/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #if !defined(__STDC_FORMAT_MACROS) #define __STDC_FORMAT_MACROS #endif #include <openssl/obj.h> #include <inttypes.h> #include <limits.h> #include <string.h> #include <openssl/asn1.h> #include <openssl/buf.h> #include <openssl/bytestring.h> #include <openssl/err.h> #include <openssl/lhash.h> #include <openssl/mem.h> #include <openssl/thread.h> #include "obj_dat.h" #include "../internal.h" static struct CRYPTO_STATIC_MUTEX global_added_lock = CRYPTO_STATIC_MUTEX_INIT; /* These globals are protected by |global_added_lock|. */ static LHASH_OF(ASN1_OBJECT) *global_added_by_data = NULL; static LHASH_OF(ASN1_OBJECT) *global_added_by_nid = NULL; static LHASH_OF(ASN1_OBJECT) *global_added_by_short_name = NULL; static LHASH_OF(ASN1_OBJECT) *global_added_by_long_name = NULL; static struct CRYPTO_STATIC_MUTEX global_next_nid_lock = CRYPTO_STATIC_MUTEX_INIT; static unsigned global_next_nid = NUM_NID; static int obj_next_nid(void) { int ret; CRYPTO_STATIC_MUTEX_lock_write(&global_next_nid_lock); ret = global_next_nid++; CRYPTO_STATIC_MUTEX_unlock_write(&global_next_nid_lock); return ret; } ASN1_OBJECT *OBJ_dup(const ASN1_OBJECT *o) { ASN1_OBJECT *r; unsigned char *data = NULL; char *sn = NULL, *ln = NULL; if (o == NULL) { return NULL; } if (!(o->flags & ASN1_OBJECT_FLAG_DYNAMIC)) { /* TODO(fork): this is a little dangerous. */ return (ASN1_OBJECT *)o; } r = ASN1_OBJECT_new(); if (r == NULL) { OPENSSL_PUT_ERROR(OBJ, ERR_R_ASN1_LIB); return NULL; } r->ln = r->sn = NULL; data = OPENSSL_malloc(o->length); if (data == NULL) { goto err; } if (o->data != NULL) { OPENSSL_memcpy(data, o->data, o->length); } /* once data is attached to an object, it remains const */ r->data = data; r->length = o->length; r->nid = o->nid; if (o->ln != NULL) { ln = OPENSSL_strdup(o->ln); if (ln == NULL) { goto err; } } if (o->sn != NULL) { sn = OPENSSL_strdup(o->sn); if (sn == NULL) { goto err; } } r->sn = sn; r->ln = ln; r->flags = o->flags | (ASN1_OBJECT_FLAG_DYNAMIC | ASN1_OBJECT_FLAG_DYNAMIC_STRINGS | ASN1_OBJECT_FLAG_DYNAMIC_DATA); return r; err: OPENSSL_PUT_ERROR(OBJ, ERR_R_MALLOC_FAILURE); OPENSSL_free(ln); OPENSSL_free(sn); OPENSSL_free(data); OPENSSL_free(r); return NULL; } int OBJ_cmp(const ASN1_OBJECT *a, const ASN1_OBJECT *b) { int ret; ret = a->length - b->length; if (ret) { return ret; } return OPENSSL_memcmp(a->data, b->data, a->length); } /* obj_cmp is called to search the kNIDsInOIDOrder array. The |key| argument is * an |ASN1_OBJECT|* that we're looking for and |element| is a pointer to an * unsigned int in the array. */ static int obj_cmp(const void *key, const void *element) { unsigned nid = *((const unsigned*) element); const ASN1_OBJECT *a = key; const ASN1_OBJECT *b = &kObjects[nid]; if (a->length < b->length) { return -1; } else if (a->length > b->length) { return 1; } return OPENSSL_memcmp(a->data, b->data, a->length); } int OBJ_obj2nid(const ASN1_OBJECT *obj) { const unsigned int *nid_ptr; if (obj == NULL) { return NID_undef; } if (obj->nid != 0) { return obj->nid; } CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock); if (global_added_by_data != NULL) { ASN1_OBJECT *match; match = lh_ASN1_OBJECT_retrieve(global_added_by_data, obj); if (match != NULL) { CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock); return match->nid; } } CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock); nid_ptr = bsearch(obj, kNIDsInOIDOrder, OPENSSL_ARRAY_SIZE(kNIDsInOIDOrder), sizeof(kNIDsInOIDOrder[0]), obj_cmp); if (nid_ptr == NULL) { return NID_undef; } return kObjects[*nid_ptr].nid; } int OBJ_cbs2nid(const CBS *cbs) { if (CBS_len(cbs) > INT_MAX) { return NID_undef; } ASN1_OBJECT obj; OPENSSL_memset(&obj, 0, sizeof(obj)); obj.data = CBS_data(cbs); obj.length = (int)CBS_len(cbs); return OBJ_obj2nid(&obj); } /* short_name_cmp is called to search the kNIDsInShortNameOrder array. The * |key| argument is name that we're looking for and |element| is a pointer to * an unsigned int in the array. */ static int short_name_cmp(const void *key, const void *element) { const char *name = (const char *) key; unsigned nid = *((unsigned*) element); return strcmp(name, kObjects[nid].sn); } int OBJ_sn2nid(const char *short_name) { const unsigned int *nid_ptr; CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock); if (global_added_by_short_name != NULL) { ASN1_OBJECT *match, template; template.sn = short_name; match = lh_ASN1_OBJECT_retrieve(global_added_by_short_name, &template); if (match != NULL) { CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock); return match->nid; } } CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock); nid_ptr = bsearch(short_name, kNIDsInShortNameOrder, OPENSSL_ARRAY_SIZE(kNIDsInShortNameOrder), sizeof(kNIDsInShortNameOrder[0]), short_name_cmp); if (nid_ptr == NULL) { return NID_undef; } return kObjects[*nid_ptr].nid; } /* long_name_cmp is called to search the kNIDsInLongNameOrder array. The * |key| argument is name that we're looking for and |element| is a pointer to * an unsigned int in the array. */ static int long_name_cmp(const void *key, const void *element) { const char *name = (const char *) key; unsigned nid = *((unsigned*) element); return strcmp(name, kObjects[nid].ln); } int OBJ_ln2nid(const char *long_name) { const unsigned int *nid_ptr; CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock); if (global_added_by_long_name != NULL) { ASN1_OBJECT *match, template; template.ln = long_name; match = lh_ASN1_OBJECT_retrieve(global_added_by_long_name, &template); if (match != NULL) { CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock); return match->nid; } } CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock); nid_ptr = bsearch(long_name, kNIDsInLongNameOrder, OPENSSL_ARRAY_SIZE(kNIDsInLongNameOrder), sizeof(kNIDsInLongNameOrder[0]), long_name_cmp); if (nid_ptr == NULL) { return NID_undef; } return kObjects[*nid_ptr].nid; } int OBJ_txt2nid(const char *s) { ASN1_OBJECT *obj; int nid; obj = OBJ_txt2obj(s, 0 /* search names */); nid = OBJ_obj2nid(obj); ASN1_OBJECT_free(obj); return nid; } OPENSSL_EXPORT int OBJ_nid2cbb(CBB *out, int nid) { const ASN1_OBJECT *obj = OBJ_nid2obj(nid); CBB oid; if (obj == NULL || !CBB_add_asn1(out, &oid, CBS_ASN1_OBJECT) || !CBB_add_bytes(&oid, obj->data, obj->length) || !CBB_flush(out)) { return 0; } return 1; } const ASN1_OBJECT *OBJ_nid2obj(int nid) { if (nid >= 0 && nid < NUM_NID) { if (nid != NID_undef && kObjects[nid].nid == NID_undef) { goto err; } return &kObjects[nid]; } CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock); if (global_added_by_nid != NULL) { ASN1_OBJECT *match, template; template.nid = nid; match = lh_ASN1_OBJECT_retrieve(global_added_by_nid, &template); if (match != NULL) { CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock); return match; } } CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock); err: OPENSSL_PUT_ERROR(OBJ, OBJ_R_UNKNOWN_NID); return NULL; } const char *OBJ_nid2sn(int nid) { const ASN1_OBJECT *obj = OBJ_nid2obj(nid); if (obj == NULL) { return NULL; } return obj->sn; } const char *OBJ_nid2ln(int nid) { const ASN1_OBJECT *obj = OBJ_nid2obj(nid); if (obj == NULL) { return NULL; } return obj->ln; } ASN1_OBJECT *OBJ_txt2obj(const char *s, int dont_search_names) { int nid = NID_undef; ASN1_OBJECT *op = NULL; unsigned char *buf; unsigned char *p; const unsigned char *bufp; int contents_len, total_len; if (!dont_search_names) { nid = OBJ_sn2nid(s); if (nid == NID_undef) { nid = OBJ_ln2nid(s); } if (nid != NID_undef) { return (ASN1_OBJECT*) OBJ_nid2obj(nid); } } /* Work out size of content octets */ contents_len = a2d_ASN1_OBJECT(NULL, 0, s, -1); if (contents_len <= 0) { return NULL; } /* Work out total size */ total_len = ASN1_object_size(0, contents_len, V_ASN1_OBJECT); buf = OPENSSL_malloc(total_len); if (buf == NULL) { OPENSSL_PUT_ERROR(OBJ, ERR_R_MALLOC_FAILURE); return NULL; } p = buf; /* Write out tag+length */ ASN1_put_object(&p, 0, contents_len, V_ASN1_OBJECT, V_ASN1_UNIVERSAL); /* Write out contents */ a2d_ASN1_OBJECT(p, contents_len, s, -1); bufp = buf; op = d2i_ASN1_OBJECT(NULL, &bufp, total_len); OPENSSL_free(buf); return op; } static int strlcpy_int(char *dst, const char *src, int dst_size) { size_t ret = BUF_strlcpy(dst, src, dst_size < 0 ? 0 : (size_t)dst_size); if (ret > INT_MAX) { OPENSSL_PUT_ERROR(OBJ, ERR_R_OVERFLOW); return -1; } return (int)ret; } static int parse_oid_component(CBS *cbs, uint64_t *out) { uint64_t v = 0; uint8_t b; do { if (!CBS_get_u8(cbs, &b)) { return 0; } if ((v >> (64 - 7)) != 0) { /* The component is too large. */ return 0; } if (v == 0 && b == 0x80) { /* The component must be minimally encoded. */ return 0; } v = (v << 7) | (b & 0x7f); /* Components end at an octet with the high bit cleared. */ } while (b & 0x80); *out = v; return 1; } static int add_decimal(CBB *out, uint64_t v) { char buf[DECIMAL_SIZE(uint64_t) + 1]; BIO_snprintf(buf, sizeof(buf), "%" PRIu64, v); return CBB_add_bytes(out, (const uint8_t *)buf, strlen(buf)); } int OBJ_obj2txt(char *out, int out_len, const ASN1_OBJECT *obj, int always_return_oid) { /* Python depends on the empty OID successfully encoding as the empty * string. */ if (obj == NULL || obj->length == 0) { return strlcpy_int(out, "", out_len); } if (!always_return_oid) { int nid = OBJ_obj2nid(obj); if (nid != NID_undef) { const char *name = OBJ_nid2ln(nid); if (name == NULL) { name = OBJ_nid2sn(nid); } if (name != NULL) { return strlcpy_int(out, name, out_len); } } } CBB cbb; if (!CBB_init(&cbb, 32)) { goto err; } CBS cbs; CBS_init(&cbs, obj->data, obj->length); /* The first component is 40 * value1 + value2, where value1 is 0, 1, or 2. */ uint64_t v; if (!parse_oid_component(&cbs, &v)) { goto err; } if (v >= 80) { if (!CBB_add_bytes(&cbb, (const uint8_t *)"2.", 2) || !add_decimal(&cbb, v - 80)) { goto err; } } else if (!add_decimal(&cbb, v / 40) || !CBB_add_u8(&cbb, '.') || !add_decimal(&cbb, v % 40)) { goto err; } while (CBS_len(&cbs) != 0) { if (!parse_oid_component(&cbs, &v) || !CBB_add_u8(&cbb, '.') || !add_decimal(&cbb, v)) { goto err; } } uint8_t *txt; size_t txt_len; if (!CBB_add_u8(&cbb, '\0') || !CBB_finish(&cbb, &txt, &txt_len)) { goto err; } int ret = strlcpy_int(out, (const char *)txt, out_len); OPENSSL_free(txt); return ret; err: CBB_cleanup(&cbb); if (out_len > 0) { out[0] = '\0'; } return -1; } static uint32_t hash_nid(const ASN1_OBJECT *obj) { return obj->nid; } static int cmp_nid(const ASN1_OBJECT *a, const ASN1_OBJECT *b) { return a->nid - b->nid; } static uint32_t hash_data(const ASN1_OBJECT *obj) { return OPENSSL_hash32(obj->data, obj->length); } static int cmp_data(const ASN1_OBJECT *a, const ASN1_OBJECT *b) { int i = a->length - b->length; if (i) { return i; } return OPENSSL_memcmp(a->data, b->data, a->length); } static uint32_t hash_short_name(const ASN1_OBJECT *obj) { return lh_strhash(obj->sn); } static int cmp_short_name(const ASN1_OBJECT *a, const ASN1_OBJECT *b) { return strcmp(a->sn, b->sn); } static uint32_t hash_long_name(const ASN1_OBJECT *obj) { return lh_strhash(obj->ln); } static int cmp_long_name(const ASN1_OBJECT *a, const ASN1_OBJECT *b) { return strcmp(a->ln, b->ln); } /* obj_add_object inserts |obj| into the various global hashes for run-time * added objects. It returns one on success or zero otherwise. */ static int obj_add_object(ASN1_OBJECT *obj) { int ok; ASN1_OBJECT *old_object; obj->flags &= ~(ASN1_OBJECT_FLAG_DYNAMIC | ASN1_OBJECT_FLAG_DYNAMIC_STRINGS | ASN1_OBJECT_FLAG_DYNAMIC_DATA); CRYPTO_STATIC_MUTEX_lock_write(&global_added_lock); if (global_added_by_nid == NULL) { global_added_by_nid = lh_ASN1_OBJECT_new(hash_nid, cmp_nid); global_added_by_data = lh_ASN1_OBJECT_new(hash_data, cmp_data); global_added_by_short_name = lh_ASN1_OBJECT_new(hash_short_name, cmp_short_name); global_added_by_long_name = lh_ASN1_OBJECT_new(hash_long_name, cmp_long_name); } /* We don't pay attention to |old_object| (which contains any previous object * that was evicted from the hashes) because we don't have a reference count * on ASN1_OBJECT values. Also, we should never have duplicates nids and so * should always have objects in |global_added_by_nid|. */ ok = lh_ASN1_OBJECT_insert(global_added_by_nid, &old_object, obj); if (obj->length != 0 && obj->data != NULL) { ok &= lh_ASN1_OBJECT_insert(global_added_by_data, &old_object, obj); } if (obj->sn != NULL) { ok &= lh_ASN1_OBJECT_insert(global_added_by_short_name, &old_object, obj); } if (obj->ln != NULL) { ok &= lh_ASN1_OBJECT_insert(global_added_by_long_name, &old_object, obj); } CRYPTO_STATIC_MUTEX_unlock_write(&global_added_lock); return ok; } int OBJ_create(const char *oid, const char *short_name, const char *long_name) { int ret = NID_undef; ASN1_OBJECT *op = NULL; unsigned char *buf = NULL; int len; len = a2d_ASN1_OBJECT(NULL, 0, oid, -1); if (len <= 0) { goto err; } buf = OPENSSL_malloc(len); if (buf == NULL) { OPENSSL_PUT_ERROR(OBJ, ERR_R_MALLOC_FAILURE); goto err; } len = a2d_ASN1_OBJECT(buf, len, oid, -1); if (len == 0) { goto err; } op = (ASN1_OBJECT *)ASN1_OBJECT_create(obj_next_nid(), buf, len, short_name, long_name); if (op == NULL) { goto err; } if (obj_add_object(op)) { ret = op->nid; } op = NULL; err: ASN1_OBJECT_free(op); OPENSSL_free(buf); return ret; }