;------------------------------------------------------------------------------ ;* ;* Copyright (c) 2006 - 2011, Intel Corporation. All rights reserved.<BR> ;* This program and the accompanying materials ;* are licensed and made available under the terms and conditions of the BSD License ;* which accompanies this distribution. The full text of the license may be found at ;* http://opensource.org/licenses/bsd-license.php ;* ;* THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, ;* WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. ;* ;* start32.asm ;* ;* Abstract: ;* ;------------------------------------------------------------------------------ .model small .stack .486p .code FAT_DIRECTORY_ENTRY_SIZE EQU 020h FAT_DIRECTORY_ENTRY_SHIFT EQU 5 BLOCK_SIZE EQU 0200h BLOCK_MASK EQU 01ffh BLOCK_SHIFT EQU 9 org 0h Ia32Jump: jmp BootSectorEntryPoint ; JMP inst - 3 bytes nop OemId db "INTEL " ; OemId - 8 bytes SectorSize dw 0 ; Sector Size - 2 bytes SectorsPerCluster db 0 ; Sector Per Cluster - 1 byte ReservedSectors dw 0 ; Reserved Sectors - 2 bytes NoFats db 0 ; Number of FATs - 1 byte RootEntries dw 0 ; Root Entries - 2 bytes Sectors dw 0 ; Number of Sectors - 2 bytes Media db 0 ; Media - 1 byte SectorsPerFat16 dw 0 ; Sectors Per FAT for FAT12/FAT16 - 2 byte SectorsPerTrack dw 0 ; Sectors Per Track - 2 bytes Heads dw 0 ; Heads - 2 bytes HiddenSectors dd 0 ; Hidden Sectors - 4 bytes LargeSectors dd 0 ; Large Sectors - 4 bytes ;****************************************************************************** ; ;The structure for FAT32 starting at offset 36 of the boot sector. (At this point, ;the BPB/boot sector for FAT12 and FAT16 differs from the BPB/boot sector for FAT32.) ; ;****************************************************************************** SectorsPerFat32 dd 0 ; Sectors Per FAT for FAT32 - 4 bytes ExtFlags dw 0 ; Mirror Flag - 2 bytes FSVersion dw 0 ; File System Version - 2 bytes RootCluster dd 0 ; 1st Cluster Number of Root Dir - 4 bytes FSInfo dw 0 ; Sector Number of FSINFO - 2 bytes BkBootSector dw 0 ; Sector Number of Bk BootSector - 2 bytes Reserved db 12 dup(0) ; Reserved Field - 12 bytes PhysicalDrive db 0 ; Physical Drive Number - 1 byte Reserved1 db 0 ; Reserved Field - 1 byte Signature db 0 ; Extended Boot Signature - 1 byte VolId db " " ; Volume Serial Number - 4 bytes FatLabel db " " ; Volume Label - 11 bytes FileSystemType db "FAT32 " ; File System Type - 8 bytes BootSectorEntryPoint: ASSUME ds:@code ASSUME ss:@code ; ds = 1000, es = 2000 + x (size of first cluster >> 4) ; cx = Start Cluster of EfiLdr ; dx = Start Cluster of Efivar.bin ; Re use the BPB data stored in Boot Sector mov bp,07c00h push cx ; Read Efivar.bin ; 1000:dx = DirectoryEntry of Efivar.bin -> BS.com has filled already mov ax,01900h mov es,ax test dx,dx jnz CheckVarStoreSize mov al,1 NoVarStore: push es ; Set the 5th byte start @ 0:19000 to non-zero indicating we should init var store header in DxeIpl mov byte ptr es:[4],al jmp SaveVolumeId CheckVarStoreSize: mov di,dx cmp dword ptr ds:[di+2], 04000h mov al,2 jne NoVarStore LoadVarStore: mov al,0 mov byte ptr es:[4],al mov cx,word ptr[di] ; ES:DI = 1500:0 xor di,di push es mov ax,01500h mov es,ax call ReadFile SaveVolumeId: pop es mov ax,word ptr [bp+VolId] mov word ptr es:[0],ax ; Save Volume Id to 0:19000. we will find the correct volume according to this VolumeId mov ax,word ptr [bp+VolId+2] mov word ptr es:[2],ax ; Read Efildr pop cx ; cx = Start Cluster of Efildr -> BS.com has filled already ; ES:DI = 2000:0, first cluster will be read again xor di,di ; di = 0 mov ax,02000h mov es,ax call ReadFile mov ax,cs mov word ptr cs:[JumpSegment],ax JumpFarInstruction: db 0eah JumpOffset: dw 0200h JumpSegment: dw 2000h ; **************************************************************************** ; ReadFile ; ; Arguments: ; CX = Start Cluster of File ; ES:DI = Buffer to store file content read from disk ; ; Return: ; (ES << 4 + DI) = end of file content Buffer ; ; **************************************************************************** ReadFile: ; si = NumberOfClusters ; cx = ClusterNumber ; dx = CachedFatSectorNumber ; ds:0000 = CacheFatSectorBuffer ; es:di = Buffer to load file ; bx = NextClusterNumber pusha mov si,1 ; NumberOfClusters = 1 push cx ; Push Start Cluster onto stack mov dx,0fffh ; CachedFatSectorNumber = 0xfff FatChainLoop: mov ax,cx ; ax = ClusterNumber and ax,0fff8h ; ax = ax & 0xfff8 cmp ax,0fff8h ; See if this is the last cluster je FoundLastCluster ; Jump if last cluster found mov ax,cx ; ax = ClusterNumber shl ax,2 ; FatOffset = ClusterNumber * 4 push si ; Save si mov si,ax ; si = FatOffset shr ax,BLOCK_SHIFT ; ax = FatOffset >> BLOCK_SHIFT add ax,word ptr [bp+ReservedSectors] ; ax = FatSectorNumber = ReservedSectors + (FatOffset >> BLOCK_OFFSET) and si,BLOCK_MASK ; si = FatOffset & BLOCK_MASK cmp ax,dx ; Compare FatSectorNumber to CachedFatSectorNumber je SkipFatRead mov bx,2 push es push ds pop es call ReadBlocks ; Read 2 blocks starting at AX storing at ES:DI pop es mov dx,ax ; CachedFatSectorNumber = FatSectorNumber SkipFatRead: mov bx,word ptr [si] ; bx = NextClusterNumber mov ax,cx ; ax = ClusterNumber pop si ; Restore si dec bx ; bx = NextClusterNumber - 1 cmp bx,cx ; See if (NextClusterNumber-1)==ClusterNumber jne ReadClusters inc bx ; bx = NextClusterNumber inc si ; NumberOfClusters++ mov cx,bx ; ClusterNumber = NextClusterNumber jmp FatChainLoop ReadClusters: inc bx pop ax ; ax = StartCluster push bx ; StartCluster = NextClusterNumber mov cx,bx ; ClusterNumber = NextClusterNumber sub ax,2 ; ax = StartCluster - 2 xor bh,bh mov bl,byte ptr [bp+SectorsPerCluster] ; bx = SectorsPerCluster mul bx ; ax = (StartCluster - 2) * SectorsPerCluster add ax, word ptr [bp] ; ax = FirstClusterLBA + (StartCluster-2)*SectorsPerCluster push ax ; save start sector mov ax,si ; ax = NumberOfClusters mul bx ; ax = NumberOfClusters * SectorsPerCluster mov bx,ax ; bx = Number of Sectors pop ax ; ax = Start Sector call ReadBlocks mov si,1 ; NumberOfClusters = 1 jmp FatChainLoop FoundLastCluster: pop cx popa ret ; **************************************************************************** ; ReadBlocks - Reads a set of blocks from a block device ; ; AX = Start LBA ; BX = Number of Blocks to Read ; ES:DI = Buffer to store sectors read from disk ; **************************************************************************** ; cx = Blocks ; bx = NumberOfBlocks ; si = StartLBA ReadBlocks: pusha add eax,dword ptr [bp+LBAOffsetForBootSector] ; Add LBAOffsetForBootSector to Start LBA add eax,dword ptr [bp+HiddenSectors] ; Add HiddenSectors to Start LBA mov esi,eax ; esi = Start LBA mov cx,bx ; cx = Number of blocks to read ReadCylinderLoop: mov bp,07bfch ; bp = 0x7bfc mov eax,esi ; eax = Start LBA xor edx,edx ; edx = 0 movzx ebx,word ptr [bp] ; bx = MaxSector div ebx ; ax = StartLBA / MaxSector inc dx ; dx = (StartLBA % MaxSector) + 1 mov bx,word ptr [bp] ; bx = MaxSector sub bx,dx ; bx = MaxSector - Sector inc bx ; bx = MaxSector - Sector + 1 cmp cx,bx ; Compare (Blocks) to (MaxSector - Sector + 1) jg LimitTransfer mov bx,cx ; bx = Blocks LimitTransfer: push ax ; save ax mov ax,es ; ax = es shr ax,(BLOCK_SHIFT-4) ; ax = Number of blocks into mem system and ax,07fh ; ax = Number of blocks into current seg add ax,bx ; ax = End Block number of transfer cmp ax,080h ; See if it crosses a 64K boundry jle NotCrossing64KBoundry ; Branch if not crossing 64K boundry sub ax,080h ; ax = Number of blocks past 64K boundry sub bx,ax ; Decrease transfer size by block overage NotCrossing64KBoundry: pop ax ; restore ax push cx mov cl,dl ; cl = (StartLBA % MaxSector) + 1 = Sector xor dx,dx ; dx = 0 div word ptr [bp+2] ; ax = ax / (MaxHead + 1) = Cylinder ; dx = ax % (MaxHead + 1) = Head push bx ; Save number of blocks to transfer mov dh,dl ; dh = Head mov bp,07c00h ; bp = 0x7c00 mov dl,byte ptr [bp+PhysicalDrive] ; dl = Drive Number mov ch,al ; ch = Cylinder mov al,bl ; al = Blocks mov ah,2 ; ah = Function 2 mov bx,di ; es:bx = Buffer address int 013h jc DiskError pop bx pop cx movzx ebx,bx add esi,ebx ; StartLBA = StartLBA + NumberOfBlocks sub cx,bx ; Blocks = Blocks - NumberOfBlocks mov ax,es shl bx,(BLOCK_SHIFT-4) add ax,bx mov es,ax ; es:di = es:di + NumberOfBlocks*BLOCK_SIZE cmp cx,0 jne ReadCylinderLoop popa ret DiskError: push cs pop ds lea si, [ErrorString] mov cx, 7 jmp PrintStringAndHalt PrintStringAndHalt: mov ax,0b800h mov es,ax mov di,160 rep movsw Halt: jmp Halt ErrorString: db 'S', 0ch, 'E', 0ch, 'r', 0ch, 'r', 0ch, 'o', 0ch, 'r', 0ch, '!', 0ch org 01fah LBAOffsetForBootSector: dd 0h org 01feh dw 0aa55h ;****************************************************************************** ;****************************************************************************** ;****************************************************************************** DELAY_PORT equ 0edh ; Port to use for 1uS delay KBD_CONTROL_PORT equ 060h ; 8042 control port KBD_STATUS_PORT equ 064h ; 8042 status port WRITE_DATA_PORT_CMD equ 0d1h ; 8042 command to write the data port ENABLE_A20_CMD equ 0dfh ; 8042 command to enable A20 org 200h jmp start Em64String: db 'E', 0ch, 'm', 0ch, '6', 0ch, '4', 0ch, 'T', 0ch, ' ', 0ch, 'U', 0ch, 'n', 0ch, 's', 0ch, 'u', 0ch, 'p', 0ch, 'p', 0ch, 'o', 0ch, 'r', 0ch, 't', 0ch, 'e', 0ch, 'd', 0ch, '!', 0ch start: mov ax,cs mov ds,ax mov es,ax mov ss,ax mov sp,MyStack ; mov ax,0b800h ; mov es,ax ; mov byte ptr es:[160],'a' ; mov ax,cs ; mov es,ax mov ebx,0 lea edi,MemoryMap MemMapLoop: mov eax,0e820h mov ecx,20 mov edx,'SMAP' int 15h jc MemMapDone add edi,20 cmp ebx,0 je MemMapDone jmp MemMapLoop MemMapDone: lea eax,MemoryMap sub edi,eax ; Get the address of the memory map mov dword ptr [MemoryMapSize],edi ; Save the size of the memory map xor ebx,ebx mov bx,cs ; BX=segment shl ebx,4 ; BX="linear" address of segment base lea eax,[GDT_BASE + ebx] ; EAX=PHYSICAL address of gdt mov dword ptr [gdtr + 2],eax ; Put address of gdt into the gdtr lea eax,[IDT_BASE + ebx] ; EAX=PHYSICAL address of idt mov dword ptr [idtr + 2],eax ; Put address of idt into the idtr lea edx,[MemoryMapSize + ebx] ; Physical base address of the memory map add ebx,01000h ; Source of EFI32 mov dword ptr [JUMP+2],ebx add ebx,01000h mov esi,ebx ; Source of EFILDR32 ; mov ax,0b800h ; mov es,ax ; mov byte ptr es:[162],'b' ; mov ax,cs ; mov es,ax ; ; Enable A20 Gate ; mov ax,2401h ; Enable A20 Gate int 15h jnc A20GateEnabled ; Jump if it suceeded ; ; If INT 15 Function 2401 is not supported, then attempt to Enable A20 manually. ; call Empty8042InputBuffer ; Empty the Input Buffer on the 8042 controller jnz Timeout8042 ; Jump if the 8042 timed out out DELAY_PORT,ax ; Delay 1 uS mov al,WRITE_DATA_PORT_CMD ; 8042 cmd to write output port out KBD_STATUS_PORT,al ; Send command to the 8042 call Empty8042InputBuffer ; Empty the Input Buffer on the 8042 controller jnz Timeout8042 ; Jump if the 8042 timed out mov al,ENABLE_A20_CMD ; gate address bit 20 on out KBD_CONTROL_PORT,al ; Send command to thre 8042 call Empty8042InputBuffer ; Empty the Input Buffer on the 8042 controller mov cx,25 ; Delay 25 uS for the command to complete on the 8042 Delay25uS: out DELAY_PORT,ax ; Delay 1 uS loop Delay25uS Timeout8042: A20GateEnabled: mov bx,0008h ; Flat data descriptor ; ; DISABLE INTERRUPTS - Entering Protected Mode ; cli ; mov ax,0b800h ; mov es,ax ; mov byte ptr es:[164],'c' ; mov ax,cs ; mov es,ax db 66h lgdt fword ptr [gdtr] db 66h lidt fword ptr [idtr] mov eax,cr0 or al,1 mov cr0,eax JUMP: ; jmp far 0010:00020000 db 066h db 0eah dd 000020000h dw 00010h Empty8042InputBuffer: mov cx,0 Empty8042Loop: out DELAY_PORT,ax ; Delay 1us in al,KBD_STATUS_PORT ; Read the 8042 Status Port and al,02h ; Check the Input Buffer Full Flag loopnz Empty8042Loop ; Loop until the input buffer is empty or a timout of 65536 uS ret ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; data ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; align 02h gdtr dw GDT_END - GDT_BASE - 1 ; GDT limit dd 0 ; (GDT base gets set above) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; global descriptor table (GDT) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; align 02h public GDT_BASE GDT_BASE: ; null descriptor NULL_SEL equ $-GDT_BASE dw 0 ; limit 15:0 dw 0 ; base 15:0 db 0 ; base 23:16 db 0 ; type db 0 ; limit 19:16, flags db 0 ; base 31:24 ; linear data segment descriptor LINEAR_SEL equ $-GDT_BASE dw 0FFFFh ; limit 0xFFFFF dw 0 ; base 0 db 0 db 092h ; present, ring 0, data, expand-up, writable db 0CFh ; page-granular, 32-bit db 0 ; linear code segment descriptor LINEAR_CODE_SEL equ $-GDT_BASE dw 0FFFFh ; limit 0xFFFFF dw 0 ; base 0 db 0 db 09Ah ; present, ring 0, data, expand-up, writable db 0CFh ; page-granular, 32-bit db 0 ; system data segment descriptor SYS_DATA_SEL equ $-GDT_BASE dw 0FFFFh ; limit 0xFFFFF dw 0 ; base 0 db 0 db 092h ; present, ring 0, data, expand-up, writable db 0CFh ; page-granular, 32-bit db 0 ; system code segment descriptor SYS_CODE_SEL equ $-GDT_BASE dw 0FFFFh ; limit 0xFFFFF dw 0 ; base 0 db 0 db 09Ah ; present, ring 0, data, expand-up, writable db 0CFh ; page-granular, 32-bit db 0 ; spare segment descriptor SPARE3_SEL equ $-GDT_BASE dw 0 ; limit 0xFFFFF dw 0 ; base 0 db 0 db 0 ; present, ring 0, data, expand-up, writable db 0 ; page-granular, 32-bit db 0 ; spare segment descriptor SPARE4_SEL equ $-GDT_BASE dw 0 ; limit 0xFFFFF dw 0 ; base 0 db 0 db 0 ; present, ring 0, data, expand-up, writable db 0 ; page-granular, 32-bit db 0 ; spare segment descriptor SPARE5_SEL equ $-GDT_BASE dw 0 ; limit 0xFFFFF dw 0 ; base 0 db 0 db 0 ; present, ring 0, data, expand-up, writable db 0 ; page-granular, 32-bit db 0 GDT_END: align 02h idtr dw IDT_END - IDT_BASE - 1 ; IDT limit dd 0 ; (IDT base gets set above) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; interrupt descriptor table (IDT) ; ; Note: The hardware IRQ's specified in this table are the normal PC/AT IRQ ; mappings. This implementation only uses the system timer and all other ; IRQs will remain masked. The descriptors for vectors 33+ are provided ; for convenience. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;idt_tag db "IDT",0 align 02h public IDT_BASE IDT_BASE: ; divide by zero (INT 0) DIV_ZERO_SEL equ $-IDT_BASE dw 0 ; offset 15:0 dw SYS_CODE_SEL ; selector 15:0 db 0 ; 0 for interrupt gate db 0eh OR 80h ; type = 386 interrupt gate, present dw 0 ; offset 31:16 ; debug exception (INT 1) DEBUG_EXCEPT_SEL equ $-IDT_BASE dw 0 ; offset 15:0 dw SYS_CODE_SEL ; selector 15:0 db 0 ; 0 for interrupt gate db 0eh OR 80h ; type = 386 interrupt gate, present dw 0 ; offset 31:16 ; NMI (INT 2) NMI_SEL equ $-IDT_BASE dw 0 ; offset 15:0 dw SYS_CODE_SEL ; selector 15:0 db 0 ; 0 for interrupt gate db 0eh OR 80h ; type = 386 interrupt gate, present dw 0 ; offset 31:16 ; soft breakpoint (INT 3) BREAKPOINT_SEL equ $-IDT_BASE dw 0 ; offset 15:0 dw SYS_CODE_SEL ; selector 15:0 db 0 ; 0 for interrupt gate db 0eh OR 80h ; type = 386 interrupt gate, present dw 0 ; offset 31:16 ; overflow (INT 4) OVERFLOW_SEL equ $-IDT_BASE dw 0 ; offset 15:0 dw SYS_CODE_SEL ; selector 15:0 db 0 ; 0 for interrupt gate db 0eh OR 80h ; type = 386 interrupt gate, present dw 0 ; offset 31:16 ; bounds check (INT 5) BOUNDS_CHECK_SEL equ $-IDT_BASE dw 0 ; offset 15:0 dw SYS_CODE_SEL ; selector 15:0 db 0 ; 0 for interrupt gate db 0eh OR 80h ; type = 386 interrupt gate, present dw 0 ; offset 31:16 ; invalid opcode (INT 6) INVALID_OPCODE_SEL equ $-IDT_BASE dw 0 ; offset 15:0 dw SYS_CODE_SEL ; selector 15:0 db 0 ; 0 for interrupt gate db 0eh OR 80h ; type = 386 interrupt gate, present dw 0 ; offset 31:16 ; device not available (INT 7) DEV_NOT_AVAIL_SEL equ $-IDT_BASE dw 0 ; offset 15:0 dw SYS_CODE_SEL ; selector 15:0 db 0 ; 0 for interrupt gate db 0eh OR 80h ; type = 386 interrupt gate, present dw 0 ; offset 31:16 ; double fault (INT 8) DOUBLE_FAULT_SEL equ $-IDT_BASE dw 0 ; offset 15:0 dw SYS_CODE_SEL ; selector 15:0 db 0 ; 0 for interrupt gate db 0eh OR 80h ; type = 386 interrupt gate, present dw 0 ; offset 31:16 ; Coprocessor segment overrun - reserved (INT 9) RSVD_INTR_SEL1 equ $-IDT_BASE dw 0 ; offset 15:0 dw SYS_CODE_SEL ; selector 15:0 db 0 ; 0 for interrupt gate db 0eh OR 80h ; type = 386 interrupt gate, present dw 0 ; offset 31:16 ; invalid TSS (INT 0ah) INVALID_TSS_SEL equ $-IDT_BASE dw 0 ; offset 15:0 dw SYS_CODE_SEL ; selector 15:0 db 0 ; 0 for interrupt gate db 0eh OR 80h ; type = 386 interrupt gate, present dw 0 ; offset 31:16 ; segment not present (INT 0bh) SEG_NOT_PRESENT_SEL equ $-IDT_BASE dw 0 ; offset 15:0 dw SYS_CODE_SEL ; selector 15:0 db 0 ; 0 for interrupt gate db 0eh OR 80h ; type = 386 interrupt gate, present dw 0 ; offset 31:16 ; stack fault (INT 0ch) STACK_FAULT_SEL equ $-IDT_BASE dw 0 ; offset 15:0 dw SYS_CODE_SEL ; selector 15:0 db 0 ; 0 for interrupt gate db 0eh OR 80h ; type = 386 interrupt gate, present dw 0 ; offset 31:16 ; general protection (INT 0dh) GP_FAULT_SEL equ $-IDT_BASE dw 0 ; offset 15:0 dw SYS_CODE_SEL ; selector 15:0 db 0 ; 0 for interrupt gate db 0eh OR 80h ; type = 386 interrupt gate, present dw 0 ; offset 31:16 ; page fault (INT 0eh) PAGE_FAULT_SEL equ $-IDT_BASE dw 0 ; offset 15:0 dw SYS_CODE_SEL ; selector 15:0 db 0 ; 0 for interrupt gate db 0eh OR 80h ; type = 386 interrupt gate, present dw 0 ; offset 31:16 ; Intel reserved - do not use (INT 0fh) RSVD_INTR_SEL2 equ $-IDT_BASE dw 0 ; offset 15:0 dw SYS_CODE_SEL ; selector 15:0 db 0 ; 0 for interrupt gate db 0eh OR 80h ; type = 386 interrupt gate, present dw 0 ; offset 31:16 ; floating point error (INT 10h) FLT_POINT_ERR_SEL equ $-IDT_BASE dw 0 ; offset 15:0 dw SYS_CODE_SEL ; selector 15:0 db 0 ; 0 for interrupt gate db 0eh OR 80h ; type = 386 interrupt gate, present dw 0 ; offset 31:16 ; alignment check (INT 11h) ALIGNMENT_CHECK_SEL equ $-IDT_BASE dw 0 ; offset 15:0 dw SYS_CODE_SEL ; selector 15:0 db 0 ; 0 for interrupt gate db 0eh OR 80h ; (10001110)type = 386 interrupt gate, present dw 0 ; offset 31:16 ; machine check (INT 12h) MACHINE_CHECK_SEL equ $-IDT_BASE dw 0 ; offset 15:0 dw SYS_CODE_SEL ; selector 15:0 db 0 ; 0 for interrupt gate db 0eh OR 80h ; (10001110)type = 386 interrupt gate, present dw 0 ; offset 31:16 ; SIMD floating-point exception (INT 13h) SIMD_EXCEPTION_SEL equ $-IDT_BASE dw 0 ; offset 15:0 dw SYS_CODE_SEL ; selector 15:0 db 0 ; 0 for interrupt gate db 0eh OR 80h ; (10001110)type = 386 interrupt gate, present dw 0 ; offset 31:16 ; 85 unspecified descriptors, First 12 of them are reserved, the rest are avail db (85 * 8) dup(0) ; IRQ 0 (System timer) - (INT 68h) IRQ0_SEL equ $-IDT_BASE dw 0 ; offset 15:0 dw SYS_CODE_SEL ; selector 15:0 db 0 ; 0 for interrupt gate db 0eh OR 80h ; (10001110)type = 386 interrupt gate, present dw 0 ; offset 31:16 ; IRQ 1 (8042 Keyboard controller) - (INT 69h) IRQ1_SEL equ $-IDT_BASE dw 0 ; offset 15:0 dw SYS_CODE_SEL ; selector 15:0 db 0 ; 0 for interrupt gate db 0eh OR 80h ; (10001110)type = 386 interrupt gate, present dw 0 ; offset 31:16 ; Reserved - IRQ 2 redirect (IRQ 2) - DO NOT USE!!! - (INT 6ah) IRQ2_SEL equ $-IDT_BASE dw 0 ; offset 15:0 dw SYS_CODE_SEL ; selector 15:0 db 0 ; 0 for interrupt gate db 0eh OR 80h ; (10001110)type = 386 interrupt gate, present dw 0 ; offset 31:16 ; IRQ 3 (COM 2) - (INT 6bh) IRQ3_SEL equ $-IDT_BASE dw 0 ; offset 15:0 dw SYS_CODE_SEL ; selector 15:0 db 0 ; 0 for interrupt gate db 0eh OR 80h ; (10001110)type = 386 interrupt gate, present dw 0 ; offset 31:16 ; IRQ 4 (COM 1) - (INT 6ch) IRQ4_SEL equ $-IDT_BASE dw 0 ; offset 15:0 dw SYS_CODE_SEL ; selector 15:0 db 0 ; 0 for interrupt gate db 0eh OR 80h ; (10001110)type = 386 interrupt gate, present dw 0 ; offset 31:16 ; IRQ 5 (LPT 2) - (INT 6dh) IRQ5_SEL equ $-IDT_BASE dw 0 ; offset 15:0 dw SYS_CODE_SEL ; selector 15:0 db 0 ; 0 for interrupt gate db 0eh OR 80h ; (10001110)type = 386 interrupt gate, present dw 0 ; offset 31:16 ; IRQ 6 (Floppy controller) - (INT 6eh) IRQ6_SEL equ $-IDT_BASE dw 0 ; offset 15:0 dw SYS_CODE_SEL ; selector 15:0 db 0 ; 0 for interrupt gate db 0eh OR 80h ; (10001110)type = 386 interrupt gate, present dw 0 ; offset 31:16 ; IRQ 7 (LPT 1) - (INT 6fh) IRQ7_SEL equ $-IDT_BASE dw 0 ; offset 15:0 dw SYS_CODE_SEL ; selector 15:0 db 0 ; 0 for interrupt gate db 0eh OR 80h ; (10001110)type = 386 interrupt gate, present dw 0 ; offset 31:16 ; IRQ 8 (RTC Alarm) - (INT 70h) IRQ8_SEL equ $-IDT_BASE dw 0 ; offset 15:0 dw SYS_CODE_SEL ; selector 15:0 db 0 ; 0 for interrupt gate db 0eh OR 80h ; (10001110)type = 386 interrupt gate, present dw 0 ; offset 31:16 ; IRQ 9 - (INT 71h) IRQ9_SEL equ $-IDT_BASE dw 0 ; offset 15:0 dw SYS_CODE_SEL ; selector 15:0 db 0 ; 0 for interrupt gate db 0eh OR 80h ; (10001110)type = 386 interrupt gate, present dw 0 ; offset 31:16 ; IRQ 10 - (INT 72h) IRQ10_SEL equ $-IDT_BASE dw 0 ; offset 15:0 dw SYS_CODE_SEL ; selector 15:0 db 0 ; 0 for interrupt gate db 0eh OR 80h ; (10001110)type = 386 interrupt gate, present dw 0 ; offset 31:16 ; IRQ 11 - (INT 73h) IRQ11_SEL equ $-IDT_BASE dw 0 ; offset 15:0 dw SYS_CODE_SEL ; selector 15:0 db 0 ; 0 for interrupt gate db 0eh OR 80h ; (10001110)type = 386 interrupt gate, present dw 0 ; offset 31:16 ; IRQ 12 (PS/2 mouse) - (INT 74h) IRQ12_SEL equ $-IDT_BASE dw 0 ; offset 15:0 dw SYS_CODE_SEL ; selector 15:0 db 0 ; 0 for interrupt gate db 0eh OR 80h ; (10001110)type = 386 interrupt gate, present dw 0 ; offset 31:16 ; IRQ 13 (Floating point error) - (INT 75h) IRQ13_SEL equ $-IDT_BASE dw 0 ; offset 15:0 dw SYS_CODE_SEL ; selector 15:0 db 0 ; 0 for interrupt gate db 0eh OR 80h ; (10001110)type = 386 interrupt gate, present dw 0 ; offset 31:16 ; IRQ 14 (Secondary IDE) - (INT 76h) IRQ14_SEL equ $-IDT_BASE dw 0 ; offset 15:0 dw SYS_CODE_SEL ; selector 15:0 db 0 ; 0 for interrupt gate db 0eh OR 80h ; (10001110)type = 386 interrupt gate, present dw 0 ; offset 31:16 ; IRQ 15 (Primary IDE) - (INT 77h) IRQ15_SEL equ $-IDT_BASE dw 0 ; offset 15:0 dw SYS_CODE_SEL ; selector 15:0 db 0 ; 0 for interrupt gate db 0eh OR 80h ; (10001110)type = 386 interrupt gate, present dw 0 ; offset 31:16 IDT_END: align 02h MemoryMapSize dd 0 MemoryMap dd 0,0,0,0,0,0,0,0 dd 0,0,0,0,0,0,0,0 dd 0,0,0,0,0,0,0,0 dd 0,0,0,0,0,0,0,0 dd 0,0,0,0,0,0,0,0 dd 0,0,0,0,0,0,0,0 dd 0,0,0,0,0,0,0,0 dd 0,0,0,0,0,0,0,0 dd 0,0,0,0,0,0,0,0 dd 0,0,0,0,0,0,0,0 dd 0,0,0,0,0,0,0,0 dd 0,0,0,0,0,0,0,0 dd 0,0,0,0,0,0,0,0 dd 0,0,0,0,0,0,0,0 dd 0,0,0,0,0,0,0,0 dd 0,0,0,0,0,0,0,0 dd 0,0,0,0,0,0,0,0 dd 0,0,0,0,0,0,0,0 dd 0,0,0,0,0,0,0,0 dd 0,0,0,0,0,0,0,0 dd 0,0,0,0,0,0,0,0 dd 0,0,0,0,0,0,0,0 dd 0,0,0,0,0,0,0,0 dd 0,0,0,0,0,0,0,0 dd 0,0,0,0,0,0,0,0 dd 0,0,0,0,0,0,0,0 dd 0,0,0,0,0,0,0,0 dd 0,0,0,0,0,0,0,0 dd 0,0,0,0,0,0,0,0 dd 0,0,0,0,0,0,0,0 dd 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 dd 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 org 0fe0h MyStack: ; below is the pieces of the IVT that is used to redirect INT 68h - 6fh ; back to INT 08h - 0fh when in real mode... It is 'org'ed to a ; known low address (20f00) so it can be set up by PlMapIrqToVect in ; 8259.c int 8 iret int 9 iret int 10 iret int 11 iret int 12 iret int 13 iret int 14 iret int 15 iret org 0ffeh BlockSignature: dw 0aa55h end