auto &K : Kinds) { for (auto &H : Headers[K.Kind]) { OS.indent(Indent + 2); OS << K.Prefix << "header \""; OS.write_escaped(H.NameAsWritten); OS << "\"\n"; } } for (submodule_const_iterator MI = submodule_begin(), MIEnd = submodule_end(); MI != MIEnd; ++MI) // Print inferred subframework modules so that we don't need to re-infer // them (requires expensive directory iteration + stat calls) when we build // the module. Regular inferred submodules are OK, as we need to look at all // those header files anyway. if (!(*MI)->IsInferred || (*MI)->IsFramework) (*MI)->print(OS, Indent + 2); for (unsigned I = 0, N = Exports.size(); I != N; ++I) { OS.indent(Indent + 2); OS << "export "; if (Module *Restriction = Exports[I].getPointer()) { OS << Restriction->getFullModuleName(); if (Exports[I].getInt()) OS << ".*"; } else { OS << "*"; } OS << "\n"; } for (unsigned I = 0, N = UnresolvedExports.size(); I != N; ++I) { OS.indent(Indent + 2); OS << "export "; printModuleId(OS, UnresolvedExports[I].Id); if (UnresolvedExports[I].Wildcard) OS << (UnresolvedExports[I].Id.empty() ? "*" : ".*"); OS << "\n"; } for (unsigned I = 0, N = DirectUses.size(); I != N; ++I) { OS.indent(Indent + 2); OS << "use "; OS << DirectUses[I]->getFullModuleName(); OS << "\n"; } for (unsigned I = 0, N = UnresolvedDirectUses.size(); I != N; ++I) { OS.indent(Indent + 2); OS << "use "; printModuleId(OS, UnresolvedDirectUses[I]); OS << "\n"; } for (unsigned I = 0, N = LinkLibraries.size(); I != N; ++I) { OS.indent(Indent + 2); OS << "link "; if (LinkLibraries[I].IsFramework) OS << "framework "; OS << "\""; OS.write_escaped(LinkLibraries[I].Library); OS << "\""; } for (unsigned I = 0, N = UnresolvedConflicts.size(); I != N; ++I) { OS.indent(Indent + 2); OS << "conflict "; printModuleId(OS, UnresolvedConflicts[I].Id); OS << ", \""; OS.write_escaped(UnresolvedConflicts[I].Message); OS << "\"\n"; } for (unsigned I = 0, N = Conflicts.size(); I != N; ++I) { OS.indent(Indent + 2); OS << "conflict "; OS << Conflicts[I].Other->getFullModuleName(); OS << ", \""; OS.write_escaped(Conflicts[I].Message); OS << "\"\n"; } if (InferSubmodules) { OS.indent(Indent + 2); if (InferExplicitSubmodules) OS << "explicit "; OS << "module * {\n"; if (InferExportWildcard) { OS.indent(Indent + 4); OS << "export *\n"; } OS.indent(Indent + 2); OS << "}\n"; } OS.indent(Indent); OS << "}\n"; } LLVM_DUMP_METHOD void Module::dump() const { print(llvm::errs()); } void VisibleModuleSet::setVisible(Module *M, SourceLocation Loc, VisibleCallback Vis, ConflictCallback Cb) { assert(Loc.isValid() && "setVisible expects a valid import location"); if (isVisible(M)) return; ++Generation; struct Visiting { Module *M; Visiting *ExportedBy; }; std::function<void(Visiting)> VisitModule = [&](Visiting V) { // Modules that aren't available cannot be made visible. if (!V.M->isAvailable()) return; // Nothing to do for a module that's already visible. unsigned ID = V.M->getVisibilityID(); if (ImportLocs.size() <= ID) ImportLocs.resize(ID + 1); else if (ImportLocs[ID].isValid()) return; ImportLocs[ID] = Loc; Vis(M); // Make any exported modules visible. SmallVector<Module *, 16> Exports; V.M->getExportedModules(Exports); for (Module *E : Exports) VisitModule({E, &V}); for (auto &C : V.M->Conflicts) { if (isVisible(C.Other)) { llvm::SmallVector<Module*, 8> Path; for (Visiting *I = &V; I; I = I->ExportedBy) Path.push_back(I->M); Cb(Path, C.Other, C.Message); } } }; VisitModule({M, nullptr}); }