#!/usr/bin/env perl # ==================================================================== # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # sha1_block procedure for ARMv4. # # January 2007. # Size/performance trade-off # ==================================================================== # impl size in bytes comp cycles[*] measured performance # ==================================================================== # thumb 304 3212 4420 # armv4-small 392/+29% 1958/+64% 2250/+96% # armv4-compact 740/+89% 1552/+26% 1840/+22% # armv4-large 1420/+92% 1307/+19% 1370/+34%[***] # full unroll ~5100/+260% ~1260/+4% ~1300/+5% # ==================================================================== # thumb = same as 'small' but in Thumb instructions[**] and # with recurring code in two private functions; # small = detached Xload/update, loops are folded; # compact = detached Xload/update, 5x unroll; # large = interleaved Xload/update, 5x unroll; # full unroll = interleaved Xload/update, full unroll, estimated[!]; # # [*] Manually counted instructions in "grand" loop body. Measured # performance is affected by prologue and epilogue overhead, # i-cache availability, branch penalties, etc. # [**] While each Thumb instruction is twice smaller, they are not as # diverse as ARM ones: e.g., there are only two arithmetic # instructions with 3 arguments, no [fixed] rotate, addressing # modes are limited. As result it takes more instructions to do # the same job in Thumb, therefore the code is never twice as # small and always slower. # [***] which is also ~35% better than compiler generated code. Dual- # issue Cortex A8 core was measured to process input block in # ~990 cycles. # August 2010. # # Rescheduling for dual-issue pipeline resulted in 13% improvement on # Cortex A8 core and in absolute terms ~870 cycles per input block # [or 13.6 cycles per byte]. # February 2011. # # Profiler-assisted and platform-specific optimization resulted in 10% # improvement on Cortex A8 core and 12.2 cycles per byte. # September 2013. # # Add NEON implementation (see sha1-586.pl for background info). On # Cortex A8 it was measured to process one byte in 6.7 cycles or >80% # faster than integer-only code. Because [fully unrolled] NEON code # is ~2.5x larger and there are some redundant instructions executed # when processing last block, improvement is not as big for smallest # blocks, only ~30%. Snapdragon S4 is a tad faster, 6.4 cycles per # byte, which is also >80% faster than integer-only code. Cortex-A15 # is even faster spending 5.6 cycles per byte outperforming integer- # only code by factor of 2. # May 2014. # # Add ARMv8 code path performing at 2.35 cpb on Apple A7. $flavour = shift; if ($flavour=~/\w[\w\-]*\.\w+$/) { $output=$flavour; undef $flavour; } else { while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} } if ($flavour && $flavour ne "void") { $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or die "can't locate arm-xlate.pl"; open STDOUT,"| \"$^X\" $xlate $flavour $output"; } else { open STDOUT,">$output"; } $ctx="r0"; $inp="r1"; $len="r2"; $a="r3"; $b="r4"; $c="r5"; $d="r6"; $e="r7"; $K="r8"; $t0="r9"; $t1="r10"; $t2="r11"; $t3="r12"; $Xi="r14"; @V=($a,$b,$c,$d,$e); sub Xupdate { my ($a,$b,$c,$d,$e,$opt1,$opt2)=@_; $code.=<<___; ldr $t0,[$Xi,#15*4] ldr $t1,[$Xi,#13*4] ldr $t2,[$Xi,#7*4] add $e,$K,$e,ror#2 @ E+=K_xx_xx ldr $t3,[$Xi,#2*4] eor $t0,$t0,$t1 eor $t2,$t2,$t3 @ 1 cycle stall eor $t1,$c,$d @ F_xx_xx mov $t0,$t0,ror#31 add $e,$e,$a,ror#27 @ E+=ROR(A,27) eor $t0,$t0,$t2,ror#31 str $t0,[$Xi,#-4]! $opt1 @ F_xx_xx $opt2 @ F_xx_xx add $e,$e,$t0 @ E+=X[i] ___ } sub BODY_00_15 { my ($a,$b,$c,$d,$e)=@_; $code.=<<___; #if __ARM_ARCH__<7 ldrb $t1,[$inp,#2] ldrb $t0,[$inp,#3] ldrb $t2,[$inp,#1] add $e,$K,$e,ror#2 @ E+=K_00_19 ldrb $t3,[$inp],#4 orr $t0,$t0,$t1,lsl#8 eor $t1,$c,$d @ F_xx_xx orr $t0,$t0,$t2,lsl#16 add $e,$e,$a,ror#27 @ E+=ROR(A,27) orr $t0,$t0,$t3,lsl#24 #else ldr $t0,[$inp],#4 @ handles unaligned add $e,$K,$e,ror#2 @ E+=K_00_19 eor $t1,$c,$d @ F_xx_xx add $e,$e,$a,ror#27 @ E+=ROR(A,27) #ifdef __ARMEL__ rev $t0,$t0 @ byte swap #endif #endif and $t1,$b,$t1,ror#2 add $e,$e,$t0 @ E+=X[i] eor $t1,$t1,$d,ror#2 @ F_00_19(B,C,D) str $t0,[$Xi,#-4]! add $e,$e,$t1 @ E+=F_00_19(B,C,D) ___ } sub BODY_16_19 { my ($a,$b,$c,$d,$e)=@_; &Xupdate(@_,"and $t1,$b,$t1,ror#2"); $code.=<<___; eor $t1,$t1,$d,ror#2 @ F_00_19(B,C,D) add $e,$e,$t1 @ E+=F_00_19(B,C,D) ___ } sub BODY_20_39 { my ($a,$b,$c,$d,$e)=@_; &Xupdate(@_,"eor $t1,$b,$t1,ror#2"); $code.=<<___; add $e,$e,$t1 @ E+=F_20_39(B,C,D) ___ } sub BODY_40_59 { my ($a,$b,$c,$d,$e)=@_; &Xupdate(@_,"and $t1,$b,$t1,ror#2","and $t2,$c,$d"); $code.=<<___; add $e,$e,$t1 @ E+=F_40_59(B,C,D) add $e,$e,$t2,ror#2 ___ } $code=<<___; #include <openssl/arm_arch.h> .text .code 32 .global sha1_block_data_order .type sha1_block_data_order,%function .align 5 sha1_block_data_order: #if __ARM_MAX_ARCH__>=7 sub r3,pc,#8 @ sha1_block_data_order ldr r12,.LOPENSSL_armcap ldr r12,[r3,r12] @ OPENSSL_armcap_P #ifdef __APPLE__ ldr r12,[r12] #endif tst r12,#ARMV8_SHA1 bne .LARMv8 tst r12,#ARMV7_NEON bne .LNEON #endif stmdb sp!,{r4-r12,lr} add $len,$inp,$len,lsl#6 @ $len to point at the end of $inp ldmia $ctx,{$a,$b,$c,$d,$e} .Lloop: ldr $K,.LK_00_19 mov $Xi,sp sub sp,sp,#15*4 mov $c,$c,ror#30 mov $d,$d,ror#30 mov $e,$e,ror#30 @ [6] .L_00_15: ___ for($i=0;$i<5;$i++) { &BODY_00_15(@V); unshift(@V,pop(@V)); } $code.=<<___; teq $Xi,sp bne .L_00_15 @ [((11+4)*5+2)*3] sub sp,sp,#25*4 ___ &BODY_00_15(@V); unshift(@V,pop(@V)); &BODY_16_19(@V); unshift(@V,pop(@V)); &BODY_16_19(@V); unshift(@V,pop(@V)); &BODY_16_19(@V); unshift(@V,pop(@V)); &BODY_16_19(@V); unshift(@V,pop(@V)); $code.=<<___; ldr $K,.LK_20_39 @ [+15+16*4] cmn sp,#0 @ [+3], clear carry to denote 20_39 .L_20_39_or_60_79: ___ for($i=0;$i<5;$i++) { &BODY_20_39(@V); unshift(@V,pop(@V)); } $code.=<<___; teq $Xi,sp @ preserve carry bne .L_20_39_or_60_79 @ [+((12+3)*5+2)*4] bcs .L_done @ [+((12+3)*5+2)*4], spare 300 bytes ldr $K,.LK_40_59 sub sp,sp,#20*4 @ [+2] .L_40_59: ___ for($i=0;$i<5;$i++) { &BODY_40_59(@V); unshift(@V,pop(@V)); } $code.=<<___; teq $Xi,sp bne .L_40_59 @ [+((12+5)*5+2)*4] ldr $K,.LK_60_79 sub sp,sp,#20*4 cmp sp,#0 @ set carry to denote 60_79 b .L_20_39_or_60_79 @ [+4], spare 300 bytes .L_done: add sp,sp,#80*4 @ "deallocate" stack frame ldmia $ctx,{$K,$t0,$t1,$t2,$t3} add $a,$K,$a add $b,$t0,$b add $c,$t1,$c,ror#2 add $d,$t2,$d,ror#2 add $e,$t3,$e,ror#2 stmia $ctx,{$a,$b,$c,$d,$e} teq $inp,$len bne .Lloop @ [+18], total 1307 #if __ARM_ARCH__>=5 ldmia sp!,{r4-r12,pc} #else ldmia sp!,{r4-r12,lr} tst lr,#1 moveq pc,lr @ be binary compatible with V4, yet bx lr @ interoperable with Thumb ISA:-) #endif .size sha1_block_data_order,.-sha1_block_data_order .align 5 .LK_00_19: .word 0x5a827999 .LK_20_39: .word 0x6ed9eba1 .LK_40_59: .word 0x8f1bbcdc .LK_60_79: .word 0xca62c1d6 #if __ARM_MAX_ARCH__>=7 .LOPENSSL_armcap: .word OPENSSL_armcap_P-sha1_block_data_order #endif .asciz "SHA1 block transform for ARMv4/NEON/ARMv8, CRYPTOGAMS by <appro\@openssl.org>" .align 5 ___ ##################################################################### # NEON stuff # {{{ my @V=($a,$b,$c,$d,$e); my ($K_XX_XX,$Ki,$t0,$t1,$Xfer,$saved_sp)=map("r$_",(8..12,14)); my $Xi=4; my @X=map("q$_",(8..11,0..3)); my @Tx=("q12","q13"); my ($K,$zero)=("q14","q15"); my $j=0; sub AUTOLOAD() # thunk [simplified] x86-style perlasm { my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; $opcode =~ s/_/\./; my $arg = pop; $arg = "#$arg" if ($arg*1 eq $arg); $code .= "\t$opcode\t".join(',',@_,$arg)."\n"; } sub body_00_19 () { ( '($a,$b,$c,$d,$e)=@V;'. # '$code.="@ $j\n";'. '&bic ($t0,$d,$b)', '&add ($e,$e,$Ki)', # e+=X[i]+K '&and ($t1,$c,$b)', '&ldr ($Ki,sprintf "[sp,#%d]",4*(($j+1)&15))', '&add ($e,$e,$a,"ror#27")', # e+=ROR(A,27) '&eor ($t1,$t1,$t0)', # F_00_19 '&mov ($b,$b,"ror#2")', # b=ROR(b,2) '&add ($e,$e,$t1);'. # e+=F_00_19 '$j++; unshift(@V,pop(@V));' ) } sub body_20_39 () { ( '($a,$b,$c,$d,$e)=@V;'. # '$code.="@ $j\n";'. '&eor ($t0,$b,$d)', '&add ($e,$e,$Ki)', # e+=X[i]+K '&ldr ($Ki,sprintf "[sp,#%d]",4*(($j+1)&15)) if ($j<79)', '&eor ($t1,$t0,$c)', # F_20_39 '&add ($e,$e,$a,"ror#27")', # e+=ROR(A,27) '&mov ($b,$b,"ror#2")', # b=ROR(b,2) '&add ($e,$e,$t1);'. # e+=F_20_39 '$j++; unshift(@V,pop(@V));' ) } sub body_40_59 () { ( '($a,$b,$c,$d,$e)=@V;'. # '$code.="@ $j\n";'. '&add ($e,$e,$Ki)', # e+=X[i]+K '&and ($t0,$c,$d)', '&ldr ($Ki,sprintf "[sp,#%d]",4*(($j+1)&15))', '&add ($e,$e,$a,"ror#27")', # e+=ROR(A,27) '&eor ($t1,$c,$d)', '&add ($e,$e,$t0)', '&and ($t1,$t1,$b)', '&mov ($b,$b,"ror#2")', # b=ROR(b,2) '&add ($e,$e,$t1);'. # e+=F_40_59 '$j++; unshift(@V,pop(@V));' ) } sub Xupdate_16_31 () { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); my ($a,$b,$c,$d,$e); &vext_8 (@X[0],@X[-4&7],@X[-3&7],8); # compose "X[-14]" in "X[0]" eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vadd_i32 (@Tx[1],@X[-1&7],$K); eval(shift(@insns)); &vld1_32 ("{$K\[]}","[$K_XX_XX,:32]!") if ($Xi%5==0); eval(shift(@insns)); &vext_8 (@Tx[0],@X[-1&7],$zero,4); # "X[-3]", 3 words eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &veor (@X[0],@X[0],@X[-4&7]); # "X[0]"^="X[-16]" eval(shift(@insns)); eval(shift(@insns)); &veor (@Tx[0],@Tx[0],@X[-2&7]); # "X[-3]"^"X[-8]" eval(shift(@insns)); eval(shift(@insns)); &veor (@Tx[0],@Tx[0],@X[0]); # "X[0]"^="X[-3]"^"X[-8] eval(shift(@insns)); eval(shift(@insns)); &vst1_32 ("{@Tx[1]}","[$Xfer,:128]!"); # X[]+K xfer &sub ($Xfer,$Xfer,64) if ($Xi%4==0); eval(shift(@insns)); eval(shift(@insns)); &vext_8 (@Tx[1],$zero,@Tx[0],4); # "X[0]"<<96, extract one dword eval(shift(@insns)); eval(shift(@insns)); &vadd_i32 (@X[0],@Tx[0],@Tx[0]); eval(shift(@insns)); eval(shift(@insns)); &vsri_32 (@X[0],@Tx[0],31); # "X[0]"<<<=1 eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vshr_u32 (@Tx[0],@Tx[1],30); eval(shift(@insns)); eval(shift(@insns)); &vshl_u32 (@Tx[1],@Tx[1],2); eval(shift(@insns)); eval(shift(@insns)); &veor (@X[0],@X[0],@Tx[0]); eval(shift(@insns)); eval(shift(@insns)); &veor (@X[0],@X[0],@Tx[1]); # "X[0]"^=("X[0]">>96)<<<2 foreach (@insns) { eval; } # remaining instructions [if any] $Xi++; push(@X,shift(@X)); # "rotate" X[] } sub Xupdate_32_79 () { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); my ($a,$b,$c,$d,$e); &vext_8 (@Tx[0],@X[-2&7],@X[-1&7],8); # compose "X[-6]" eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &veor (@X[0],@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]" eval(shift(@insns)); eval(shift(@insns)); &veor (@X[0],@X[0],@X[-7&7]); # "X[0]"^="X[-28]" eval(shift(@insns)); eval(shift(@insns)); &vadd_i32 (@Tx[1],@X[-1&7],$K); eval(shift(@insns)); &vld1_32 ("{$K\[]}","[$K_XX_XX,:32]!") if ($Xi%5==0); eval(shift(@insns)); &veor (@Tx[0],@Tx[0],@X[0]); # "X[-6]"^="X[0]" eval(shift(@insns)); eval(shift(@insns)); &vshr_u32 (@X[0],@Tx[0],30); eval(shift(@insns)); eval(shift(@insns)); &vst1_32 ("{@Tx[1]}","[$Xfer,:128]!"); # X[]+K xfer &sub ($Xfer,$Xfer,64) if ($Xi%4==0); eval(shift(@insns)); eval(shift(@insns)); &vsli_32 (@X[0],@Tx[0],2); # "X[0]"="X[-6]"<<<2 foreach (@insns) { eval; } # remaining instructions [if any] $Xi++; push(@X,shift(@X)); # "rotate" X[] } sub Xuplast_80 () { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); my ($a,$b,$c,$d,$e); &vadd_i32 (@Tx[1],@X[-1&7],$K); eval(shift(@insns)); eval(shift(@insns)); &vst1_32 ("{@Tx[1]}","[$Xfer,:128]!"); &sub ($Xfer,$Xfer,64); &teq ($inp,$len); &sub ($K_XX_XX,$K_XX_XX,16); # rewind $K_XX_XX &subeq ($inp,$inp,64); # reload last block to avoid SEGV &vld1_8 ("{@X[-4&7]-@X[-3&7]}","[$inp]!"); eval(shift(@insns)); eval(shift(@insns)); &vld1_8 ("{@X[-2&7]-@X[-1&7]}","[$inp]!"); eval(shift(@insns)); eval(shift(@insns)); &vld1_32 ("{$K\[]}","[$K_XX_XX,:32]!"); # load K_00_19 eval(shift(@insns)); eval(shift(@insns)); &vrev32_8 (@X[-4&7],@X[-4&7]); foreach (@insns) { eval; } # remaining instructions $Xi=0; } sub Xloop() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); my ($a,$b,$c,$d,$e); &vrev32_8 (@X[($Xi-3)&7],@X[($Xi-3)&7]); eval(shift(@insns)); eval(shift(@insns)); &vadd_i32 (@X[$Xi&7],@X[($Xi-4)&7],$K); eval(shift(@insns)); eval(shift(@insns)); &vst1_32 ("{@X[$Xi&7]}","[$Xfer,:128]!");# X[]+K xfer to IALU foreach (@insns) { eval; } $Xi++; } $code.=<<___; #if __ARM_MAX_ARCH__>=7 .arch armv7-a .fpu neon .type sha1_block_data_order_neon,%function .align 4 sha1_block_data_order_neon: .LNEON: stmdb sp!,{r4-r12,lr} add $len,$inp,$len,lsl#6 @ $len to point at the end of $inp @ dmb @ errata #451034 on early Cortex A8 @ vstmdb sp!,{d8-d15} @ ABI specification says so mov $saved_sp,sp sub sp,sp,#64 @ alloca adr $K_XX_XX,.LK_00_19 bic sp,sp,#15 @ align for 128-bit stores ldmia $ctx,{$a,$b,$c,$d,$e} @ load context mov $Xfer,sp vld1.8 {@X[-4&7]-@X[-3&7]},[$inp]! @ handles unaligned veor $zero,$zero,$zero vld1.8 {@X[-2&7]-@X[-1&7]},[$inp]! vld1.32 {${K}\[]},[$K_XX_XX,:32]! @ load K_00_19 vrev32.8 @X[-4&7],@X[-4&7] @ yes, even on vrev32.8 @X[-3&7],@X[-3&7] @ big-endian... vrev32.8 @X[-2&7],@X[-2&7] vadd.i32 @X[0],@X[-4&7],$K vrev32.8 @X[-1&7],@X[-1&7] vadd.i32 @X[1],@X[-3&7],$K vst1.32 {@X[0]},[$Xfer,:128]! vadd.i32 @X[2],@X[-2&7],$K vst1.32 {@X[1]},[$Xfer,:128]! vst1.32 {@X[2]},[$Xfer,:128]! ldr $Ki,[sp] @ big RAW stall .Loop_neon: ___ &Xupdate_16_31(\&body_00_19); &Xupdate_16_31(\&body_00_19); &Xupdate_16_31(\&body_00_19); &Xupdate_16_31(\&body_00_19); &Xupdate_32_79(\&body_00_19); &Xupdate_32_79(\&body_20_39); &Xupdate_32_79(\&body_20_39); &Xupdate_32_79(\&body_20_39); &Xupdate_32_79(\&body_20_39); &Xupdate_32_79(\&body_20_39); &Xupdate_32_79(\&body_40_59); &Xupdate_32_79(\&body_40_59); &Xupdate_32_79(\&body_40_59); &Xupdate_32_79(\&body_40_59); &Xupdate_32_79(\&body_40_59); &Xupdate_32_79(\&body_20_39); &Xuplast_80(\&body_20_39); &Xloop(\&body_20_39); &Xloop(\&body_20_39); &Xloop(\&body_20_39); $code.=<<___; ldmia $ctx,{$Ki,$t0,$t1,$Xfer} @ accumulate context add $a,$a,$Ki ldr $Ki,[$ctx,#16] add $b,$b,$t0 add $c,$c,$t1 add $d,$d,$Xfer moveq sp,$saved_sp add $e,$e,$Ki ldrne $Ki,[sp] stmia $ctx,{$a,$b,$c,$d,$e} addne $Xfer,sp,#3*16 bne .Loop_neon @ vldmia sp!,{d8-d15} ldmia sp!,{r4-r12,pc} .size sha1_block_data_order_neon,.-sha1_block_data_order_neon #endif ___ }}} ##################################################################### # ARMv8 stuff # {{{ my ($ABCD,$E,$E0,$E1)=map("q$_",(0..3)); my @MSG=map("q$_",(4..7)); my @Kxx=map("q$_",(8..11)); my ($W0,$W1,$ABCD_SAVE)=map("q$_",(12..14)); $code.=<<___; #if __ARM_MAX_ARCH__>=7 .type sha1_block_data_order_armv8,%function .align 5 sha1_block_data_order_armv8: .LARMv8: vstmdb sp!,{d8-d15} @ ABI specification says so veor $E,$E,$E adr r3,.LK_00_19 vld1.32 {$ABCD},[$ctx]! vld1.32 {$E\[0]},[$ctx] sub $ctx,$ctx,#16 vld1.32 {@Kxx[0]\[]},[r3,:32]! vld1.32 {@Kxx[1]\[]},[r3,:32]! vld1.32 {@Kxx[2]\[]},[r3,:32]! vld1.32 {@Kxx[3]\[]},[r3,:32] .Loop_v8: vld1.8 {@MSG[0]-@MSG[1]},[$inp]! vld1.8 {@MSG[2]-@MSG[3]},[$inp]! vrev32.8 @MSG[0],@MSG[0] vrev32.8 @MSG[1],@MSG[1] vadd.i32 $W0,@Kxx[0],@MSG[0] vrev32.8 @MSG[2],@MSG[2] vmov $ABCD_SAVE,$ABCD @ offload subs $len,$len,#1 vadd.i32 $W1,@Kxx[0],@MSG[1] vrev32.8 @MSG[3],@MSG[3] sha1h $E1,$ABCD @ 0 sha1c $ABCD,$E,$W0 vadd.i32 $W0,@Kxx[$j],@MSG[2] sha1su0 @MSG[0],@MSG[1],@MSG[2] ___ for ($j=0,$i=1;$i<20-3;$i++) { my $f=("c","p","m","p")[$i/5]; $code.=<<___; sha1h $E0,$ABCD @ $i sha1$f $ABCD,$E1,$W1 vadd.i32 $W1,@Kxx[$j],@MSG[3] sha1su1 @MSG[0],@MSG[3] ___ $code.=<<___ if ($i<20-4); sha1su0 @MSG[1],@MSG[2],@MSG[3] ___ ($E0,$E1)=($E1,$E0); ($W0,$W1)=($W1,$W0); push(@MSG,shift(@MSG)); $j++ if ((($i+3)%5)==0); } $code.=<<___; sha1h $E0,$ABCD @ $i sha1p $ABCD,$E1,$W1 vadd.i32 $W1,@Kxx[$j],@MSG[3] sha1h $E1,$ABCD @ 18 sha1p $ABCD,$E0,$W0 sha1h $E0,$ABCD @ 19 sha1p $ABCD,$E1,$W1 vadd.i32 $E,$E,$E0 vadd.i32 $ABCD,$ABCD,$ABCD_SAVE bne .Loop_v8 vst1.32 {$ABCD},[$ctx]! vst1.32 {$E\[0]},[$ctx] vldmia sp!,{d8-d15} ret @ bx lr .size sha1_block_data_order_armv8,.-sha1_block_data_order_armv8 #endif ___ }}} $code.=<<___; #if __ARM_MAX_ARCH__>=7 .comm OPENSSL_armcap_P,4,4 .hidden OPENSSL_armcap_P #endif ___ { my %opcode = ( "sha1c" => 0xf2000c40, "sha1p" => 0xf2100c40, "sha1m" => 0xf2200c40, "sha1su0" => 0xf2300c40, "sha1h" => 0xf3b902c0, "sha1su1" => 0xf3ba0380 ); sub unsha1 { my ($mnemonic,$arg)=@_; if ($arg =~ m/q([0-9]+)(?:,\s*q([0-9]+))?,\s*q([0-9]+)/o) { my $word = $opcode{$mnemonic}|(($1&7)<<13)|(($1&8)<<19) |(($2&7)<<17)|(($2&8)<<4) |(($3&7)<<1) |(($3&8)<<2); # since ARMv7 instructions are always encoded little-endian. # correct solution is to use .inst directive, but older # assemblers don't implement it:-( sprintf ".byte\t0x%02x,0x%02x,0x%02x,0x%02x\t@ %s %s", $word&0xff,($word>>8)&0xff, ($word>>16)&0xff,($word>>24)&0xff, $mnemonic,$arg; } } } foreach (split($/,$code)) { s/{q([0-9]+)\[\]}/sprintf "{d%d[],d%d[]}",2*$1,2*$1+1/eo or s/{q([0-9]+)\[0\]}/sprintf "{d%d[0]}",2*$1/eo; s/\b(sha1\w+)\s+(q.*)/unsha1($1,$2)/geo; s/\bret\b/bx lr/o or s/\bbx\s+lr\b/.word\t0xe12fff1e/o; # make it possible to compile with -march=armv4 print $_,$/; } close STDOUT; # enforce flush