/// @file /// Low level IPF routines used by the debug support driver /// /// Copyright (c) 2006 - 2008, Intel Corporation. All rights reserved.<BR> /// This program and the accompanying materials /// are licensed and made available under the terms and conditions of the BSD License /// which accompanies this distribution. The full text of the license may be found at /// http://opensource.org/licenses/bsd-license.php /// /// THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, /// WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. /// /// #include "Common.i" #include "Ds64Macros.i" ASM_GLOBAL PatchSaveBuffer ASM_GLOBAL IpfContextBuf ASM_GLOBAL CommonHandler ASM_GLOBAL ExternalInterruptCount ///////////////////////////////////////////// // // Name: // InstructionCacheFlush // // Description: // Flushes instruction cache for specified number of bytes // ASM_GLOBAL InstructionCacheFlush .proc InstructionCacheFlush .align 32 InstructionCacheFlush:: { .mii alloc r3=2, 0, 0, 0 cmp4.leu p0,p6=32, r33;; (p6) mov r33=32;; } { .mii nop.m 0 zxt4 r29=r33;; dep.z r30=r29, 0, 5;; } { .mii cmp4.eq p0,p7=r0, r30 shr.u r28=r29, 5;; (p7) adds r28=1, r28;; } { .mii nop.m 0 shl r27=r28, 5;; zxt4 r26=r27;; } { .mfb add r31=r26, r32 nop.f 0 nop.b 0 } LoopBack: // $L143: { .mii fc r32 adds r32=32, r32;; cmp.ltu p14,p15=r32, r31 } { .mfb nop.m 0 nop.f 0 //(p14) br.cond.dptk.few $L143#;; (p14) br.cond.dptk.few LoopBack;; } { .mmi sync.i;; srlz.i nop.i 0;; } { .mfb nop.m 0 nop.f 0 br.ret.sptk.few b0;; } .endp InstructionCacheFlush ///////////////////////////////////////////// // // Name: // ChainHandler // // Description: // Chains an interrupt handler // // The purpose of this function is to enable chaining of the external interrupt. // Since there's no clean SAL abstraction for doing this, we must do it // surreptitiously. // // The reserved IVT entry at offset 0x3400 is coopted for use by this handler. // According to Itanium architecture, it is reserved. Strictly speaking, this is // not safe, as we're cheating and violating the Itanium architecture. However, // as long as we're the only ones cheating, we should be OK. Without hooks in // the SAL to enable IVT management, there aren't many good options. // // The strategy is to replace the first bundle of the external interrupt handler // with our own that will branch into a piece of code we've supplied and located // in the reserved IVT entry. Only the first bundle of the external interrupt // IVT entry is modified. // // The original bundle is moved and relocated to space // allocated within the reserved IVT entry. The next bundle following is // is generated to go a hard coded branch back to the second bundle of the // external interrupt IVT entry just in case the first bundle had no branch. // // Our new code will execute our handler, and then fall through to the // original bundle after restoring all context appropriately. // // The following is a representation of what the IVT memory map looks like with // our chained handler installed: // // // // // // This IVT entry is Failsafe bundle // reserved by the // Itanium architecture Original bundle 0 // and is used for // for locating our // handler and the // original bundle Patch code... // zero of the ext // interrupt handler // // RSVD (3400) Unused // // // // // // // // // // // // // EXT_INT (3000) Bundle 0 Bundle zero - This one is // modified, all other bundles // in the EXT_INT entry are // untouched. // // // Arguments: // // Returns: // // Notes: // // ASM_GLOBAL ChainHandler .proc ChainHandler ChainHandler: NESTED_SETUP( 0,2+3,3,0 ) mov r8=1 // r8 = success mov r2=cr.iva;; // // NOTE: There's a potential hazard here in that we're simply stealing a bunch of // bundles (memory) from the IVT and assuming there's no catastrophic side effect. // // First, save IVT area we're taking over with the patch so we can restore it later // addl out0=PATCH_ENTRY_OFFSET, r2 // out0 = source buffer movl out1=PatchSaveBuffer // out1 = destination buffer mov out2=0x40;; // out2 = number of bundles to copy... save entire IDT entry br.call.sptk.few b0 = CopyBundles // Next, copy the patch code into the IVT movl out0=PatchCode // out0 = source buffer of patch code addl out1=PATCH_OFFSET, r2 // out1 = destination buffer - in IVT mov out2=PATCH_CODE_SIZE;; shr out2=out2, 4;; // out2 = number of bundles to copy br.call.sptk.few b0 = CopyBundles // copy original bundle 0 from the external interrupt handler to the // appropriate place in the reserved IVT interrupt slot addl out0=EXT_INT_ENTRY_OFFSET, r2 // out0 = source buffer addl out1=RELOCATED_EXT_INT, r2 // out1 = destination buffer - in reserved IVT mov out2=1;; // out2 = copy 1 bundle br.call.sptk.few b0 = CopyBundles // Now relocate it there because it very likely had a branch instruction that // that must now be fixed up. addl out0=RELOCATED_EXT_INT, r2 // out0 = new runtime address of bundle - in reserved IVT addl out1=EXT_INT_ENTRY_OFFSET, r2;;// out1 = IP address of previous location mov out2=out0;; // out2 = IP address of new location br.call.sptk.few b0 = RelocateBundle // Now copy into the failsafe branch into the next bundle just in case // the original ext int bundle 0 bundle did not contain a branch instruction movl out0=FailsafeBranch // out0 = source buffer addl out1=FAILSAFE_BRANCH_OFFSET, r2 // out1 = destination buffer - in reserved IVT mov out2=1;; // out2 = copy 1 bundle br.call.sptk.few b0 = CopyBundles // Last, copy in our replacement for the external interrupt IVT entry bundle 0 movl out0=PatchCodeNewBun0 // out0 = source buffer - our replacement bundle 0 addl out1=EXT_INT_ENTRY_OFFSET, r2 // out1 = destination buffer - bundle 0 of External interrupt entry mov out2=1;; // out2 = copy 1 bundle br.call.sptk.few b0 = CopyBundles ChainHandlerDone: NESTED_RETURN .endp ChainHandler ///////////////////////////////////////////// // // Name: // UnchainHandler // // Description: // Unchains an interrupt handler // // Arguments: // // Returns: // // Notes: // // ASM_GLOBAL UnchainHandler .proc UnchainHandler UnchainHandler: NESTED_SETUP( 0,2+3,3,0 ) mov r8=1 // r8 = success mov r2=cr.iva;; // r2 = interrupt vector address // First copy original Ext Int bundle 0 back to it's proper home... addl out0=RELOCATED_EXT_INT, r2 // out0 = source - in reserved IVT addl out1=EXT_INT_ENTRY_OFFSET, r2 // out1 = destination buffer - first bundle of Ext Int entry mov out2=1;; // out2 = copy 1 bundle br.call.sptk.few b0 = CopyBundles // Now, relocate it again... addl out0=EXT_INT_ENTRY_OFFSET, r2 // out1 = New runtime address addl out1=RELOCATED_EXT_INT, r2;; // out0 = IP address of previous location mov out2=out0;; // out2 = IP address of new location br.call.sptk.few b0 = RelocateBundle // Last, restore the patch area movl out0=PatchSaveBuffer // out0 = source buffer addl out1=PATCH_ENTRY_OFFSET, r2 // out1 = destination buffer mov out2=0x40;; // out2 = number of bundles to copy... save entire IDT entry br.call.sptk.few b0 = CopyBundles UnchainHandlerDone: NESTED_RETURN .endp UnchainHandler ///////////////////////////////////////////// // // Name: // CopyBundles // // Description: // Copies instruction bundles - flushes icache as necessary // // Arguments: // in0 - Bundle source // in1 - Bundle destination // in2 - Bundle count // // Returns: // // Notes: // This procedure is a leaf routine // .proc CopyBundles CopyBundles: NESTED_SETUP(3,2+1,0,0) shl in2=in2, 1;; // in2 = count of 8 byte blocks to copy CopyBundlesLoop: cmp.eq p14, p15 = 0, in2;; // Check if done (p14) br.sptk.few CopyBundlesDone;; ld8 loc2=[in0], 0x8;; // loc2 = source bytes st8 [in1]=loc2;; // [in1] = destination bytes fc in1;; // Flush instruction cache sync.i;; // Ensure local and remote data/inst caches in sync srlz.i;; // Ensure sync has been observed add in1=0x8, in1;; // in1 = next destination add in2=-1, in2;; // in2 = decrement 8 bytes blocks to copy br.sptk.few CopyBundlesLoop;; CopyBundlesDone: NESTED_RETURN .endp CopyBundles ///////////////////////////////////////////// // // Name: // RelocateBundle // // Description: // Relocates an instruction bundle by updating any ip-relative branch instructions. // // Arguments: // in0 - Runtime address of bundle // in1 - IP address of previous location of bundle // in2 - IP address of new location of bundle // // Returns: // in0 - 1 if successful or 0 if unsuccessful // // Notes: // This routine examines all slots in the given bundle that are destined for the // branch execution unit. If any of these slots contain an IP-relative branch // namely instructions B1, B2, B3, or B6, the slot is fixed-up with a new relative // address. Errors can occur if a branch cannot be reached. // .proc RelocateBundle RelocateBundle: NESTED_SETUP(3,2+4,3,0) mov loc2=SLOT0 // loc2 = slot index mov loc5=in0;; // loc5 = runtime address of bundle mov in0=1;; // in0 = success RelocateBundleNextSlot: cmp.ge p14, p15 = SLOT2, loc2;; // Check if maximum slot (p15) br.sptk.few RelocateBundleDone mov out0=loc5;; // out0 = runtime address of bundle br.call.sptk.few b0 = GetTemplate mov loc3=out0;; // loc3 = instruction template mov out0=loc5 // out0 = runtime address of bundle mov out1=loc2;; // out1 = instruction slot number br.call.sptk.few b0 = GetSlot mov loc4=out0;; // loc4 = instruction encoding mov out0=loc4 // out0 = instuction encoding mov out1=loc2 // out1 = instruction slot number mov out2=loc3;; // out2 = instruction template br.call.sptk.few b0 = IsSlotBranch cmp.eq p14, p15 = 1, out0;; // Check if branch slot (p15) add loc2=1,loc2 // Increment slot (p15) br.sptk.few RelocateBundleNextSlot mov out0=loc4 // out0 = instuction encoding mov out1=in1 // out1 = IP address of previous location mov out2=in2;; // out2 = IP address of new location br.call.sptk.few b0 = RelocateSlot cmp.eq p14, p15 = 1, out1;; // Check if relocated slot (p15) mov in0=0 // in0 = failure (p15) br.sptk.few RelocateBundleDone mov out2=out0;; // out2 = instruction encoding mov out0=loc5 // out0 = runtime address of bundle mov out1=loc2;; // out1 = instruction slot number br.call.sptk.few b0 = SetSlot add loc2=1,loc2;; // Increment slot br.sptk.few RelocateBundleNextSlot RelocateBundleDone: NESTED_RETURN .endp RelocateBundle ///////////////////////////////////////////// // // Name: // RelocateSlot // // Description: // Relocates an instruction bundle by updating any ip-relative branch instructions. // // Arguments: // in0 - Instruction encoding (41-bits, right justified) // in1 - IP address of previous location of bundle // in2 - IP address of new location of bundle // // Returns: // in0 - Instruction encoding (41-bits, right justified) // in1 - 1 if successful otherwise 0 // // Notes: // This procedure is a leaf routine // .proc RelocateSlot RelocateSlot: NESTED_SETUP(3,2+5,0,0) extr.u loc2=in0, 37, 4;; // loc2 = instruction opcode cmp.eq p14, p15 = 4, loc2;; // IP-relative branch (B1) or // IP-relative counted branch (B2) (p15) cmp.eq p14, p15 = 5, loc2;; // IP-relative call (B3) (p15) cmp.eq p14, p15 = 7, loc2;; // IP-relative predict (B6) (p15) mov in1=1 // Instruction did not need to be reencoded (p15) br.sptk.few RelocateSlotDone tbit.nz p14, p15 = in0, 36;; // put relative offset sign bit in p14 extr.u loc2=in0, 13, 20;; // loc2 = relative offset in instruction (p14) movl loc3=0xfffffffffff00000;; // extend sign (p14) or loc2=loc2, loc3;; shl loc2=loc2,4;; // convert to byte offset instead of bundle offset add loc3=loc2, in1;; // loc3 = physical address of branch target (p14) sub loc2=r0,loc2;; // flip sign in loc2 if offset is negative sub loc4=loc3,in2;; // loc4 = relative offset from new ip to branch target cmp.lt p15, p14 = 0, loc4;; // get new sign bit (p14) sub loc5=r0,loc4 // get absolute value of offset (p15) mov loc5=loc4;; movl loc6=0x0FFFFFF;; // maximum offset in bytes for ip-rel branch cmp.gt p14, p15 = loc5, loc6;; // check to see we're not out of range for an ip-relative branch (p14) br.sptk.few RelocateSlotError cmp.lt p15, p14 = 0, loc4;; // store sign in p14 again (p14) dep in0=-1,in0,36,1 // store sign bit in instruction (p15) dep in0=0,in0,36,1 shr loc4=loc4, 4;; // convert back to bundle offset dep in0=loc4,in0,13,16;; // put first 16 bits of new offset into instruction shr loc4=loc4,16;; dep in0=loc4,in0,13+16,4 // put last 4 bits of new offset into instruction mov in1=1;; // in1 = success br.sptk.few RelocateSlotDone;; RelocateSlotError: mov in1=0;; // in1 = failure RelocateSlotDone: NESTED_RETURN .endp RelocateSlot ///////////////////////////////////////////// // // Name: // IsSlotBranch // // Description: // Determines if the given instruction is a branch instruction. // // Arguments: // in0 - Instruction encoding (41-bits, right justified) // in1 - Instruction slot number // in2 - Bundle template // // Returns: // in0 - 1 if branch or 0 if not branch // // Notes: // This procedure is a leaf routine // // IsSlotBranch recognizes all branch instructions by looking at the provided template. // The instruction encoding is only passed to this routine for future expansion. // .proc IsSlotBranch IsSlotBranch: NESTED_SETUP (3,2+0,0,0) mov in0=1;; // in0 = 1 which destroys the instruction andcm in2=in2,in0;; // in2 = even template to reduce compares mov in0=0;; // in0 = not a branch cmp.eq p14, p15 = 0x16, in2;; // Template 0x16 is BBB (p14) br.sptk.few IsSlotBranchTrue cmp.eq p14, p15 = SLOT0, in1;; // Slot 0 has no other possiblities (p14) br.sptk.few IsSlotBranchDone cmp.eq p14, p15 = 0x12, in2;; // Template 0x12 is MBB (p14) br.sptk.few IsSlotBranchTrue cmp.eq p14, p15 = SLOT1, in1;; // Slot 1 has no other possiblities (p14) br.sptk.few IsSlotBranchDone cmp.eq p14, p15 = 0x10, in2;; // Template 0x10 is MIB (p14) br.sptk.few IsSlotBranchTrue cmp.eq p14, p15 = 0x18, in2;; // Template 0x18 is MMB (p14) br.sptk.few IsSlotBranchTrue cmp.eq p14, p15 = 0x1C, in2;; // Template 0x1C is MFB (p14) br.sptk.few IsSlotBranchTrue br.sptk.few IsSlotBranchDone IsSlotBranchTrue: mov in0=1;; // in0 = branch IsSlotBranchDone: NESTED_RETURN .endp IsSlotBranch ///////////////////////////////////////////// // // Name: // GetTemplate // // Description: // Retrieves the instruction template for an instruction bundle // // Arguments: // in0 - Runtime address of bundle // // Returns: // in0 - Instruction template (5-bits, right-justified) // // Notes: // This procedure is a leaf routine // .proc GetTemplate GetTemplate: NESTED_SETUP (1,2+2,0,0) ld8 loc2=[in0], 0x8 // loc2 = first 8 bytes of branch bundle movl loc3=MASK_0_4;; // loc3 = template mask and loc2=loc2,loc3;; // loc2 = template, right justified mov in0=loc2;; // in0 = template, right justified NESTED_RETURN .endp GetTemplate ///////////////////////////////////////////// // // Name: // GetSlot // // Description: // Gets the instruction encoding for an instruction slot and bundle // // Arguments: // in0 - Runtime address of bundle // in1 - Instruction slot (either 0, 1, or 2) // // Returns: // in0 - Instruction encoding (41-bits, right justified) // // Notes: // This procedure is a leaf routine // // Slot0 - [in0 + 0x8] Bits 45-5 // Slot1 - [in0 + 0x8] Bits 63-46 and [in0] Bits 22-0 // Slot2 - [in0] Bits 63-23 // .proc GetSlot GetSlot: NESTED_SETUP (2,2+3,0,0) ld8 loc2=[in0], 0x8;; // loc2 = first 8 bytes of branch bundle ld8 loc3=[in0];; // loc3 = second 8 bytes of branch bundle cmp.eq p14, p15 = 2, in1;; // check if slot 2 specified (p14) br.cond.sptk.few GetSlot2;; // get slot 2 cmp.eq p14, p15 = 1, in1;; // check if slot 1 specified (p14) br.cond.sptk.few GetSlot1;; // get slot 1 GetSlot0: extr.u in0=loc2, 5, 45 // in0 = extracted slot 0 br.sptk.few GetSlotDone;; GetSlot1: extr.u in0=loc2, 46, 18 // in0 = bits 63-46 of loc2 right-justified extr.u loc4=loc3, 0, 23;; // loc4 = bits 22-0 of loc3 right-justified dep in0=loc4, in0, 18, 15;; shr.u loc4=loc4,15;; dep in0=loc4, in0, 33, 8;; // in0 = extracted slot 1 br.sptk.few GetSlotDone;; GetSlot2: extr.u in0=loc3, 23, 41;; // in0 = extracted slot 2 GetSlotDone: NESTED_RETURN .endp GetSlot ///////////////////////////////////////////// // // Name: // SetSlot // // Description: // Sets the instruction encoding for an instruction slot and bundle // // Arguments: // in0 - Runtime address of bundle // in1 - Instruction slot (either 0, 1, or 2) // in2 - Instruction encoding (41-bits, right justified) // // Returns: // // Notes: // This procedure is a leaf routine // .proc SetSlot SetSlot: NESTED_SETUP (3,2+3,0,0) ld8 loc2=[in0], 0x8;; // loc2 = first 8 bytes of bundle ld8 loc3=[in0];; // loc3 = second 8 bytes of bundle cmp.eq p14, p15 = 2, in1;; // check if slot 2 specified (p14) br.cond.sptk.few SetSlot2;; // set slot 2 cmp.eq p14, p15 = 1, in1;; // check if slot 1 specified (p14) br.cond.sptk.few SetSlot1;; // set slot 1 SetSlot0: dep loc2=0, loc2, 5, 41;; // remove old instruction from slot 0 shl loc4=in2, 5;; // loc4 = new instruction ready to be inserted or loc2=loc2, loc4;; // loc2 = updated first 8 bytes of bundle add loc4=0x8,in0;; // loc4 = address to store first 8 bytes of bundle st8 [loc4]=loc2 // [loc4] = updated bundle br.sptk.few SetSlotDone;; ;; SetSlot1: dep loc2=0, loc2, 46, 18 // remove old instruction from slot 1 dep loc3=0, loc3, 0, 23;; shl loc4=in2, 46;; // loc4 = partial instruction ready to be inserted or loc2=loc2, loc4;; // loc2 = updated first 8 bytes of bundle add loc4=0x8,in0;; // loc4 = address to store first 8 bytes of bundle st8 [loc4]=loc2;; // [loc4] = updated bundle shr.u loc4=in2, 18;; // loc4 = partial instruction ready to be inserted or loc3=loc3, loc4;; // loc3 = updated second 8 bytes of bundle st8 [in0]=loc3;; // [in0] = updated bundle br.sptk.few SetSlotDone;; SetSlot2: dep loc3=0, loc3, 23, 41;; // remove old instruction from slot 2 shl loc4=in2, 23;; // loc4 = instruction ready to be inserted or loc3=loc3, loc4;; // loc3 = updated second 8 bytes of bundle st8 [in0]=loc3;; // [in0] = updated bundle SetSlotDone: NESTED_RETURN .endp SetSlot ///////////////////////////////////////////// // // Name: // GetIva // // Description: // C callable function to obtain the current value of IVA // // Returns: // Current value if IVA ASM_GLOBAL GetIva .proc GetIva GetIva: mov r8=cr2;; br.ret.sptk.many b0 .endp GetIva ///////////////////////////////////////////// // // Name: // ProgramInterruptFlags // // Description: // C callable function to enable/disable interrupts // // Returns: // Previous state of psr.ic // ASM_GLOBAL ProgramInterruptFlags .proc ProgramInterruptFlags ProgramInterruptFlags: alloc loc0=1,2,0,0;; mov loc0=psr mov loc1=0x6000;; and r8=loc0, loc1 // obtain current psr.ic and psr.i state and in0=in0, loc1 // insure no extra bits set in input andcm loc0=loc0,loc1;; // clear original psr.i and psr.ic or loc0=loc0,in0;; // OR in new psr.ic value mov psr.l=loc0;; // write new psr srlz.d br.ret.sptk.many b0 // return .endp ProgramInterruptFlags ///////////////////////////////////////////// // // Name: // SpillContext // // Description: // Saves system context to context record. // // Arguments: // in0 = 512 byte aligned context record address // in1 = original B0 // in2 = original ar.bsp // in3 = original ar.bspstore // in4 = original ar.rnat // in5 = original ar.pfs // // Notes: // loc0 - scratch // loc1 - scratch // loc2 - temporary application unat storage // loc3 - temporary exception handler unat storage .proc SpillContext SpillContext: alloc loc0=6,4,0,0;; // alloc 6 input, 4 locals, 0 outs mov loc2=ar.unat;; // save application context unat (spilled later) mov ar.unat=r0;; // set UNAT=0 st8.spill [in0]=r0,8;; st8.spill [in0]=r1,8;; // save R1 - R31 st8.spill [in0]=r2,8;; st8.spill [in0]=r3,8;; st8.spill [in0]=r4,8;; st8.spill [in0]=r5,8;; st8.spill [in0]=r6,8;; st8.spill [in0]=r7,8;; st8.spill [in0]=r8,8;; st8.spill [in0]=r9,8;; st8.spill [in0]=r10,8;; st8.spill [in0]=r11,8;; st8.spill [in0]=r12,8;; st8.spill [in0]=r13,8;; st8.spill [in0]=r14,8;; st8.spill [in0]=r15,8;; st8.spill [in0]=r16,8;; st8.spill [in0]=r17,8;; st8.spill [in0]=r18,8;; st8.spill [in0]=r19,8;; st8.spill [in0]=r20,8;; st8.spill [in0]=r21,8;; st8.spill [in0]=r22,8;; st8.spill [in0]=r23,8;; st8.spill [in0]=r24,8;; st8.spill [in0]=r25,8;; st8.spill [in0]=r26,8;; st8.spill [in0]=r27,8;; st8.spill [in0]=r28,8;; st8.spill [in0]=r29,8;; st8.spill [in0]=r30,8;; st8.spill [in0]=r31,8;; mov loc3=ar.unat;; // save debugger context unat (spilled later) stf.spill [in0]=f2,16;; // save f2 - f31 stf.spill [in0]=f3,16;; stf.spill [in0]=f4,16;; stf.spill [in0]=f5,16;; stf.spill [in0]=f6,16;; stf.spill [in0]=f7,16;; stf.spill [in0]=f8,16;; stf.spill [in0]=f9,16;; stf.spill [in0]=f10,16;; stf.spill [in0]=f11,16;; stf.spill [in0]=f12,16;; stf.spill [in0]=f13,16;; stf.spill [in0]=f14,16;; stf.spill [in0]=f15,16;; stf.spill [in0]=f16,16;; stf.spill [in0]=f17,16;; stf.spill [in0]=f18,16;; stf.spill [in0]=f19,16;; stf.spill [in0]=f20,16;; stf.spill [in0]=f21,16;; stf.spill [in0]=f22,16;; stf.spill [in0]=f23,16;; stf.spill [in0]=f24,16;; stf.spill [in0]=f25,16;; stf.spill [in0]=f26,16;; stf.spill [in0]=f27,16;; stf.spill [in0]=f28,16;; stf.spill [in0]=f29,16;; stf.spill [in0]=f30,16;; stf.spill [in0]=f31,16;; mov loc0=pr;; // save predicates st8.spill [in0]=loc0,8;; st8.spill [in0]=in1,8;; // save b0 - b7... in1 already equals saved b0 mov loc0=b1;; st8.spill [in0]=loc0,8;; mov loc0=b2;; st8.spill [in0]=loc0,8;; mov loc0=b3;; st8.spill [in0]=loc0,8;; mov loc0=b4;; st8.spill [in0]=loc0,8;; mov loc0=b5;; st8.spill [in0]=loc0,8;; mov loc0=b6;; st8.spill [in0]=loc0,8;; mov loc0=b7;; st8.spill [in0]=loc0,8;; mov loc0=ar.rsc;; // save ar.rsc st8.spill [in0]=loc0,8;; st8.spill [in0]=in2,8;; // save ar.bsp (in2) st8.spill [in0]=in3,8;; // save ar.bspstore (in3) st8.spill [in0]=in4,8;; // save ar.rnat (in4) mov loc0=ar.fcr;; // save ar.fcr (ar21 - IA32 floating-point control register) st8.spill [in0]=loc0,8;; mov loc0=ar.eflag;; // save ar.eflag (ar24) st8.spill [in0]=loc0,8;; mov loc0=ar.csd;; // save ar.csd (ar25 - ia32 CS descriptor) st8.spill [in0]=loc0,8;; mov loc0=ar.ssd;; // save ar.ssd (ar26 - ia32 ss descriptor) st8.spill [in0]=loc0,8;; mov loc0=ar.cflg;; // save ar.cflg (ar27 - ia32 cr0 and cr4) st8.spill [in0]=loc0,8;; mov loc0=ar.fsr;; // save ar.fsr (ar28 - ia32 floating-point status register) st8.spill [in0]=loc0,8;; mov loc0=ar.fir;; // save ar.fir (ar29 - ia32 floating-point instruction register) st8.spill [in0]=loc0,8;; mov loc0=ar.fdr;; // save ar.fdr (ar30 - ia32 floating-point data register) st8.spill [in0]=loc0,8;; mov loc0=ar.ccv;; // save ar.ccv st8.spill [in0]=loc0,8;; st8.spill [in0]=loc2,8;; // save ar.unat (saved to loc2 earlier) mov loc0=ar.fpsr;; // save floating point status register st8.spill [in0]=loc0,8;; st8.spill [in0]=in5,8;; // save ar.pfs mov loc0=ar.lc;; // save ar.lc st8.spill [in0]=loc0,8;; mov loc0=ar.ec;; // save ar.ec st8.spill [in0]=loc0,8;; // save control registers mov loc0=cr.dcr;; // save dcr st8.spill [in0]=loc0,8;; mov loc0=cr.itm;; // save itm st8.spill [in0]=loc0,8;; mov loc0=cr.iva;; // save iva st8.spill [in0]=loc0,8;; mov loc0=cr.pta;; // save pta st8.spill [in0]=loc0,8;; mov loc0=cr.ipsr;; // save ipsr st8.spill [in0]=loc0,8;; mov loc0=cr.isr;; // save isr st8.spill [in0]=loc0,8;; mov loc0=cr.iip;; // save iip st8.spill [in0]=loc0,8;; mov loc0=cr.ifa;; // save ifa st8.spill [in0]=loc0,8;; mov loc0=cr.itir;; // save itir st8.spill [in0]=loc0,8;; mov loc0=cr.iipa;; // save iipa st8.spill [in0]=loc0,8;; mov loc0=cr.ifs;; // save ifs st8.spill [in0]=loc0,8;; mov loc0=cr.iim;; // save iim st8.spill [in0]=loc0,8;; mov loc0=cr.iha;; // save iha st8.spill [in0]=loc0,8;; // save debug registers mov loc0=dbr[r0];; // save dbr0 - dbr7 st8.spill [in0]=loc0,8;; movl loc1=1;; mov loc0=dbr[loc1];; st8.spill [in0]=loc0,8;; movl loc1=2;; mov loc0=dbr[loc1];; st8.spill [in0]=loc0,8;; movl loc1=3;; mov loc0=dbr[loc1];; st8.spill [in0]=loc0,8;; movl loc1=4;; mov loc0=dbr[loc1];; st8.spill [in0]=loc0,8;; movl loc1=5;; mov loc0=dbr[loc1];; st8.spill [in0]=loc0,8;; movl loc1=6;; mov loc0=dbr[loc1];; st8.spill [in0]=loc0,8;; movl loc1=7;; mov loc0=dbr[loc1];; st8.spill [in0]=loc0,8;; mov loc0=ibr[r0];; // save ibr0 - ibr7 st8.spill [in0]=loc0,8;; movl loc1=1;; mov loc0=ibr[loc1];; st8.spill [in0]=loc0,8;; movl loc1=2;; mov loc0=ibr[loc1];; st8.spill [in0]=loc0,8;; movl loc1=3;; mov loc0=ibr[loc1];; st8.spill [in0]=loc0,8;; movl loc1=4;; mov loc0=ibr[loc1];; st8.spill [in0]=loc0,8;; movl loc1=5;; mov loc0=ibr[loc1];; st8.spill [in0]=loc0,8;; movl loc1=6;; mov loc0=ibr[loc1];; st8.spill [in0]=loc0,8;; movl loc1=7;; mov loc0=ibr[loc1];; st8.spill [in0]=loc0,8;; st8.spill [in0]=loc3;; br.ret.sptk.few b0 .endp SpillContext ///////////////////////////////////////////// // // Name: // FillContext // // Description: // Restores register context from context record. // // Arguments: // in0 = address of last element 512 byte aligned context record address // in1 = modified B0 // in2 = modified ar.bsp // in3 = modified ar.bspstore // in4 = modified ar.rnat // in5 = modified ar.pfs // // Notes: // loc0 - scratch // loc1 - scratch // loc2 - temporary application unat storage // loc3 - temporary exception handler unat storage .proc FillContext FillContext: alloc loc0=6,4,0,0;; // alloc 6 inputs, 4 locals, 0 outs ld8.fill loc3=[in0],-8;; // int_nat (nat bits for R1-31) movl loc1=7;; // ibr7 ld8.fill loc0=[in0],-8;; mov ibr[loc1]=loc0;; movl loc1=6;; // ibr6 ld8.fill loc0=[in0],-8;; mov ibr[loc1]=loc0;; movl loc1=5;; // ibr5 ld8.fill loc0=[in0],-8;; mov ibr[loc1]=loc0;; movl loc1=4;; // ibr4 ld8.fill loc0=[in0],-8;; mov ibr[loc1]=loc0;; movl loc1=3;; // ibr3 ld8.fill loc0=[in0],-8;; mov ibr[loc1]=loc0;; movl loc1=2;; // ibr2 ld8.fill loc0=[in0],-8;; mov ibr[loc1]=loc0;; movl loc1=1;; // ibr1 ld8.fill loc0=[in0],-8;; mov ibr[loc1]=loc0;; ld8.fill loc0=[in0],-8;; // ibr0 mov ibr[r0]=loc0;; movl loc1=7;; // dbr7 ld8.fill loc0=[in0],-8;; mov dbr[loc1]=loc0;; movl loc1=6;; // dbr6 ld8.fill loc0=[in0],-8;; mov dbr[loc1]=loc0;; movl loc1=5;; // dbr5 ld8.fill loc0=[in0],-8;; mov dbr[loc1]=loc0;; movl loc1=4;; // dbr4 ld8.fill loc0=[in0],-8;; mov dbr[loc1]=loc0;; movl loc1=3;; // dbr3 ld8.fill loc0=[in0],-8;; mov dbr[loc1]=loc0;; movl loc1=2;; // dbr2 ld8.fill loc0=[in0],-8;; mov dbr[loc1]=loc0;; movl loc1=1;; // dbr1 ld8.fill loc0=[in0],-8;; mov dbr[loc1]=loc0;; ld8.fill loc0=[in0],-8;; // dbr0 mov dbr[r0]=loc0;; ld8.fill loc0=[in0],-8;; // iha mov cr.iha=loc0;; ld8.fill loc0=[in0],-8;; // iim mov cr.iim=loc0;; ld8.fill loc0=[in0],-8;; // ifs mov cr.ifs=loc0;; ld8.fill loc0=[in0],-8;; // iipa mov cr.iipa=loc0;; ld8.fill loc0=[in0],-8;; // itir mov cr.itir=loc0;; ld8.fill loc0=[in0],-8;; // ifa mov cr.ifa=loc0;; ld8.fill loc0=[in0],-8;; // iip mov cr.iip=loc0;; ld8.fill loc0=[in0],-8;; // isr mov cr.isr=loc0;; ld8.fill loc0=[in0],-8;; // ipsr mov cr.ipsr=loc0;; ld8.fill loc0=[in0],-8;; // pta mov cr.pta=loc0;; ld8.fill loc0=[in0],-8;; // iva mov cr.iva=loc0;; ld8.fill loc0=[in0],-8;; // itm mov cr.itm=loc0;; ld8.fill loc0=[in0],-8;; // dcr mov cr.dcr=loc0;; ld8.fill loc0=[in0],-8;; // ec mov ar.ec=loc0;; ld8.fill loc0=[in0],-8;; // lc mov ar.lc=loc0;; ld8.fill in5=[in0],-8;; // ar.pfs ld8.fill loc0=[in0],-8;; // ar.fpsr mov ar.fpsr=loc0;; ld8.fill loc2=[in0],-8;; // ar.unat - restored later... ld8.fill loc0=[in0],-8;; // ar.ccv mov ar.ccv=loc0;; ld8.fill loc0=[in0],-8;; // ar.fdr mov ar.fdr=loc0;; ld8.fill loc0=[in0],-8;; // ar.fir mov ar.fir=loc0;; ld8.fill loc0=[in0],-8;; // ar.fsr mov ar.fsr=loc0;; ld8.fill loc0=[in0],-8;; // ar.cflg mov ar.cflg=loc0;; ld8.fill loc0=[in0],-8;; // ar.ssd mov ar.ssd=loc0;; ld8.fill loc0=[in0],-8;; // ar.csd mov ar.csd=loc0;; ld8.fill loc0=[in0],-8;; // ar.eflag mov ar.eflag=loc0;; ld8.fill loc0=[in0],-8;; // ar.fcr mov ar.fcr=loc0;; ld8.fill in4=[in0],-8;; // ar.rnat ld8.fill in3=[in0],-8;; // bspstore ld8.fill in2=[in0],-8;; // bsp ld8.fill loc0=[in0],-8;; // ar.rsc mov ar.rsc=loc0;; ld8.fill loc0=[in0],-8;; // B7 - B0 mov b7=loc0;; ld8.fill loc0=[in0],-8;; mov b6=loc0;; ld8.fill loc0=[in0],-8;; mov b5=loc0;; ld8.fill loc0=[in0],-8;; mov b4=loc0;; ld8.fill loc0=[in0],-8;; mov b3=loc0;; ld8.fill loc0=[in0],-8;; mov b2=loc0;; ld8.fill loc0=[in0],-8;; mov b1=loc0;; ld8.fill in1=[in0],-8;; // b0 is temporarily stored in in1 ld8.fill loc0=[in0],-16;; // predicates mov pr=loc0;; ldf.fill f31=[in0],-16;; ldf.fill f30=[in0],-16;; ldf.fill f29=[in0],-16;; ldf.fill f28=[in0],-16;; ldf.fill f27=[in0],-16;; ldf.fill f26=[in0],-16;; ldf.fill f25=[in0],-16;; ldf.fill f24=[in0],-16;; ldf.fill f23=[in0],-16;; ldf.fill f22=[in0],-16;; ldf.fill f21=[in0],-16;; ldf.fill f20=[in0],-16;; ldf.fill f19=[in0],-16;; ldf.fill f18=[in0],-16;; ldf.fill f17=[in0],-16;; ldf.fill f16=[in0],-16;; ldf.fill f15=[in0],-16;; ldf.fill f14=[in0],-16;; ldf.fill f13=[in0],-16;; ldf.fill f12=[in0],-16;; ldf.fill f11=[in0],-16;; ldf.fill f10=[in0],-16;; ldf.fill f9=[in0],-16;; ldf.fill f8=[in0],-16;; ldf.fill f7=[in0],-16;; ldf.fill f6=[in0],-16;; ldf.fill f5=[in0],-16;; ldf.fill f4=[in0],-16;; ldf.fill f3=[in0],-16;; ldf.fill f2=[in0],-8;; mov ar.unat=loc3;; // restore unat (int_nat) before fill of general registers ld8.fill r31=[in0],-8;; ld8.fill r30=[in0],-8;; ld8.fill r29=[in0],-8;; ld8.fill r28=[in0],-8;; ld8.fill r27=[in0],-8;; ld8.fill r26=[in0],-8;; ld8.fill r25=[in0],-8;; ld8.fill r24=[in0],-8;; ld8.fill r23=[in0],-8;; ld8.fill r22=[in0],-8;; ld8.fill r21=[in0],-8;; ld8.fill r20=[in0],-8;; ld8.fill r19=[in0],-8;; ld8.fill r18=[in0],-8;; ld8.fill r17=[in0],-8;; ld8.fill r16=[in0],-8;; ld8.fill r15=[in0],-8;; ld8.fill r14=[in0],-8;; ld8.fill r13=[in0],-8;; ld8.fill r12=[in0],-8;; ld8.fill r11=[in0],-8;; ld8.fill r10=[in0],-8;; ld8.fill r9=[in0],-8;; ld8.fill r8=[in0],-8;; ld8.fill r7=[in0],-8;; ld8.fill r6=[in0],-8;; ld8.fill r5=[in0],-8;; ld8.fill r4=[in0],-8;; ld8.fill r3=[in0],-8;; ld8.fill r2=[in0],-8;; ld8.fill r1=[in0],-8;; mov ar.unat=loc2;; // restore application context unat br.ret.sptk.many b0 .endp FillContext ///////////////////////////////////////////// // // Name: // HookHandler // // Description: // Common branch target from hooked IVT entries. Runs in interrupt context. // Responsible for saving and restoring context and calling common C // handler. Banked registers running on bank 0 at entry. // // Arguments: // All arguments are passed in banked registers: // B0_REG = Original B0 // SCRATCH_REG1 = IVT entry index // // Returns: // Returns via rfi // // Notes: // loc0 - scratch // loc1 - scratch // loc2 - vector number / mask // loc3 - 16 byte aligned context record address // loc4 - temporary storage of last address in context record HookHandler: flushrs;; // Synch RSE with backing store mov SCRATCH_REG2=ar.bsp // save interrupted context bsp mov SCRATCH_REG3=ar.bspstore // save interrupted context bspstore mov SCRATCH_REG4=ar.rnat // save interrupted context rnat mov SCRATCH_REG6=cr.ifs;; // save IFS in case we need to chain... cover;; // creates new frame, moves old // CFM to IFS. alloc SCRATCH_REG5=0,5,6,0 // alloc 5 locals, 6 outs ;; // save banked registers to locals mov out1=B0_REG // out1 = Original B0 mov out2=SCRATCH_REG2 // out2 = original ar.bsp mov out3=SCRATCH_REG3 // out3 = original ar.bspstore mov out4=SCRATCH_REG4 // out4 = original ar.rnat mov out5=SCRATCH_REG5 // out5 = original ar.pfs mov loc2=SCRATCH_REG1;; // loc2 = vector number + chain flag bsw.1;; // switch banked registers to bank 1 srlz.d // explicit serialize required // now fill in context record structure movl loc3=IpfContextBuf // Insure context record is aligned add loc0=-0x200,r0;; // mask the lower 9 bits (align on 512 byte boundary) and loc3=loc3,loc0;; add loc3=0x200,loc3;; // move to next 512 byte boundary // loc3 now contains the 512 byte aligned context record // spill register context into context record mov out0=loc3;; // Context record base in out0 // original B0 in out1 already // original ar.bsp in out2 already // original ar.bspstore in out3 already br.call.sptk.few b0=SpillContext;; // spill context mov loc4=out0 // save modified address // At this point, the context has been saved to the context record and we're // ready to call the C part of the handler... movl loc0=CommonHandler;; // obtain address of plabel ld8 loc1=[loc0];; // get entry point of CommonHandler mov b6=loc1;; // put it in a branch register adds loc1= 8, loc0;; // index to GP in plabel ld8 r1=[loc1];; // set up gp for C call mov loc1=0xfffff;; // mask off so only vector bits are present and out0=loc2,loc1;; // pass vector number (exception type) mov out1=loc3;; // pass context record address br.call.sptk.few b0=b6;; // call C handler // We've returned from the C call, so restore the context and either rfi // back to interrupted thread, or chain into the SAL if this was an external interrupt mov out0=loc4;; // pass address of last element in context record br.call.sptk.few b0=FillContext;; // Fill context mov b0=out1 // fill in b0 mov ar.rnat=out4 mov ar.pfs=out5 // Loadrs is necessary because the debugger may have changed some values in // the backing store. The processor, however may not be aware that the // stacked registers need to be reloaded from the backing store. Therefore, // we explicitly cause the RSE to refresh the stacked register's contents // from the backing store. mov loc0=ar.rsc // get RSC value mov loc1=ar.rsc // save it so we can restore it movl loc3=0xffffffffc000ffff;; // create mask for clearing RSC.loadrs and loc0=loc0,loc3;; // create value for RSC with RSC.loadrs==0 mov ar.rsc=loc0;; // modify RSC loadrs;; // invalidate register stack mov ar.rsc=loc1;; // restore original RSC bsw.0;; // switch banked registers back to bank 0 srlz.d;; // explicit serialize required mov PR_REG=pr // save predicates - to be restored after chaining decision mov B0_REG=b0 // save b0 - required by chain code mov loc2=EXCPT_EXTERNAL_INTERRUPT;; cmp.eq p7,p0=SCRATCH_REG1,loc2;; // check to see if this is the timer tick (p7) br.cond.dpnt.few DO_CHAIN;; NO_CHAIN: mov pr=PR_REG;; rfi;; // we're outa here. DO_CHAIN: mov pr=PR_REG mov SCRATCH_REG1=cr.iva mov SCRATCH_REG2=PATCH_RETURN_OFFSET;; add SCRATCH_REG1=SCRATCH_REG1, SCRATCH_REG2;; mov b0=SCRATCH_REG1;; br.cond.sptk.few b0;; EndHookHandler: ///////////////////////////////////////////// // // Name: // HookStub // // Description: // HookStub will be copied from it's loaded location into the IVT when // an IVT entry is hooked. The IVT entry does an indirect jump via B0 to // HookHandler, which in turn calls into the default C handler, which calls // the user-installed C handler. The calls return and HookHandler executes // an rfi. // // Notes: // Saves B0 to B0_REG // Saves IVT index to SCRATCH_REG1 (immediate value is fixed up when code is copied // to the IVT entry. ASM_GLOBAL HookStub .proc HookStub HookStub: mov B0_REG=b0 movl SCRATCH_REG1=HookHandler;; mov b0=SCRATCH_REG1;; mov SCRATCH_REG1=0;;// immediate value is fixed up during install of handler to be the vector number br.cond.sptk.few b0 .endp HookStub ///////////////////////////////////////////// // The following code is moved into IVT entry 14 (offset 3400) which is reserved // in the Itanium architecture. The patch code is located at the end of the // IVT entry. PatchCode: mov SCRATCH_REG0=psr mov SCRATCH_REG6=cr.ipsr mov PR_REG=pr mov B0_REG=b0;; // turn off any virtual translations movl SCRATCH_REG1 = ~( MASK(PSR_DT,1) | MASK(PSR_RT,1));; and SCRATCH_REG1 = SCRATCH_REG0, SCRATCH_REG1;; mov psr.l = SCRATCH_REG1;; srlz.d tbit.z p14, p15 = SCRATCH_REG6, PSR_IS;; // Check to see if we were // interrupted from IA32 // context. If so, bail out // and chain to SAL immediately (p15) br.cond.sptk.few Stub_IVT_Passthru;; // we only want to take 1 out of 32 external interrupts to minimize the // impact to system performance. Check our interrupt count and bail // out if we're not up to 32 movl SCRATCH_REG1=ExternalInterruptCount;; ld8 SCRATCH_REG2=[SCRATCH_REG1];; // ExternalInterruptCount tbit.z p14, p15 = SCRATCH_REG2, 5;; // bit 5 set? (p14) add SCRATCH_REG2=1, SCRATCH_REG2;; // No? Then increment // ExternalInterruptCount // and Chain to SAL // immediately (p14) st8 [SCRATCH_REG1]=SCRATCH_REG2;; (p14) br.cond.sptk.few Stub_IVT_Passthru;; (p15) mov SCRATCH_REG2=0;; // Yes? Then reset // ExternalInterruptCount // and branch to // HookHandler (p15) st8 [SCRATCH_REG1]=SCRATCH_REG2;; mov pr=PR_REG movl SCRATCH_REG1=HookHandler;; // SCRATCH_REG1 = entrypoint of HookHandler mov b0=SCRATCH_REG1;; // b0 = entrypoint of HookHandler mov SCRATCH_REG1=EXCPT_EXTERNAL_INTERRUPT;; br.sptk.few b0;; // branch to HookHandler PatchCodeRet: // fake-up an rfi to get RSE back to being coherent and insure psr has // original contents when interrupt occured, then exit to SAL // at this point: // cr.ifs has been modified by previous "cover" // SCRATCH_REG6 has original cr.ifs mov SCRATCH_REG5=cr.ipsr mov SCRATCH_REG4=cr.iip;; mov cr.ipsr=SCRATCH_REG0 mov SCRATCH_REG1=ip;; add SCRATCH_REG1=0x30, SCRATCH_REG1;; mov cr.iip=SCRATCH_REG1;; rfi;; // rfi to next instruction Stub_RfiTarget: mov cr.ifs=SCRATCH_REG6 mov cr.ipsr=SCRATCH_REG5 mov cr.iip=SCRATCH_REG4;; Stub_IVT_Passthru: mov pr=PR_REG // pr = saved predicate registers mov b0=B0_REG;; // b0 = saved b0 EndPatchCode: ///////////////////////////////////////////// // The following bundle is moved into IVT entry 14 (offset 0x3400) which is reserved // in the Itanium architecture. This bundle will be the last bundle and will // be located at offset 0x37F0 in the IVT. FailsafeBranch: { .mib nop.m 0 nop.i 0 br.sptk.few -(FAILSAFE_BRANCH_OFFSET - EXT_INT_ENTRY_OFFSET - 0x10) } ///////////////////////////////////////////// // The following bundle is moved into IVT entry 13 (offset 0x3000) which is the // external interrupt. It branches to the patch code. PatchCodeNewBun0: { .mib nop.m 0 nop.i 0 br.cond.sptk.few PATCH_BRANCH }