/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "audio_hw_primary" /*#define LOG_NDEBUG 0*/ /*#define VERY_VERY_VERBOSE_LOGGING*/ #ifdef VERY_VERY_VERBOSE_LOGGING #define ALOGVV ALOGV #else #define ALOGVV(a...) do { } while(0) #endif #include <errno.h> #include <pthread.h> #include <stdint.h> #include <sys/time.h> #include <stdlib.h> #include <math.h> #include <dlfcn.h> #include <sys/resource.h> #include <sys/prctl.h> #include <cutils/log.h> #include <cutils/str_parms.h> #include <cutils/properties.h> #include <cutils/atomic.h> #include <cutils/sched_policy.h> #include <hardware/audio_effect.h> #include <system/thread_defs.h> #include <audio_effects/effect_aec.h> #include <audio_effects/effect_ns.h> #include <audio_utils/channels.h> #include "audio_hw.h" #include "cras_dsp.h" /* TODO: the following PCM device profiles could be read from a config file */ struct pcm_device_profile pcm_device_playback_hs = { .config = { .channels = PLAYBACK_DEFAULT_CHANNEL_COUNT, .rate = PLAYBACK_DEFAULT_SAMPLING_RATE, .period_size = PLAYBACK_PERIOD_SIZE, .period_count = PLAYBACK_PERIOD_COUNT, .format = PCM_FORMAT_S16_LE, .start_threshold = PLAYBACK_START_THRESHOLD, .stop_threshold = PLAYBACK_STOP_THRESHOLD, .silence_threshold = 0, .avail_min = PLAYBACK_AVAILABLE_MIN, }, .card = SOUND_CARD, .id = 1, .device = 0, .type = PCM_PLAYBACK, .devices = AUDIO_DEVICE_OUT_WIRED_HEADSET|AUDIO_DEVICE_OUT_WIRED_HEADPHONE, .dsp_name = "invert_lr", }; struct pcm_device_profile pcm_device_capture = { .config = { .channels = CAPTURE_DEFAULT_CHANNEL_COUNT, .rate = CAPTURE_DEFAULT_SAMPLING_RATE, .period_size = CAPTURE_PERIOD_SIZE, .period_count = CAPTURE_PERIOD_COUNT, .format = PCM_FORMAT_S16_LE, .start_threshold = CAPTURE_START_THRESHOLD, .stop_threshold = 0, .silence_threshold = 0, .avail_min = 0, }, .card = SOUND_CARD, .id = 2, .device = 0, .type = PCM_CAPTURE, .devices = AUDIO_DEVICE_IN_BUILTIN_MIC|AUDIO_DEVICE_IN_WIRED_HEADSET|AUDIO_DEVICE_IN_BACK_MIC, }; struct pcm_device_profile pcm_device_capture_loopback_aec = { .config = { .channels = CAPTURE_DEFAULT_CHANNEL_COUNT, .rate = CAPTURE_DEFAULT_SAMPLING_RATE, .period_size = CAPTURE_PERIOD_SIZE, .period_count = CAPTURE_PERIOD_COUNT, .format = PCM_FORMAT_S16_LE, .start_threshold = CAPTURE_START_THRESHOLD, .stop_threshold = 0, .silence_threshold = 0, .avail_min = 0, }, .card = SOUND_CARD, .id = 3, .device = 1, .type = PCM_CAPTURE, .devices = SND_DEVICE_IN_LOOPBACK_AEC, }; struct pcm_device_profile pcm_device_playback_spk_and_headset = { .config = { .channels = PLAYBACK_DEFAULT_CHANNEL_COUNT, .rate = PLAYBACK_DEFAULT_SAMPLING_RATE, .period_size = PLAYBACK_PERIOD_SIZE, .period_count = PLAYBACK_PERIOD_COUNT, .format = PCM_FORMAT_S16_LE, .start_threshold = PLAYBACK_START_THRESHOLD, .stop_threshold = PLAYBACK_STOP_THRESHOLD, .silence_threshold = 0, .avail_min = PLAYBACK_AVAILABLE_MIN, }, .card = SOUND_CARD, .id = 4, .device = 0, .type = PCM_PLAYBACK, .devices = AUDIO_DEVICE_OUT_SPEAKER|AUDIO_DEVICE_OUT_WIRED_HEADSET|AUDIO_DEVICE_OUT_WIRED_HEADPHONE, .dsp_name = "speaker_eq", }; struct pcm_device_profile pcm_device_playback_spk = { .config = { .channels = PLAYBACK_DEFAULT_CHANNEL_COUNT, .rate = PLAYBACK_DEFAULT_SAMPLING_RATE, .period_size = PLAYBACK_PERIOD_SIZE, .period_count = PLAYBACK_PERIOD_COUNT, .format = PCM_FORMAT_S16_LE, .start_threshold = PLAYBACK_START_THRESHOLD, .stop_threshold = PLAYBACK_STOP_THRESHOLD, .silence_threshold = 0, .avail_min = PLAYBACK_AVAILABLE_MIN, }, .card = SOUND_CARD, .id = 5, .device = 0, .type = PCM_PLAYBACK, .devices = AUDIO_DEVICE_OUT_SPEAKER, .dsp_name = "speaker_eq", }; static struct pcm_device_profile pcm_device_hotword_streaming = { .config = { .channels = 1, .rate = 16000, .period_size = CAPTURE_PERIOD_SIZE, .period_count = CAPTURE_PERIOD_COUNT, .format = PCM_FORMAT_S16_LE, .start_threshold = CAPTURE_START_THRESHOLD, .stop_threshold = 0, .silence_threshold = 0, .avail_min = 0, }, .card = SOUND_CARD, .id = 0, .type = PCM_HOTWORD_STREAMING, .devices = AUDIO_DEVICE_IN_BUILTIN_MIC | AUDIO_DEVICE_IN_WIRED_HEADSET | AUDIO_DEVICE_IN_BACK_MIC, }; struct pcm_device_profile *pcm_devices[] = { &pcm_device_playback_hs, &pcm_device_capture, &pcm_device_playback_spk, &pcm_device_capture_loopback_aec, &pcm_device_playback_spk_and_headset, &pcm_device_hotword_streaming, NULL, }; static const char * const use_case_table[AUDIO_USECASE_MAX] = { [USECASE_AUDIO_PLAYBACK] = "playback", [USECASE_AUDIO_PLAYBACK_MULTI_CH] = "playback multi-channel", [USECASE_AUDIO_CAPTURE] = "capture", [USECASE_AUDIO_CAPTURE_HOTWORD] = "capture-hotword", [USECASE_VOICE_CALL] = "voice-call", }; #define STRING_TO_ENUM(string) { #string, string } struct pcm_config pcm_config_deep_buffer = { .channels = 2, .rate = DEEP_BUFFER_OUTPUT_SAMPLING_RATE, .period_size = DEEP_BUFFER_OUTPUT_PERIOD_SIZE, .period_count = DEEP_BUFFER_OUTPUT_PERIOD_COUNT, .format = PCM_FORMAT_S16_LE, .start_threshold = DEEP_BUFFER_OUTPUT_PERIOD_SIZE / 4, .stop_threshold = INT_MAX, .avail_min = DEEP_BUFFER_OUTPUT_PERIOD_SIZE / 4, }; struct string_to_enum { const char *name; uint32_t value; }; static const struct string_to_enum out_channels_name_to_enum_table[] = { STRING_TO_ENUM(AUDIO_CHANNEL_OUT_STEREO), STRING_TO_ENUM(AUDIO_CHANNEL_OUT_5POINT1), STRING_TO_ENUM(AUDIO_CHANNEL_OUT_7POINT1), }; static bool is_supported_format(audio_format_t format) { if (format == AUDIO_FORMAT_MP3 || ((format & AUDIO_FORMAT_MAIN_MASK) == AUDIO_FORMAT_AAC)) return true; return false; } static int get_snd_codec_id(audio_format_t format) { int id = 0; switch (format & AUDIO_FORMAT_MAIN_MASK) { default: ALOGE("%s: Unsupported audio format", __func__); } return id; } /* Array to store sound devices */ static const char * const device_table[SND_DEVICE_MAX] = { [SND_DEVICE_NONE] = "none", /* Playback sound devices */ [SND_DEVICE_OUT_HANDSET] = "handset", [SND_DEVICE_OUT_SPEAKER] = "speaker", [SND_DEVICE_OUT_HEADPHONES] = "headphones", [SND_DEVICE_OUT_SPEAKER_AND_HEADPHONES] = "speaker-and-headphones", [SND_DEVICE_OUT_VOICE_HANDSET] = "voice-handset", [SND_DEVICE_OUT_VOICE_SPEAKER] = "voice-speaker", [SND_DEVICE_OUT_VOICE_HEADPHONES] = "voice-headphones", [SND_DEVICE_OUT_HDMI] = "hdmi", [SND_DEVICE_OUT_SPEAKER_AND_HDMI] = "speaker-and-hdmi", [SND_DEVICE_OUT_VOICE_TTY_FULL_HEADPHONES] = "voice-tty-full-headphones", [SND_DEVICE_OUT_VOICE_TTY_VCO_HEADPHONES] = "voice-tty-vco-headphones", [SND_DEVICE_OUT_VOICE_TTY_HCO_HANDSET] = "voice-tty-hco-handset", /* Capture sound devices */ [SND_DEVICE_IN_HANDSET_MIC] = "handset-mic", [SND_DEVICE_IN_SPEAKER_MIC] = "speaker-mic", [SND_DEVICE_IN_HEADSET_MIC] = "headset-mic", [SND_DEVICE_IN_HANDSET_MIC_AEC] = "handset-mic", [SND_DEVICE_IN_SPEAKER_MIC_AEC] = "voice-speaker-mic", [SND_DEVICE_IN_HEADSET_MIC_AEC] = "headset-mic", [SND_DEVICE_IN_VOICE_SPEAKER_MIC] = "voice-speaker-mic", [SND_DEVICE_IN_VOICE_HEADSET_MIC] = "voice-headset-mic", [SND_DEVICE_IN_HDMI_MIC] = "hdmi-mic", [SND_DEVICE_IN_CAMCORDER_MIC] = "camcorder-mic", [SND_DEVICE_IN_VOICE_DMIC_1] = "voice-dmic-1", [SND_DEVICE_IN_VOICE_SPEAKER_DMIC_1] = "voice-speaker-dmic-1", [SND_DEVICE_IN_VOICE_TTY_FULL_HEADSET_MIC] = "voice-tty-full-headset-mic", [SND_DEVICE_IN_VOICE_TTY_VCO_HANDSET_MIC] = "voice-tty-vco-handset-mic", [SND_DEVICE_IN_VOICE_TTY_HCO_HEADSET_MIC] = "voice-tty-hco-headset-mic", [SND_DEVICE_IN_VOICE_REC_HEADSET_MIC] = "voice-rec-headset-mic", [SND_DEVICE_IN_VOICE_REC_MIC] = "voice-rec-mic", [SND_DEVICE_IN_VOICE_REC_DMIC_1] = "voice-rec-dmic-1", [SND_DEVICE_IN_VOICE_REC_DMIC_NS_1] = "voice-rec-dmic-ns-1", [SND_DEVICE_IN_LOOPBACK_AEC] = "loopback-aec", }; struct mixer_card *adev_get_mixer_for_card(struct audio_device *adev, int card) { struct mixer_card *mixer_card; struct listnode *node; list_for_each(node, &adev->mixer_list) { mixer_card = node_to_item(node, struct mixer_card, adev_list_node); if (mixer_card->card == card) return mixer_card; } return NULL; } struct mixer_card *uc_get_mixer_for_card(struct audio_usecase *usecase, int card) { struct mixer_card *mixer_card; struct listnode *node; list_for_each(node, &usecase->mixer_list) { mixer_card = node_to_item(node, struct mixer_card, uc_list_node[usecase->id]); if (mixer_card->card == card) return mixer_card; } return NULL; } void free_mixer_list(struct audio_device *adev) { struct mixer_card *mixer_card; struct listnode *node; struct listnode *next; list_for_each_safe(node, next, &adev->mixer_list) { mixer_card = node_to_item(node, struct mixer_card, adev_list_node); list_remove(node); audio_route_free(mixer_card->audio_route); free(mixer_card); } } int mixer_init(struct audio_device *adev) { int i; int card; int retry_num; struct mixer *mixer; struct audio_route *audio_route; char mixer_path[PATH_MAX]; struct mixer_card *mixer_card; struct listnode *node; list_init(&adev->mixer_list); for (i = 0; pcm_devices[i] != NULL; i++) { card = pcm_devices[i]->card; if (adev_get_mixer_for_card(adev, card) == NULL) { retry_num = 0; do { mixer = mixer_open(card); if (mixer == NULL) { if (++retry_num > RETRY_NUMBER) { ALOGE("%s unable to open the mixer for--card %d, aborting.", __func__, card); goto error; } usleep(RETRY_US); } } while (mixer == NULL); sprintf(mixer_path, "/system/etc/mixer_paths_%d.xml", card); audio_route = audio_route_init(card, mixer_path); if (!audio_route) { ALOGE("%s: Failed to init audio route controls for card %d, aborting.", __func__, card); goto error; } mixer_card = calloc(1, sizeof(struct mixer_card)); mixer_card->card = card; mixer_card->mixer = mixer; mixer_card->audio_route = audio_route; list_add_tail(&adev->mixer_list, &mixer_card->adev_list_node); } } return 0; error: free_mixer_list(adev); return -ENODEV; } const char *get_snd_device_name(snd_device_t snd_device) { const char *name = NULL; if (snd_device >= SND_DEVICE_MIN && snd_device < SND_DEVICE_MAX) name = device_table[snd_device]; ALOGE_IF(name == NULL, "%s: invalid snd device %d", __func__, snd_device); return name; } const char *get_snd_device_display_name(snd_device_t snd_device) { const char *name = get_snd_device_name(snd_device); if (name == NULL) name = "SND DEVICE NOT FOUND"; return name; } struct pcm_device_profile *get_pcm_device(usecase_type_t uc_type, audio_devices_t devices) { int i; devices &= ~AUDIO_DEVICE_BIT_IN; if (!devices) return NULL; for (i = 0; pcm_devices[i] != NULL; i++) { if ((pcm_devices[i]->type == uc_type) && (devices & pcm_devices[i]->devices) == devices) return pcm_devices[i]; } return NULL; } static struct audio_usecase *get_usecase_from_id(struct audio_device *adev, audio_usecase_t uc_id) { struct audio_usecase *usecase; struct listnode *node; list_for_each(node, &adev->usecase_list) { usecase = node_to_item(node, struct audio_usecase, adev_list_node); if (usecase->id == uc_id) return usecase; } return NULL; } static struct audio_usecase *get_usecase_from_type(struct audio_device *adev, usecase_type_t type) { struct audio_usecase *usecase; struct listnode *node; list_for_each(node, &adev->usecase_list) { usecase = node_to_item(node, struct audio_usecase, adev_list_node); if (usecase->type & type) return usecase; } return NULL; } /* always called with adev lock held */ static int set_voice_volume_l(struct audio_device *adev, float volume) { int err = 0; (void)volume; if (adev->mode == AUDIO_MODE_IN_CALL) { /* TODO */ } return err; } snd_device_t get_output_snd_device(struct audio_device *adev, audio_devices_t devices) { audio_mode_t mode = adev->mode; snd_device_t snd_device = SND_DEVICE_NONE; ALOGV("%s: enter: output devices(%#x), mode(%d)", __func__, devices, mode); if (devices == AUDIO_DEVICE_NONE || devices & AUDIO_DEVICE_BIT_IN) { ALOGV("%s: Invalid output devices (%#x)", __func__, devices); goto exit; } if (mode == AUDIO_MODE_IN_CALL) { if (devices & AUDIO_DEVICE_OUT_WIRED_HEADPHONE || devices & AUDIO_DEVICE_OUT_WIRED_HEADSET) { if (adev->tty_mode == TTY_MODE_FULL) snd_device = SND_DEVICE_OUT_VOICE_TTY_FULL_HEADPHONES; else if (adev->tty_mode == TTY_MODE_VCO) snd_device = SND_DEVICE_OUT_VOICE_TTY_VCO_HEADPHONES; else if (adev->tty_mode == TTY_MODE_HCO) snd_device = SND_DEVICE_OUT_VOICE_TTY_HCO_HANDSET; else snd_device = SND_DEVICE_OUT_VOICE_HEADPHONES; } else if (devices & AUDIO_DEVICE_OUT_SPEAKER) { snd_device = SND_DEVICE_OUT_VOICE_SPEAKER; } else if (devices & AUDIO_DEVICE_OUT_EARPIECE) { snd_device = SND_DEVICE_OUT_HANDSET; } if (snd_device != SND_DEVICE_NONE) { goto exit; } } if (popcount(devices) == 2) { if (devices == (AUDIO_DEVICE_OUT_WIRED_HEADPHONE | AUDIO_DEVICE_OUT_SPEAKER)) { snd_device = SND_DEVICE_OUT_SPEAKER_AND_HEADPHONES; } else if (devices == (AUDIO_DEVICE_OUT_WIRED_HEADSET | AUDIO_DEVICE_OUT_SPEAKER)) { snd_device = SND_DEVICE_OUT_SPEAKER_AND_HEADPHONES; } else { ALOGE("%s: Invalid combo device(%#x)", __func__, devices); goto exit; } if (snd_device != SND_DEVICE_NONE) { goto exit; } } if (popcount(devices) != 1) { ALOGE("%s: Invalid output devices(%#x)", __func__, devices); goto exit; } if (devices & AUDIO_DEVICE_OUT_WIRED_HEADPHONE || devices & AUDIO_DEVICE_OUT_WIRED_HEADSET) { snd_device = SND_DEVICE_OUT_HEADPHONES; } else if (devices & AUDIO_DEVICE_OUT_SPEAKER) { snd_device = SND_DEVICE_OUT_SPEAKER; } else if (devices & AUDIO_DEVICE_OUT_EARPIECE) { snd_device = SND_DEVICE_OUT_HANDSET; } else { ALOGE("%s: Unknown device(s) %#x", __func__, devices); } exit: ALOGV("%s: exit: snd_device(%s)", __func__, device_table[snd_device]); return snd_device; } snd_device_t get_input_snd_device(struct audio_device *adev, audio_devices_t out_device) { audio_source_t source; audio_mode_t mode = adev->mode; audio_devices_t in_device; audio_channel_mask_t channel_mask; snd_device_t snd_device = SND_DEVICE_NONE; struct stream_in *active_input = NULL; struct audio_usecase *usecase; usecase = get_usecase_from_type(adev, PCM_CAPTURE|VOICE_CALL); if (usecase != NULL) { active_input = (struct stream_in *)usecase->stream; } source = (active_input == NULL) ? AUDIO_SOURCE_DEFAULT : active_input->source; in_device = ((active_input == NULL) ? AUDIO_DEVICE_NONE : active_input->devices) & ~AUDIO_DEVICE_BIT_IN; channel_mask = (active_input == NULL) ? AUDIO_CHANNEL_IN_MONO : active_input->main_channels; ALOGV("%s: enter: out_device(%#x) in_device(%#x)", __func__, out_device, in_device); if (mode == AUDIO_MODE_IN_CALL) { if (out_device == AUDIO_DEVICE_NONE) { ALOGE("%s: No output device set for voice call", __func__); goto exit; } if (adev->tty_mode != TTY_MODE_OFF) { if (out_device & AUDIO_DEVICE_OUT_WIRED_HEADPHONE || out_device & AUDIO_DEVICE_OUT_WIRED_HEADSET) { switch (adev->tty_mode) { case TTY_MODE_FULL: snd_device = SND_DEVICE_IN_VOICE_TTY_FULL_HEADSET_MIC; break; case TTY_MODE_VCO: snd_device = SND_DEVICE_IN_VOICE_TTY_VCO_HANDSET_MIC; break; case TTY_MODE_HCO: snd_device = SND_DEVICE_IN_VOICE_TTY_HCO_HEADSET_MIC; break; default: ALOGE("%s: Invalid TTY mode (%#x)", __func__, adev->tty_mode); } goto exit; } } if (out_device & AUDIO_DEVICE_OUT_EARPIECE || out_device & AUDIO_DEVICE_OUT_WIRED_HEADPHONE) { snd_device = SND_DEVICE_IN_HANDSET_MIC; } else if (out_device & AUDIO_DEVICE_OUT_WIRED_HEADSET) { snd_device = SND_DEVICE_IN_VOICE_HEADSET_MIC; } else if (out_device & AUDIO_DEVICE_OUT_SPEAKER) { snd_device = SND_DEVICE_IN_VOICE_SPEAKER_MIC; } } else if (source == AUDIO_SOURCE_CAMCORDER) { if (in_device & AUDIO_DEVICE_IN_BUILTIN_MIC || in_device & AUDIO_DEVICE_IN_BACK_MIC) { snd_device = SND_DEVICE_IN_CAMCORDER_MIC; } } else if (source == AUDIO_SOURCE_VOICE_RECOGNITION) { if (in_device & AUDIO_DEVICE_IN_BUILTIN_MIC) { if (adev->dualmic_config == DUALMIC_CONFIG_1) { if (channel_mask == AUDIO_CHANNEL_IN_FRONT_BACK) snd_device = SND_DEVICE_IN_VOICE_REC_DMIC_1; else if (adev->ns_in_voice_rec) snd_device = SND_DEVICE_IN_VOICE_REC_DMIC_NS_1; } if (snd_device == SND_DEVICE_NONE) { snd_device = SND_DEVICE_IN_VOICE_REC_MIC; } } else if (in_device & AUDIO_DEVICE_IN_WIRED_HEADSET) { snd_device = SND_DEVICE_IN_VOICE_REC_HEADSET_MIC; } } else if (source == AUDIO_SOURCE_VOICE_COMMUNICATION || source == AUDIO_SOURCE_MIC) { if (out_device & AUDIO_DEVICE_OUT_SPEAKER) in_device = AUDIO_DEVICE_IN_BACK_MIC; if (active_input) { if (active_input->enable_aec) { if (in_device & AUDIO_DEVICE_IN_BACK_MIC) { snd_device = SND_DEVICE_IN_SPEAKER_MIC_AEC; } else if (in_device & AUDIO_DEVICE_IN_BUILTIN_MIC) { if (out_device & AUDIO_DEVICE_OUT_WIRED_HEADPHONE) { snd_device = SND_DEVICE_IN_SPEAKER_MIC_AEC; } else { snd_device = SND_DEVICE_IN_HANDSET_MIC_AEC; } } else if (in_device & AUDIO_DEVICE_IN_WIRED_HEADSET) { snd_device = SND_DEVICE_IN_HEADSET_MIC_AEC; } } /* TODO: set echo reference */ } } else if (source == AUDIO_SOURCE_DEFAULT) { goto exit; } if (snd_device != SND_DEVICE_NONE) { goto exit; } if (in_device != AUDIO_DEVICE_NONE && !(in_device & AUDIO_DEVICE_IN_VOICE_CALL) && !(in_device & AUDIO_DEVICE_IN_COMMUNICATION)) { if (in_device & AUDIO_DEVICE_IN_BUILTIN_MIC) { snd_device = SND_DEVICE_IN_HANDSET_MIC; } else if (in_device & AUDIO_DEVICE_IN_BACK_MIC) { snd_device = SND_DEVICE_IN_SPEAKER_MIC; } else if (in_device & AUDIO_DEVICE_IN_WIRED_HEADSET) { snd_device = SND_DEVICE_IN_HEADSET_MIC; } else if (in_device & AUDIO_DEVICE_IN_AUX_DIGITAL) { snd_device = SND_DEVICE_IN_HDMI_MIC; } else { ALOGE("%s: Unknown input device(s) %#x", __func__, in_device); ALOGW("%s: Using default handset-mic", __func__); snd_device = SND_DEVICE_IN_HANDSET_MIC; } } else { if (out_device & AUDIO_DEVICE_OUT_EARPIECE) { snd_device = SND_DEVICE_IN_HANDSET_MIC; } else if (out_device & AUDIO_DEVICE_OUT_WIRED_HEADSET) { snd_device = SND_DEVICE_IN_HEADSET_MIC; } else if (out_device & AUDIO_DEVICE_OUT_SPEAKER) { snd_device = SND_DEVICE_IN_SPEAKER_MIC; } else if (out_device & AUDIO_DEVICE_OUT_WIRED_HEADPHONE) { snd_device = SND_DEVICE_IN_HANDSET_MIC; } else { ALOGE("%s: Unknown output device(s) %#x", __func__, out_device); ALOGW("%s: Using default handset-mic", __func__); snd_device = SND_DEVICE_IN_HANDSET_MIC; } } exit: ALOGV("%s: exit: in_snd_device(%s)", __func__, device_table[snd_device]); return snd_device; } int set_hdmi_channels(struct audio_device *adev, int channel_count) { struct mixer_ctl *ctl; const char *mixer_ctl_name = ""; (void)adev; (void)channel_count; /* TODO */ return 0; } int edid_get_max_channels(struct audio_device *adev) { int max_channels = 2; struct mixer_ctl *ctl; (void)adev; /* TODO */ return max_channels; } /* Delay in Us */ int64_t render_latency(audio_usecase_t usecase) { (void)usecase; /* TODO */ return 0; } static int enable_snd_device(struct audio_device *adev, struct audio_usecase *uc_info, snd_device_t snd_device, bool update_mixer) { struct mixer_card *mixer_card; struct listnode *node; const char *snd_device_name = get_snd_device_name(snd_device); if (snd_device_name == NULL) return -EINVAL; adev->snd_dev_ref_cnt[snd_device]++; if (adev->snd_dev_ref_cnt[snd_device] > 1) { ALOGV("%s: snd_device(%d: %s) is already active", __func__, snd_device, snd_device_name); return 0; } ALOGV("%s: snd_device(%d: %s)", __func__, snd_device, snd_device_name); list_for_each(node, &uc_info->mixer_list) { mixer_card = node_to_item(node, struct mixer_card, uc_list_node[uc_info->id]); audio_route_apply_path(mixer_card->audio_route, snd_device_name); if (update_mixer) audio_route_update_mixer(mixer_card->audio_route); } return 0; } static int disable_snd_device(struct audio_device *adev, struct audio_usecase *uc_info, snd_device_t snd_device, bool update_mixer) { struct mixer_card *mixer_card; struct listnode *node; const char *snd_device_name = get_snd_device_name(snd_device); if (snd_device_name == NULL) return -EINVAL; if (adev->snd_dev_ref_cnt[snd_device] <= 0) { ALOGE("%s: device ref cnt is already 0", __func__); return -EINVAL; } adev->snd_dev_ref_cnt[snd_device]--; if (adev->snd_dev_ref_cnt[snd_device] == 0) { ALOGV("%s: snd_device(%d: %s)", __func__, snd_device, snd_device_name); list_for_each(node, &uc_info->mixer_list) { mixer_card = node_to_item(node, struct mixer_card, uc_list_node[uc_info->id]); audio_route_reset_path(mixer_card->audio_route, snd_device_name); if (update_mixer) audio_route_update_mixer(mixer_card->audio_route); } } return 0; } static int select_devices(struct audio_device *adev, audio_usecase_t uc_id) { snd_device_t out_snd_device = SND_DEVICE_NONE; snd_device_t in_snd_device = SND_DEVICE_NONE; struct audio_usecase *usecase = NULL; struct audio_usecase *vc_usecase = NULL; struct listnode *node; struct stream_in *active_input = NULL; struct stream_out *active_out; struct mixer_card *mixer_card; ALOGV("%s: usecase(%d)", __func__, uc_id); if (uc_id == USECASE_AUDIO_CAPTURE_HOTWORD) return 0; usecase = get_usecase_from_type(adev, PCM_CAPTURE|VOICE_CALL); if (usecase != NULL) { active_input = (struct stream_in *)usecase->stream; } usecase = get_usecase_from_id(adev, uc_id); if (usecase == NULL) { ALOGE("%s: Could not find the usecase(%d)", __func__, uc_id); return -EINVAL; } active_out = (struct stream_out *)usecase->stream; if (usecase->type == VOICE_CALL) { out_snd_device = get_output_snd_device(adev, active_out->devices); in_snd_device = get_input_snd_device(adev, active_out->devices); usecase->devices = active_out->devices; } else { /* * If the voice call is active, use the sound devices of voice call usecase * so that it would not result any device switch. All the usecases will * be switched to new device when select_devices() is called for voice call * usecase. */ if (adev->in_call) { vc_usecase = get_usecase_from_id(adev, USECASE_VOICE_CALL); if (usecase == NULL) { ALOGE("%s: Could not find the voice call usecase", __func__); } else { in_snd_device = vc_usecase->in_snd_device; out_snd_device = vc_usecase->out_snd_device; } } if (usecase->type == PCM_PLAYBACK) { usecase->devices = active_out->devices; in_snd_device = SND_DEVICE_NONE; if (out_snd_device == SND_DEVICE_NONE) { out_snd_device = get_output_snd_device(adev, active_out->devices); if (active_out == adev->primary_output && active_input && active_input->source == AUDIO_SOURCE_VOICE_COMMUNICATION) { select_devices(adev, active_input->usecase); } } } else if (usecase->type == PCM_CAPTURE) { usecase->devices = ((struct stream_in *)usecase->stream)->devices; out_snd_device = SND_DEVICE_NONE; if (in_snd_device == SND_DEVICE_NONE) { if (active_input->source == AUDIO_SOURCE_VOICE_COMMUNICATION && adev->primary_output && !adev->primary_output->standby) { in_snd_device = get_input_snd_device(adev, adev->primary_output->devices); } else { in_snd_device = get_input_snd_device(adev, AUDIO_DEVICE_NONE); } } } } if (out_snd_device == usecase->out_snd_device && in_snd_device == usecase->in_snd_device) { return 0; } ALOGV("%s: out_snd_device(%d: %s) in_snd_device(%d: %s)", __func__, out_snd_device, get_snd_device_display_name(out_snd_device), in_snd_device, get_snd_device_display_name(in_snd_device)); /* Disable current sound devices */ if (usecase->out_snd_device != SND_DEVICE_NONE) { disable_snd_device(adev, usecase, usecase->out_snd_device, false); } if (usecase->in_snd_device != SND_DEVICE_NONE) { disable_snd_device(adev, usecase, usecase->in_snd_device, false); } /* Enable new sound devices */ if (out_snd_device != SND_DEVICE_NONE) { enable_snd_device(adev, usecase, out_snd_device, false); } if (in_snd_device != SND_DEVICE_NONE) { enable_snd_device(adev, usecase, in_snd_device, false); } list_for_each(node, &usecase->mixer_list) { mixer_card = node_to_item(node, struct mixer_card, uc_list_node[usecase->id]); audio_route_update_mixer(mixer_card->audio_route); } usecase->in_snd_device = in_snd_device; usecase->out_snd_device = out_snd_device; return 0; } static ssize_t read_frames(struct stream_in *in, void *buffer, ssize_t frames); static int do_in_standby_l(struct stream_in *in); static audio_format_t in_get_format(const struct audio_stream *stream); #ifdef PREPROCESSING_ENABLED static int get_command_status(int status, int fct_status, uint32_t cmd_status) { if (fct_status != 0) status = fct_status; else if (cmd_status != 0) status = cmd_status; return status; } static uint32_t in_get_aux_channels(struct stream_in *in) { if (in->num_preprocessors == 0) return 0; /* do not enable quad mic configurations when capturing from other * microphones than main */ if (!(in->devices & AUDIO_DEVICE_IN_BUILTIN_MIC & ~AUDIO_DEVICE_BIT_IN)) return 0; return AUDIO_CHANNEL_INDEX_MASK_4; } static int in_configure_effect_channels(effect_handle_t effect, channel_config_t *channel_config) { int status = 0; int fct_status; int32_t cmd_status; uint32_t reply_size; effect_config_t config; uint32_t cmd[(sizeof(uint32_t) + sizeof(channel_config_t) - 1) / sizeof(uint32_t) + 1]; ALOGV("in_configure_effect_channels(): configure effect with channels: [%04x][%04x]", channel_config->main_channels, channel_config->aux_channels); config.inputCfg.mask = EFFECT_CONFIG_CHANNELS; config.outputCfg.mask = EFFECT_CONFIG_CHANNELS; reply_size = sizeof(effect_config_t); fct_status = (*effect)->command(effect, EFFECT_CMD_GET_CONFIG, 0, NULL, &reply_size, &config); if (fct_status != 0) { ALOGE("in_configure_effect_channels(): EFFECT_CMD_GET_CONFIG failed"); return fct_status; } config.inputCfg.channels = channel_config->aux_channels; config.outputCfg.channels = config.inputCfg.channels; reply_size = sizeof(uint32_t); fct_status = (*effect)->command(effect, EFFECT_CMD_SET_CONFIG, sizeof(effect_config_t), &config, &reply_size, &cmd_status); status = get_command_status(status, fct_status, cmd_status); if (status != 0) { ALOGE("in_configure_effect_channels(): EFFECT_CMD_SET_CONFIG failed"); return status; } /* some implementations need to be re-enabled after a config change */ reply_size = sizeof(uint32_t); fct_status = (*effect)->command(effect, EFFECT_CMD_ENABLE, 0, NULL, &reply_size, &cmd_status); status = get_command_status(status, fct_status, cmd_status); if (status != 0) { ALOGE("in_configure_effect_channels(): EFFECT_CMD_ENABLE failed"); return status; } return status; } static int in_reconfigure_channels(struct stream_in *in, effect_handle_t effect, channel_config_t *channel_config, bool config_changed) { int status = 0; ALOGV("in_reconfigure_channels(): config_changed %d effect %p", config_changed, effect); /* if config changed, reconfigure all previously added effects */ if (config_changed) { int i; ALOGV("%s: config_changed (%d)", __func__, config_changed); for (i = 0; i < in->num_preprocessors; i++) { int cur_status = in_configure_effect_channels(in->preprocessors[i].effect_itfe, channel_config); ALOGV("%s: in_configure_effect_channels i=(%d), [main_channel,aux_channel]=[%d|%d], status=%d", __func__, i, channel_config->main_channels, channel_config->aux_channels, cur_status); if (cur_status != 0) { ALOGV("in_reconfigure_channels(): error %d configuring effect " "%d with channels: [%04x][%04x]", cur_status, i, channel_config->main_channels, channel_config->aux_channels); status = cur_status; } } } else if (effect != NULL && channel_config->aux_channels) { /* if aux channels config did not change but aux channels are present, * we still need to configure the effect being added */ status = in_configure_effect_channels(effect, channel_config); } return status; } static void in_update_aux_channels(struct stream_in *in, effect_handle_t effect) { uint32_t aux_channels; channel_config_t channel_config; int status; aux_channels = in_get_aux_channels(in); channel_config.main_channels = in->main_channels; channel_config.aux_channels = aux_channels; status = in_reconfigure_channels(in, effect, &channel_config, (aux_channels != in->aux_channels)); if (status != 0) { ALOGV("in_update_aux_channels(): in_reconfigure_channels error %d", status); /* resetting aux channels configuration */ aux_channels = 0; channel_config.aux_channels = 0; in_reconfigure_channels(in, effect, &channel_config, true); } ALOGV("%s: aux_channels=%d, in->aux_channels_changed=%d", __func__, aux_channels, in->aux_channels_changed); if (in->aux_channels != aux_channels) { in->aux_channels_changed = true; in->aux_channels = aux_channels; do_in_standby_l(in); } } #endif /* This function reads PCM data and: * - resample if needed * - process if pre-processors are attached * - discard unwanted channels */ static ssize_t read_and_process_frames(struct audio_stream_in *stream, void* buffer, ssize_t frames_num) { struct stream_in *in = (struct stream_in *)stream; ssize_t frames_wr = 0; /* Number of frames actually read */ size_t bytes_per_sample = audio_bytes_per_sample(stream->common.get_format(&stream->common)); void *proc_buf_out = buffer; #ifdef PREPROCESSING_ENABLED audio_buffer_t in_buf; audio_buffer_t out_buf; int i; bool has_processing = in->num_preprocessors != 0; #endif /* Additional channels might be added on top of main_channels: * - aux_channels (by processing effects) * - extra channels due to HW limitations * In case of additional channels, we cannot work inplace */ size_t src_channels = in->config.channels; size_t dst_channels = audio_channel_count_from_in_mask(in->main_channels); bool channel_remapping_needed = (dst_channels != src_channels); size_t src_buffer_size = frames_num * src_channels * bytes_per_sample; #ifdef PREPROCESSING_ENABLED if (has_processing) { /* since all the processing below is done in frames and using the config.channels * as the number of channels, no changes is required in case aux_channels are present */ while (frames_wr < frames_num) { /* first reload enough frames at the end of process input buffer */ if (in->proc_buf_frames < (size_t)frames_num) { ssize_t frames_rd; if (in->proc_buf_size < (size_t)frames_num) { in->proc_buf_size = (size_t)frames_num; in->proc_buf_in = realloc(in->proc_buf_in, src_buffer_size); ALOG_ASSERT((in->proc_buf_in != NULL), "process_frames() failed to reallocate proc_buf_in"); if (channel_remapping_needed) { in->proc_buf_out = realloc(in->proc_buf_out, src_buffer_size); ALOG_ASSERT((in->proc_buf_out != NULL), "process_frames() failed to reallocate proc_buf_out"); proc_buf_out = in->proc_buf_out; } } frames_rd = read_frames(in, in->proc_buf_in + in->proc_buf_frames * src_channels * bytes_per_sample, frames_num - in->proc_buf_frames); if (frames_rd < 0) { /* Return error code */ frames_wr = frames_rd; break; } in->proc_buf_frames += frames_rd; } /* in_buf.frameCount and out_buf.frameCount indicate respectively * the maximum number of frames to be consumed and produced by process() */ in_buf.frameCount = in->proc_buf_frames; in_buf.s16 = in->proc_buf_in; out_buf.frameCount = frames_num - frames_wr; out_buf.s16 = (int16_t *)proc_buf_out + frames_wr * in->config.channels; /* FIXME: this works because of current pre processing library implementation that * does the actual process only when the last enabled effect process is called. * The generic solution is to have an output buffer for each effect and pass it as * input to the next. */ for (i = 0; i < in->num_preprocessors; i++) { (*in->preprocessors[i].effect_itfe)->process(in->preprocessors[i].effect_itfe, &in_buf, &out_buf); } /* process() has updated the number of frames consumed and produced in * in_buf.frameCount and out_buf.frameCount respectively * move remaining frames to the beginning of in->proc_buf_in */ in->proc_buf_frames -= in_buf.frameCount; if (in->proc_buf_frames) { memcpy(in->proc_buf_in, in->proc_buf_in + in_buf.frameCount * src_channels * bytes_per_sample, in->proc_buf_frames * in->config.channels * audio_bytes_per_sample(in_get_format(in))); } /* if not enough frames were passed to process(), read more and retry. */ if (out_buf.frameCount == 0) { ALOGW("No frames produced by preproc"); continue; } if ((frames_wr + (ssize_t)out_buf.frameCount) <= frames_num) { frames_wr += out_buf.frameCount; } else { /* The effect does not comply to the API. In theory, we should never end up here! */ ALOGE("preprocessing produced too many frames: %d + %zd > %d !", (unsigned int)frames_wr, out_buf.frameCount, (unsigned int)frames_num); frames_wr = frames_num; } } } else #endif //PREPROCESSING_ENABLED { /* No processing effects attached */ if (channel_remapping_needed) { /* With additional channels, we cannot use original buffer */ if (in->proc_buf_size < src_buffer_size) { in->proc_buf_size = src_buffer_size; in->proc_buf_out = realloc(in->proc_buf_out, src_buffer_size); ALOG_ASSERT((in->proc_buf_out != NULL), "process_frames() failed to reallocate proc_buf_out"); } proc_buf_out = in->proc_buf_out; } frames_wr = read_frames(in, proc_buf_out, frames_num); ALOG_ASSERT(frames_wr <= frames_num, "read more frames than requested"); } if (channel_remapping_needed) { size_t ret = adjust_channels(proc_buf_out, src_channels, buffer, dst_channels, bytes_per_sample, frames_wr * src_channels * bytes_per_sample); ALOG_ASSERT(ret == (frames_wr * dst_channels * bytes_per_sample)); } return frames_wr; } static int get_next_buffer(struct resampler_buffer_provider *buffer_provider, struct resampler_buffer* buffer) { struct stream_in *in; struct pcm_device *pcm_device; if (buffer_provider == NULL || buffer == NULL) return -EINVAL; in = (struct stream_in *)((char *)buffer_provider - offsetof(struct stream_in, buf_provider)); if (list_empty(&in->pcm_dev_list)) { buffer->raw = NULL; buffer->frame_count = 0; in->read_status = -ENODEV; return -ENODEV; } pcm_device = node_to_item(list_head(&in->pcm_dev_list), struct pcm_device, stream_list_node); if (in->read_buf_frames == 0) { size_t size_in_bytes = pcm_frames_to_bytes(pcm_device->pcm, in->config.period_size); if (in->read_buf_size < in->config.period_size) { in->read_buf_size = in->config.period_size; in->read_buf = (int16_t *) realloc(in->read_buf, size_in_bytes); ALOG_ASSERT((in->read_buf != NULL), "get_next_buffer() failed to reallocate read_buf"); } in->read_status = pcm_read(pcm_device->pcm, (void*)in->read_buf, size_in_bytes); if (in->read_status != 0) { ALOGE("get_next_buffer() pcm_read error %d", in->read_status); buffer->raw = NULL; buffer->frame_count = 0; return in->read_status; } in->read_buf_frames = in->config.period_size; } buffer->frame_count = (buffer->frame_count > in->read_buf_frames) ? in->read_buf_frames : buffer->frame_count; buffer->i16 = in->read_buf + (in->config.period_size - in->read_buf_frames) * in->config.channels; return in->read_status; } static void release_buffer(struct resampler_buffer_provider *buffer_provider, struct resampler_buffer* buffer) { struct stream_in *in; if (buffer_provider == NULL || buffer == NULL) return; in = (struct stream_in *)((char *)buffer_provider - offsetof(struct stream_in, buf_provider)); in->read_buf_frames -= buffer->frame_count; } /* read_frames() reads frames from kernel driver, down samples to capture rate * if necessary and output the number of frames requested to the buffer specified */ static ssize_t read_frames(struct stream_in *in, void *buffer, ssize_t frames) { ssize_t frames_wr = 0; struct pcm_device *pcm_device; if (list_empty(&in->pcm_dev_list)) { ALOGE("%s: pcm device list empty", __func__); return -EINVAL; } pcm_device = node_to_item(list_head(&in->pcm_dev_list), struct pcm_device, stream_list_node); while (frames_wr < frames) { size_t frames_rd = frames - frames_wr; ALOGVV("%s: frames_rd: %zd, frames_wr: %zd, in->config.channels: %d", __func__,frames_rd,frames_wr,in->config.channels); if (in->resampler != NULL) { in->resampler->resample_from_provider(in->resampler, (int16_t *)((char *)buffer + pcm_frames_to_bytes(pcm_device->pcm, frames_wr)), &frames_rd); } else { struct resampler_buffer buf = { { raw : NULL, }, frame_count : frames_rd, }; get_next_buffer(&in->buf_provider, &buf); if (buf.raw != NULL) { memcpy((char *)buffer + pcm_frames_to_bytes(pcm_device->pcm, frames_wr), buf.raw, pcm_frames_to_bytes(pcm_device->pcm, buf.frame_count)); frames_rd = buf.frame_count; } release_buffer(&in->buf_provider, &buf); } /* in->read_status is updated by getNextBuffer() also called by * in->resampler->resample_from_provider() */ if (in->read_status != 0) return in->read_status; frames_wr += frames_rd; } return frames_wr; } static int in_release_pcm_devices(struct stream_in *in) { struct pcm_device *pcm_device; struct listnode *node; struct listnode *next; list_for_each_safe(node, next, &in->pcm_dev_list) { pcm_device = node_to_item(node, struct pcm_device, stream_list_node); list_remove(node); free(pcm_device); } return 0; } static int stop_input_stream(struct stream_in *in) { struct audio_usecase *uc_info; struct audio_device *adev = in->dev; adev->active_input = NULL; ALOGV("%s: enter: usecase(%d: %s)", __func__, in->usecase, use_case_table[in->usecase]); uc_info = get_usecase_from_id(adev, in->usecase); if (uc_info == NULL) { ALOGE("%s: Could not find the usecase (%d) in the list", __func__, in->usecase); return -EINVAL; } /* Disable the tx device */ disable_snd_device(adev, uc_info, uc_info->in_snd_device, true); list_remove(&uc_info->adev_list_node); free(uc_info); if (list_empty(&in->pcm_dev_list)) { ALOGE("%s: pcm device list empty", __func__); return -EINVAL; } in_release_pcm_devices(in); list_init(&in->pcm_dev_list); return 0; } int start_input_stream(struct stream_in *in) { /* Enable output device and stream routing controls */ int ret = 0; bool recreate_resampler = false; struct audio_usecase *uc_info; struct audio_device *adev = in->dev; struct pcm_device_profile *pcm_profile; struct pcm_device *pcm_device; ALOGV("%s: enter: usecase(%d)", __func__, in->usecase); adev->active_input = in; pcm_profile = get_pcm_device(in->usecase_type, in->devices); if (pcm_profile == NULL) { ALOGE("%s: Could not find PCM device id for the usecase(%d)", __func__, in->usecase); ret = -EINVAL; goto error_config; } if (in->input_flags & AUDIO_INPUT_FLAG_FAST) { ALOGV("%s: change capture period size to low latency size %d", __func__, CAPTURE_PERIOD_SIZE_LOW_LATENCY); pcm_profile->config.period_size = CAPTURE_PERIOD_SIZE_LOW_LATENCY; } uc_info = (struct audio_usecase *)calloc(1, sizeof(struct audio_usecase)); uc_info->id = in->usecase; uc_info->type = PCM_CAPTURE; uc_info->stream = (struct audio_stream *)in; uc_info->devices = in->devices; uc_info->in_snd_device = SND_DEVICE_NONE; uc_info->out_snd_device = SND_DEVICE_NONE; pcm_device = (struct pcm_device *)calloc(1, sizeof(struct pcm_device)); pcm_device->pcm_profile = pcm_profile; list_init(&in->pcm_dev_list); list_add_tail(&in->pcm_dev_list, &pcm_device->stream_list_node); list_init(&uc_info->mixer_list); list_add_tail(&uc_info->mixer_list, &adev_get_mixer_for_card(adev, pcm_device->pcm_profile->card)->uc_list_node[uc_info->id]); list_add_tail(&adev->usecase_list, &uc_info->adev_list_node); select_devices(adev, in->usecase); /* Config should be updated as profile can be changed between different calls * to this function: * - Trigger resampler creation * - Config needs to be updated */ if (in->config.rate != pcm_profile->config.rate) { recreate_resampler = true; } in->config = pcm_profile->config; #ifdef PREPROCESSING_ENABLED if (in->aux_channels_changed) { in->config.channels = audio_channel_count_from_in_mask(in->aux_channels); recreate_resampler = true; } #endif if (in->requested_rate != in->config.rate) { recreate_resampler = true; } if (recreate_resampler) { if (in->resampler) { release_resampler(in->resampler); in->resampler = NULL; } in->buf_provider.get_next_buffer = get_next_buffer; in->buf_provider.release_buffer = release_buffer; ret = create_resampler(in->config.rate, in->requested_rate, in->config.channels, RESAMPLER_QUALITY_DEFAULT, &in->buf_provider, &in->resampler); } /* Open the PCM device. * The HW is limited to support only the default pcm_profile settings. * As such a change in aux_channels will not have an effect. */ ALOGV("%s: Opening PCM device card_id(%d) device_id(%d), channels %d, smp rate %d format %d, \ period_size %d", __func__, pcm_device->pcm_profile->card, pcm_device->pcm_profile->device, pcm_device->pcm_profile->config.channels,pcm_device->pcm_profile->config.rate, pcm_device->pcm_profile->config.format, pcm_device->pcm_profile->config.period_size); if (pcm_profile->type == PCM_HOTWORD_STREAMING) { if (!adev->sound_trigger_open_for_streaming) { ALOGE("%s: No handle to sound trigger HAL", __func__); ret = -EIO; goto error_open; } pcm_device->pcm = NULL; pcm_device->sound_trigger_handle = adev->sound_trigger_open_for_streaming(); if (pcm_device->sound_trigger_handle <= 0) { ALOGE("%s: Failed to open DSP for streaming", __func__); ret = -EIO; goto error_open; } ALOGV("Opened DSP successfully"); } else { pcm_device->sound_trigger_handle = 0; pcm_device->pcm = pcm_open(pcm_device->pcm_profile->card, pcm_device->pcm_profile->device, PCM_IN | PCM_MONOTONIC, &pcm_device->pcm_profile->config); if (pcm_device->pcm && !pcm_is_ready(pcm_device->pcm)) { ALOGE("%s: %s", __func__, pcm_get_error(pcm_device->pcm)); pcm_close(pcm_device->pcm); pcm_device->pcm = NULL; ret = -EIO; goto error_open; } } /* force read and proc buffer reallocation in case of frame size or * channel count change */ #ifdef PREPROCESSING_ENABLED in->proc_buf_frames = 0; #endif in->proc_buf_size = 0; in->read_buf_size = 0; in->read_buf_frames = 0; /* if no supported sample rate is available, use the resampler */ if (in->resampler) { in->resampler->reset(in->resampler); } ALOGV("%s: exit", __func__); return ret; error_open: if (in->resampler) { release_resampler(in->resampler); in->resampler = NULL; } stop_input_stream(in); error_config: ALOGV("%s: exit: status(%d)", __func__, ret); adev->active_input = NULL; return ret; } static void lock_input_stream(struct stream_in *in) { pthread_mutex_lock(&in->pre_lock); pthread_mutex_lock(&in->lock); pthread_mutex_unlock(&in->pre_lock); } static void lock_output_stream(struct stream_out *out) { pthread_mutex_lock(&out->pre_lock); pthread_mutex_lock(&out->lock); pthread_mutex_unlock(&out->pre_lock); } static int uc_release_pcm_devices(struct audio_usecase *usecase) { struct stream_out *out = (struct stream_out *)usecase->stream; struct pcm_device *pcm_device; struct listnode *node; struct listnode *next; list_for_each_safe(node, next, &out->pcm_dev_list) { pcm_device = node_to_item(node, struct pcm_device, stream_list_node); list_remove(node); free(pcm_device); } list_init(&usecase->mixer_list); return 0; } static int uc_select_pcm_devices(struct audio_usecase *usecase) { struct stream_out *out = (struct stream_out *)usecase->stream; struct pcm_device *pcm_device; struct pcm_device_profile *pcm_profile; struct mixer_card *mixer_card; audio_devices_t devices = usecase->devices; list_init(&usecase->mixer_list); list_init(&out->pcm_dev_list); pcm_profile = get_pcm_device(usecase->type, devices); if (pcm_profile) { pcm_device = calloc(1, sizeof(struct pcm_device)); pcm_device->pcm_profile = pcm_profile; list_add_tail(&out->pcm_dev_list, &pcm_device->stream_list_node); mixer_card = uc_get_mixer_for_card(usecase, pcm_profile->card); if (mixer_card == NULL) { mixer_card = adev_get_mixer_for_card(out->dev, pcm_profile->card); list_add_tail(&usecase->mixer_list, &mixer_card->uc_list_node[usecase->id]); } devices &= ~pcm_profile->devices; } else { ALOGE("usecase type=%d, devices=%d did not find exact match", usecase->type, devices); } return 0; } static int out_close_pcm_devices(struct stream_out *out) { struct pcm_device *pcm_device; struct listnode *node; struct audio_device *adev = out->dev; list_for_each(node, &out->pcm_dev_list) { pcm_device = node_to_item(node, struct pcm_device, stream_list_node); if (pcm_device->sound_trigger_handle > 0) { adev->sound_trigger_close_for_streaming( pcm_device->sound_trigger_handle); pcm_device->sound_trigger_handle = 0; } if (pcm_device->pcm) { pcm_close(pcm_device->pcm); pcm_device->pcm = NULL; } if (pcm_device->resampler) { release_resampler(pcm_device->resampler); pcm_device->resampler = NULL; } if (pcm_device->res_buffer) { free(pcm_device->res_buffer); pcm_device->res_buffer = NULL; } if (pcm_device->dsp_context) { cras_dsp_context_free(pcm_device->dsp_context); pcm_device->dsp_context = NULL; } } return 0; } static int out_open_pcm_devices(struct stream_out *out) { struct pcm_device *pcm_device; struct listnode *node; struct audio_device *adev = out->dev; int ret = 0; list_for_each(node, &out->pcm_dev_list) { pcm_device = node_to_item(node, struct pcm_device, stream_list_node); ALOGV("%s: Opening PCM device card_id(%d) device_id(%d)", __func__, pcm_device->pcm_profile->card, pcm_device->pcm_profile->device); if (pcm_device->pcm_profile->dsp_name) { pcm_device->dsp_context = cras_dsp_context_new(pcm_device->pcm_profile->config.rate, (adev->mode == AUDIO_MODE_IN_CALL || adev->mode == AUDIO_MODE_IN_COMMUNICATION) ? "voice-comm" : "playback"); if (pcm_device->dsp_context) { cras_dsp_set_variable(pcm_device->dsp_context, "dsp_name", pcm_device->pcm_profile->dsp_name); cras_dsp_load_pipeline(pcm_device->dsp_context); } } pcm_device->pcm = pcm_open(pcm_device->pcm_profile->card, pcm_device->pcm_profile->device, PCM_OUT | PCM_MONOTONIC, &pcm_device->pcm_profile->config); if (pcm_device->pcm && !pcm_is_ready(pcm_device->pcm)) { ALOGE("%s: %s", __func__, pcm_get_error(pcm_device->pcm)); pcm_device->pcm = NULL; ret = -EIO; goto error_open; } /* * If the stream rate differs from the PCM rate, we need to * create a resampler. */ if (out->sample_rate != pcm_device->pcm_profile->config.rate) { ALOGV("%s: create_resampler(), pcm_device_card(%d), pcm_device_id(%d), \ out_rate(%d), device_rate(%d)",__func__, pcm_device->pcm_profile->card, pcm_device->pcm_profile->device, out->sample_rate, pcm_device->pcm_profile->config.rate); ret = create_resampler(out->sample_rate, pcm_device->pcm_profile->config.rate, audio_channel_count_from_out_mask(out->channel_mask), RESAMPLER_QUALITY_DEFAULT, NULL, &pcm_device->resampler); pcm_device->res_byte_count = 0; pcm_device->res_buffer = NULL; } } return ret; error_open: out_close_pcm_devices(out); return ret; } static int disable_output_path_l(struct stream_out *out) { struct audio_device *adev = out->dev; struct audio_usecase *uc_info; uc_info = get_usecase_from_id(adev, out->usecase); if (uc_info == NULL) { ALOGE("%s: Could not find the usecase (%d) in the list", __func__, out->usecase); return -EINVAL; } disable_snd_device(adev, uc_info, uc_info->out_snd_device, true); uc_release_pcm_devices(uc_info); list_remove(&uc_info->adev_list_node); free(uc_info); return 0; } static void enable_output_path_l(struct stream_out *out) { struct audio_device *adev = out->dev; struct audio_usecase *uc_info; uc_info = (struct audio_usecase *)calloc(1, sizeof(struct audio_usecase)); uc_info->id = out->usecase; uc_info->type = PCM_PLAYBACK; uc_info->stream = (struct audio_stream *)out; uc_info->devices = out->devices; uc_info->in_snd_device = SND_DEVICE_NONE; uc_info->out_snd_device = SND_DEVICE_NONE; uc_select_pcm_devices(uc_info); list_add_tail(&adev->usecase_list, &uc_info->adev_list_node); select_devices(adev, out->usecase); } static int stop_output_stream(struct stream_out *out) { int ret = 0; struct audio_device *adev = out->dev; bool do_disable = true; ALOGV("%s: enter: usecase(%d: %s)", __func__, out->usecase, use_case_table[out->usecase]); ret = disable_output_path_l(out); ALOGV("%s: exit: status(%d)", __func__, ret); return ret; } int start_output_stream(struct stream_out *out) { int ret = 0; struct audio_device *adev = out->dev; ALOGV("%s: enter: usecase(%d: %s) devices(%#x) channels(%d)", __func__, out->usecase, use_case_table[out->usecase], out->devices, out->config.channels); enable_output_path_l(out); ret = out_open_pcm_devices(out); if (ret != 0) goto error_open; ALOGV("%s: exit", __func__); return 0; error_open: stop_output_stream(out); return ret; } static int stop_voice_call(struct audio_device *adev) { struct audio_usecase *uc_info; ALOGV("%s: enter", __func__); adev->in_call = false; /* TODO: implement voice call stop */ uc_info = get_usecase_from_id(adev, USECASE_VOICE_CALL); if (uc_info == NULL) { ALOGE("%s: Could not find the usecase (%d) in the list", __func__, USECASE_VOICE_CALL); return -EINVAL; } disable_snd_device(adev, uc_info, uc_info->out_snd_device, false); disable_snd_device(adev, uc_info, uc_info->in_snd_device, true); uc_release_pcm_devices(uc_info); list_remove(&uc_info->adev_list_node); free(uc_info); ALOGV("%s: exit", __func__); return 0; } /* always called with adev lock held */ static int start_voice_call(struct audio_device *adev) { struct audio_usecase *uc_info; ALOGV("%s: enter", __func__); uc_info = (struct audio_usecase *)calloc(1, sizeof(struct audio_usecase)); uc_info->id = USECASE_VOICE_CALL; uc_info->type = VOICE_CALL; uc_info->stream = (struct audio_stream *)adev->primary_output; uc_info->devices = adev->primary_output->devices; uc_info->in_snd_device = SND_DEVICE_NONE; uc_info->out_snd_device = SND_DEVICE_NONE; uc_select_pcm_devices(uc_info); list_add_tail(&adev->usecase_list, &uc_info->adev_list_node); select_devices(adev, USECASE_VOICE_CALL); /* TODO: implement voice call start */ /* set cached volume */ set_voice_volume_l(adev, adev->voice_volume); adev->in_call = true; ALOGV("%s: exit", __func__); return 0; } static int check_input_parameters(uint32_t sample_rate, audio_format_t format, int channel_count) { if (format != AUDIO_FORMAT_PCM_16_BIT) return -EINVAL; if ((channel_count < 1) || (channel_count > 4)) return -EINVAL; switch (sample_rate) { case 8000: case 11025: case 12000: case 16000: case 22050: case 24000: case 32000: case 44100: case 48000: break; default: return -EINVAL; } return 0; } static size_t get_input_buffer_size(uint32_t sample_rate, audio_format_t format, int channel_count, usecase_type_t usecase_type, audio_devices_t devices) { size_t size = 0; struct pcm_device_profile *pcm_profile; if (check_input_parameters(sample_rate, format, channel_count) != 0) return 0; pcm_profile = get_pcm_device(usecase_type, devices); if (pcm_profile == NULL) return 0; /* * take resampling into account and return the closest majoring * multiple of 16 frames, as audioflinger expects audio buffers to * be a multiple of 16 frames */ size = (pcm_profile->config.period_size * sample_rate) / pcm_profile->config.rate; size = ((size + 15) / 16) * 16; return (size * channel_count * audio_bytes_per_sample(format)); } static uint32_t out_get_sample_rate(const struct audio_stream *stream) { struct stream_out *out = (struct stream_out *)stream; return out->sample_rate; } static int out_set_sample_rate(struct audio_stream *stream, uint32_t rate) { (void)stream; (void)rate; return -ENOSYS; } static size_t out_get_buffer_size(const struct audio_stream *stream) { struct stream_out *out = (struct stream_out *)stream; return out->config.period_size * audio_stream_out_frame_size((const struct audio_stream_out *)stream); } static uint32_t out_get_channels(const struct audio_stream *stream) { struct stream_out *out = (struct stream_out *)stream; return out->channel_mask; } static audio_format_t out_get_format(const struct audio_stream *stream) { struct stream_out *out = (struct stream_out *)stream; return out->format; } static int out_set_format(struct audio_stream *stream, audio_format_t format) { (void)stream; (void)format; return -ENOSYS; } static int do_out_standby_l(struct stream_out *out) { struct audio_device *adev = out->dev; int status = 0; out->standby = true; out_close_pcm_devices(out); status = stop_output_stream(out); return status; } static int out_standby(struct audio_stream *stream) { struct stream_out *out = (struct stream_out *)stream; struct audio_device *adev = out->dev; ALOGV("%s: enter: usecase(%d: %s)", __func__, out->usecase, use_case_table[out->usecase]); lock_output_stream(out); if (!out->standby) { pthread_mutex_lock(&adev->lock); do_out_standby_l(out); pthread_mutex_unlock(&adev->lock); } pthread_mutex_unlock(&out->lock); ALOGV("%s: exit", __func__); return 0; } static int out_dump(const struct audio_stream *stream, int fd) { (void)stream; (void)fd; return 0; } static int out_set_parameters(struct audio_stream *stream, const char *kvpairs) { struct stream_out *out = (struct stream_out *)stream; struct audio_device *adev = out->dev; struct audio_usecase *usecase; struct listnode *node; struct str_parms *parms; char value[32]; int ret, val = 0; bool devices_changed; struct pcm_device *pcm_device; struct pcm_device_profile *pcm_profile; #ifdef PREPROCESSING_ENABLED struct stream_in *in = NULL; /* if non-NULL, then force input to standby */ #endif ALOGV("%s: enter: usecase(%d: %s) kvpairs: %s out->devices(%d) adev->mode(%d)", __func__, out->usecase, use_case_table[out->usecase], kvpairs, out->devices, adev->mode); parms = str_parms_create_str(kvpairs); ret = str_parms_get_str(parms, AUDIO_PARAMETER_STREAM_ROUTING, value, sizeof(value)); if (ret >= 0) { val = atoi(value); pthread_mutex_lock(&adev->lock_inputs); lock_output_stream(out); pthread_mutex_lock(&adev->lock); #ifdef PREPROCESSING_ENABLED if (((int)out->devices != val) && (val != 0) && (!out->standby) && (out->usecase == USECASE_AUDIO_PLAYBACK)) { /* reset active input: * - to attach the echo reference * - because a change in output device may change mic settings */ if (adev->active_input && (adev->active_input->source == AUDIO_SOURCE_VOICE_COMMUNICATION || adev->active_input->source == AUDIO_SOURCE_MIC)) { in = adev->active_input; } } #endif if (val != 0) { devices_changed = out->devices != (audio_devices_t)val; out->devices = val; if (!out->standby) { if (devices_changed) do_out_standby_l(out); else select_devices(adev, out->usecase); } if ((adev->mode == AUDIO_MODE_IN_CALL) && !adev->in_call && (out == adev->primary_output)) { start_voice_call(adev); } else if ((adev->mode == AUDIO_MODE_IN_CALL) && adev->in_call && (out == adev->primary_output)) { select_devices(adev, USECASE_VOICE_CALL); } } if ((adev->mode == AUDIO_MODE_NORMAL) && adev->in_call && (out == adev->primary_output)) { stop_voice_call(adev); } pthread_mutex_unlock(&adev->lock); pthread_mutex_unlock(&out->lock); #ifdef PREPROCESSING_ENABLED if (in) { /* The lock on adev->lock_inputs prevents input stream from being closed */ lock_input_stream(in); pthread_mutex_lock(&adev->lock); LOG_ALWAYS_FATAL_IF(in != adev->active_input); do_in_standby_l(in); pthread_mutex_unlock(&adev->lock); pthread_mutex_unlock(&in->lock); } #endif pthread_mutex_unlock(&adev->lock_inputs); } str_parms_destroy(parms); ALOGV("%s: exit: code(%d)", __func__, ret); return ret; } static char* out_get_parameters(const struct audio_stream *stream, const char *keys) { struct stream_out *out = (struct stream_out *)stream; struct str_parms *query = str_parms_create_str(keys); char *str; char value[256]; struct str_parms *reply = str_parms_create(); size_t i, j; int ret; bool first = true; ALOGV("%s: enter: keys - %s", __func__, keys); ret = str_parms_get_str(query, AUDIO_PARAMETER_STREAM_SUP_CHANNELS, value, sizeof(value)); if (ret >= 0) { value[0] = '\0'; i = 0; while (out->supported_channel_masks[i] != 0) { for (j = 0; j < ARRAY_SIZE(out_channels_name_to_enum_table); j++) { if (out_channels_name_to_enum_table[j].value == out->supported_channel_masks[i]) { if (!first) { strcat(value, "|"); } strcat(value, out_channels_name_to_enum_table[j].name); first = false; break; } } i++; } str_parms_add_str(reply, AUDIO_PARAMETER_STREAM_SUP_CHANNELS, value); str = str_parms_to_str(reply); } else { str = strdup(keys); } str_parms_destroy(query); str_parms_destroy(reply); ALOGV("%s: exit: returns - %s", __func__, str); return str; } static uint32_t out_get_latency(const struct audio_stream_out *stream) { struct stream_out *out = (struct stream_out *)stream; return (out->config.period_count * out->config.period_size * 1000) / (out->config.rate); } static int out_set_volume(struct audio_stream_out *stream, float left, float right) { struct stream_out *out = (struct stream_out *)stream; struct audio_device *adev = out->dev; (void)right; if (out->usecase == USECASE_AUDIO_PLAYBACK_MULTI_CH) { /* only take left channel into account: the API is for stereo anyway */ out->muted = (left == 0.0f); return 0; } return -ENOSYS; } /* Applies the DSP to the samples for the iodev if applicable. */ static void apply_dsp(struct pcm_device *iodev, uint8_t *buf, size_t frames) { struct cras_dsp_context *ctx; struct pipeline *pipeline; ctx = iodev->dsp_context; if (!ctx) return; pipeline = cras_dsp_get_pipeline(ctx); if (!pipeline) return; cras_dsp_pipeline_apply(pipeline, buf, frames); cras_dsp_put_pipeline(ctx); } static ssize_t out_write(struct audio_stream_out *stream, const void *buffer, size_t bytes) { struct stream_out *out = (struct stream_out *)stream; struct audio_device *adev = out->dev; ssize_t ret = 0; struct pcm_device *pcm_device; struct listnode *node; size_t frame_size = audio_stream_out_frame_size(stream); size_t frames_wr = 0, frames_rq = 0; unsigned char *data = NULL; struct pcm_config config; #ifdef PREPROCESSING_ENABLED size_t in_frames = bytes / frame_size; size_t out_frames = in_frames; struct stream_in *in = NULL; #endif lock_output_stream(out); if (out->standby) { #ifdef PREPROCESSING_ENABLED pthread_mutex_unlock(&out->lock); /* Prevent input stream from being closed */ pthread_mutex_lock(&adev->lock_inputs); lock_output_stream(out); if (!out->standby) { pthread_mutex_unlock(&adev->lock_inputs); goto false_alarm; } #endif pthread_mutex_lock(&adev->lock); ret = start_output_stream(out); if (ret != 0) { pthread_mutex_unlock(&adev->lock); #ifdef PREPROCESSING_ENABLED pthread_mutex_unlock(&adev->lock_inputs); #endif goto exit; } out->standby = false; #ifdef PREPROCESSING_ENABLED /* A change in output device may change the microphone selection */ if (adev->active_input && (adev->active_input->source == AUDIO_SOURCE_VOICE_COMMUNICATION || adev->active_input->source == AUDIO_SOURCE_MIC)) { in = adev->active_input; ALOGV("%s: enter: force_input_standby true", __func__); } #endif pthread_mutex_unlock(&adev->lock); #ifdef PREPROCESSING_ENABLED if (!in) { /* Leave mutex locked iff in != NULL */ pthread_mutex_unlock(&adev->lock_inputs); } #endif } false_alarm: if (out->muted) memset((void *)buffer, 0, bytes); list_for_each(node, &out->pcm_dev_list) { pcm_device = node_to_item(node, struct pcm_device, stream_list_node); if (pcm_device->resampler) { if (bytes * pcm_device->pcm_profile->config.rate / out->sample_rate + frame_size > pcm_device->res_byte_count) { pcm_device->res_byte_count = bytes * pcm_device->pcm_profile->config.rate / out->sample_rate + frame_size; pcm_device->res_buffer = realloc(pcm_device->res_buffer, pcm_device->res_byte_count); ALOGV("%s: resampler res_byte_count = %zu", __func__, pcm_device->res_byte_count); } frames_rq = bytes / frame_size; frames_wr = pcm_device->res_byte_count / frame_size; ALOGVV("%s: resampler request frames = %zu frame_size = %zu", __func__, frames_rq, frame_size); pcm_device->resampler->resample_from_input(pcm_device->resampler, (int16_t *)buffer, &frames_rq, (int16_t *)pcm_device->res_buffer, &frames_wr); ALOGVV("%s: resampler output frames_= %zu", __func__, frames_wr); } if (pcm_device->pcm) { size_t src_channels = audio_channel_count_from_out_mask(out->channel_mask); size_t dst_channels = pcm_device->pcm_profile->config.channels; bool channel_remapping_needed = (dst_channels != src_channels); unsigned audio_bytes; const void *audio_data; ALOGVV("%s: writing buffer (%zd bytes) to pcm device", __func__, bytes); if (pcm_device->resampler && pcm_device->res_buffer) { audio_data = pcm_device->res_buffer; audio_bytes = frames_wr * frame_size; } else { audio_data = buffer; audio_bytes = bytes; } /* * This can only be S16_LE stereo because of the supported formats, * 4 bytes per frame. */ apply_dsp(pcm_device, audio_data, audio_bytes/4); if (channel_remapping_needed) { const void *remapped_audio_data; size_t dest_buffer_size = audio_bytes * dst_channels / src_channels; size_t new_size; size_t bytes_per_sample = audio_bytes_per_sample(stream->common.get_format(&stream->common)); /* With additional channels, we cannot use original buffer */ if (out->proc_buf_size < dest_buffer_size) { out->proc_buf_size = dest_buffer_size; out->proc_buf_out = realloc(out->proc_buf_out, dest_buffer_size); ALOG_ASSERT((out->proc_buf_out != NULL), "out_write() failed to reallocate proc_buf_out"); } new_size = adjust_channels(audio_data, src_channels, out->proc_buf_out, dst_channels, bytes_per_sample, audio_bytes); ALOG_ASSERT(new_size == dest_buffer_size); audio_data = out->proc_buf_out; audio_bytes = dest_buffer_size; } pcm_device->status = pcm_write(pcm_device->pcm, audio_data, audio_bytes); if (pcm_device->status != 0) ret = pcm_device->status; } } if (ret == 0) out->written += bytes / frame_size; exit: pthread_mutex_unlock(&out->lock); if (ret != 0) { list_for_each(node, &out->pcm_dev_list) { pcm_device = node_to_item(node, struct pcm_device, stream_list_node); if (pcm_device->pcm && pcm_device->status != 0) ALOGE("%s: error %zd - %s", __func__, ret, pcm_get_error(pcm_device->pcm)); } out_standby(&out->stream.common); usleep(bytes * 1000000 / audio_stream_out_frame_size(stream) / out_get_sample_rate(&out->stream.common)); } #ifdef PREPROCESSING_ENABLED if (in) { /* The lock on adev->lock_inputs prevents input stream from being closed */ lock_input_stream(in); pthread_mutex_lock(&adev->lock); LOG_ALWAYS_FATAL_IF(in != adev->active_input); do_in_standby_l(in); pthread_mutex_unlock(&adev->lock); pthread_mutex_unlock(&in->lock); /* This mutex was left locked iff in != NULL */ pthread_mutex_unlock(&adev->lock_inputs); } #endif return bytes; } static int out_get_render_position(const struct audio_stream_out *stream, uint32_t *dsp_frames) { (void)stream; *dsp_frames = 0; return -EINVAL; } static int out_add_audio_effect(const struct audio_stream *stream, effect_handle_t effect) { (void)stream; (void)effect; return 0; } static int out_remove_audio_effect(const struct audio_stream *stream, effect_handle_t effect) { (void)stream; (void)effect; return 0; } static int out_get_next_write_timestamp(const struct audio_stream_out *stream, int64_t *timestamp) { (void)stream; (void)timestamp; return -EINVAL; } static int out_get_presentation_position(const struct audio_stream_out *stream, uint64_t *frames, struct timespec *timestamp) { struct stream_out *out = (struct stream_out *)stream; int ret = -1; unsigned long dsp_frames; lock_output_stream(out); /* FIXME: which device to read from? */ if (!list_empty(&out->pcm_dev_list)) { unsigned int avail; struct pcm_device *pcm_device = node_to_item(list_head(&out->pcm_dev_list), struct pcm_device, stream_list_node); if (pcm_get_htimestamp(pcm_device->pcm, &avail, timestamp) == 0) { size_t kernel_buffer_size = out->config.period_size * out->config.period_count; int64_t signed_frames = out->written - kernel_buffer_size + avail; /* This adjustment accounts for buffering after app processor. It is based on estimated DSP latency per use case, rather than exact. */ signed_frames -= (render_latency(out->usecase) * out->sample_rate / 1000000LL); /* It would be unusual for this value to be negative, but check just in case ... */ if (signed_frames >= 0) { *frames = signed_frames; ret = 0; } } } pthread_mutex_unlock(&out->lock); return ret; } /** audio_stream_in implementation **/ static uint32_t in_get_sample_rate(const struct audio_stream *stream) { struct stream_in *in = (struct stream_in *)stream; return in->requested_rate; } static int in_set_sample_rate(struct audio_stream *stream, uint32_t rate) { (void)stream; (void)rate; return -ENOSYS; } static uint32_t in_get_channels(const struct audio_stream *stream) { struct stream_in *in = (struct stream_in *)stream; return in->main_channels; } static audio_format_t in_get_format(const struct audio_stream *stream) { (void)stream; return AUDIO_FORMAT_PCM_16_BIT; } static int in_set_format(struct audio_stream *stream, audio_format_t format) { (void)stream; (void)format; return -ENOSYS; } static size_t in_get_buffer_size(const struct audio_stream *stream) { struct stream_in *in = (struct stream_in *)stream; return get_input_buffer_size(in->requested_rate, in_get_format(stream), audio_channel_count_from_in_mask(in->main_channels), in->usecase_type, in->devices); } static int in_close_pcm_devices(struct stream_in *in) { struct pcm_device *pcm_device; struct listnode *node; struct audio_device *adev = in->dev; list_for_each(node, &in->pcm_dev_list) { pcm_device = node_to_item(node, struct pcm_device, stream_list_node); if (pcm_device) { if (pcm_device->pcm) pcm_close(pcm_device->pcm); pcm_device->pcm = NULL; if (pcm_device->sound_trigger_handle > 0) adev->sound_trigger_close_for_streaming( pcm_device->sound_trigger_handle); pcm_device->sound_trigger_handle = 0; } } return 0; } /* must be called with stream and hw device mutex locked */ static int do_in_standby_l(struct stream_in *in) { int status = 0; if (!in->standby) { in_close_pcm_devices(in); status = stop_input_stream(in); if (in->read_buf) { free(in->read_buf); in->read_buf = NULL; } in->standby = 1; } return 0; } // called with adev->lock_inputs locked static int in_standby_l(struct stream_in *in) { struct audio_device *adev = in->dev; int status = 0; lock_input_stream(in); if (!in->standby) { pthread_mutex_lock(&adev->lock); status = do_in_standby_l(in); pthread_mutex_unlock(&adev->lock); } pthread_mutex_unlock(&in->lock); return status; } static int in_standby(struct audio_stream *stream) { struct stream_in *in = (struct stream_in *)stream; struct audio_device *adev = in->dev; int status; ALOGV("%s: enter", __func__); pthread_mutex_lock(&adev->lock_inputs); status = in_standby_l(in); pthread_mutex_unlock(&adev->lock_inputs); ALOGV("%s: exit: status(%d)", __func__, status); return status; } static int in_dump(const struct audio_stream *stream, int fd) { (void)stream; (void)fd; return 0; } static int in_set_parameters(struct audio_stream *stream, const char *kvpairs) { struct stream_in *in = (struct stream_in *)stream; struct audio_device *adev = in->dev; struct str_parms *parms; char *str; char value[32]; int ret, val = 0; struct audio_usecase *uc_info; bool do_standby = false; struct listnode *node; struct pcm_device *pcm_device; struct pcm_device_profile *pcm_profile; ALOGV("%s: enter: kvpairs=%s", __func__, kvpairs); parms = str_parms_create_str(kvpairs); ret = str_parms_get_str(parms, AUDIO_PARAMETER_STREAM_INPUT_SOURCE, value, sizeof(value)); pthread_mutex_lock(&adev->lock_inputs); lock_input_stream(in); pthread_mutex_lock(&adev->lock); if (ret >= 0) { val = atoi(value); /* no audio source uses val == 0 */ if (((int)in->source != val) && (val != 0)) { in->source = val; } } ret = str_parms_get_str(parms, AUDIO_PARAMETER_STREAM_ROUTING, value, sizeof(value)); if (ret >= 0) { val = atoi(value); if (((int)in->devices != val) && (val != 0)) { in->devices = val; /* If recording is in progress, change the tx device to new device */ if (!in->standby) { uc_info = get_usecase_from_id(adev, in->usecase); if (uc_info == NULL) { ALOGE("%s: Could not find the usecase (%d) in the list", __func__, in->usecase); } else { if (list_empty(&in->pcm_dev_list)) ALOGE("%s: pcm device list empty", __func__); else { pcm_device = node_to_item(list_head(&in->pcm_dev_list), struct pcm_device, stream_list_node); if ((pcm_device->pcm_profile->devices & val & ~AUDIO_DEVICE_BIT_IN) == 0) { do_standby = true; } } } if (do_standby) { ret = do_in_standby_l(in); } else ret = select_devices(adev, in->usecase); } } } pthread_mutex_unlock(&adev->lock); pthread_mutex_unlock(&in->lock); pthread_mutex_unlock(&adev->lock_inputs); str_parms_destroy(parms); if (ret > 0) ret = 0; return ret; } static char* in_get_parameters(const struct audio_stream *stream, const char *keys) { (void)stream; (void)keys; return strdup(""); } static int in_set_gain(struct audio_stream_in *stream, float gain) { (void)stream; (void)gain; return 0; } static ssize_t read_bytes_from_dsp(struct stream_in *in, void* buffer, size_t bytes) { struct pcm_device *pcm_device; struct audio_device *adev = in->dev; pcm_device = node_to_item(list_head(&in->pcm_dev_list), struct pcm_device, stream_list_node); if (pcm_device->sound_trigger_handle > 0) return adev->sound_trigger_read_samples( pcm_device->sound_trigger_handle, buffer, bytes); else return 0; } static ssize_t in_read(struct audio_stream_in *stream, void *buffer, size_t bytes) { struct stream_in *in = (struct stream_in *)stream; struct audio_device *adev = in->dev; ssize_t frames = -1; int ret = -1; int read_and_process_successful = false; size_t frames_rq = bytes / audio_stream_in_frame_size(stream); /* no need to acquire adev->lock_inputs because API contract prevents a close */ lock_input_stream(in); if (in->standby) { pthread_mutex_unlock(&in->lock); pthread_mutex_lock(&adev->lock_inputs); lock_input_stream(in); if (!in->standby) { pthread_mutex_unlock(&adev->lock_inputs); goto false_alarm; } pthread_mutex_lock(&adev->lock); ret = start_input_stream(in); pthread_mutex_unlock(&adev->lock); pthread_mutex_unlock(&adev->lock_inputs); if (ret != 0) { goto exit; } in->standby = 0; } false_alarm: if (!list_empty(&in->pcm_dev_list)) { if (in->usecase == USECASE_AUDIO_CAPTURE_HOTWORD) { bytes = read_bytes_from_dsp(in, buffer, bytes); if (bytes > 0) read_and_process_successful = true; } else { /* * Read PCM and: * - resample if needed * - process if pre-processors are attached * - discard unwanted channels */ frames = read_and_process_frames(stream, buffer, frames_rq); if (frames >= 0) read_and_process_successful = true; } } /* * Instead of writing zeroes here, we could trust the hardware * to always provide zeroes when muted. */ if (read_and_process_successful == true && adev->mic_mute) memset(buffer, 0, bytes); exit: pthread_mutex_unlock(&in->lock); if (read_and_process_successful == false) { in_standby(&in->stream.common); ALOGV("%s: read failed - sleeping for buffer duration", __func__); usleep(bytes * 1000000 / audio_stream_in_frame_size(stream) / in->requested_rate); } return bytes; } static uint32_t in_get_input_frames_lost(struct audio_stream_in *stream) { (void)stream; return 0; } static int add_remove_audio_effect(const struct audio_stream *stream, effect_handle_t effect, bool enable) { struct stream_in *in = (struct stream_in *)stream; struct audio_device *adev = in->dev; int status = 0; effect_descriptor_t desc; #ifdef PREPROCESSING_ENABLED int i; #endif status = (*effect)->get_descriptor(effect, &desc); if (status != 0) return status; ALOGI("add_remove_audio_effect(), effect type: %08x, enable: %d ", desc.type.timeLow, enable); pthread_mutex_lock(&adev->lock_inputs); lock_input_stream(in); pthread_mutex_lock(&in->dev->lock); #ifndef PREPROCESSING_ENABLED if ((in->source == AUDIO_SOURCE_VOICE_COMMUNICATION) && in->enable_aec != enable && (memcmp(&desc.type, FX_IID_AEC, sizeof(effect_uuid_t)) == 0)) { in->enable_aec = enable; if (!in->standby) select_devices(in->dev, in->usecase); } #else if (enable) { if (in->num_preprocessors >= MAX_PREPROCESSORS) { status = -ENOSYS; goto exit; } in->preprocessors[in->num_preprocessors].effect_itfe = effect; in->num_preprocessors ++; /* check compatibility between main channel supported and possible auxiliary channels */ in_update_aux_channels(in, effect);//wesley crash in->aux_channels_changed = true; } else { /* if ( enable == false ) */ if (in->num_preprocessors <= 0) { status = -ENOSYS; goto exit; } status = -EINVAL; for (i = 0; i < in->num_preprocessors && status != 0; i++) { if ( in->preprocessors[i].effect_itfe == effect ) { ALOGV("add_remove_audio_effect found fx at index %d", i); free(in->preprocessors[i].channel_configs); in->num_preprocessors--; memcpy(in->preprocessors + i, in->preprocessors + i + 1, (in->num_preprocessors - i) * sizeof(in->preprocessors[0])); memset(in->preprocessors + in->num_preprocessors, 0, sizeof(in->preprocessors[0])); status = 0; } } if (status != 0) goto exit; in->aux_channels_changed = false; ALOGV("%s: enable(%d), in->aux_channels_changed(%d)", __func__, enable, in->aux_channels_changed); } ALOGI("%s: num_preprocessors = %d", __func__, in->num_preprocessors); exit: #endif ALOGW_IF(status != 0, "add_remove_audio_effect() error %d", status); pthread_mutex_unlock(&in->dev->lock); pthread_mutex_unlock(&in->lock); pthread_mutex_unlock(&adev->lock_inputs); return status; } static int in_add_audio_effect(const struct audio_stream *stream, effect_handle_t effect) { ALOGV("%s: effect %p", __func__, effect); return add_remove_audio_effect(stream, effect, true /* enabled */); } static int in_remove_audio_effect(const struct audio_stream *stream, effect_handle_t effect) { ALOGV("%s: effect %p", __func__, effect); return add_remove_audio_effect(stream, effect, false /* disabled */); } static int adev_open_output_stream(struct audio_hw_device *dev, audio_io_handle_t handle, audio_devices_t devices, audio_output_flags_t flags, struct audio_config *config, struct audio_stream_out **stream_out, const char *address __unused) { struct audio_device *adev = (struct audio_device *)dev; struct stream_out *out; int i, ret; struct pcm_device_profile *pcm_profile; ALOGV("%s: enter: sample_rate(%d) channel_mask(%#x) devices(%#x) flags(%#x)", __func__, config->sample_rate, config->channel_mask, devices, flags); *stream_out = NULL; out = (struct stream_out *)calloc(1, sizeof(struct stream_out)); if (devices == AUDIO_DEVICE_NONE) devices = AUDIO_DEVICE_OUT_SPEAKER; out->flags = flags; out->devices = devices; out->dev = adev; out->format = config->format; out->sample_rate = config->sample_rate; out->channel_mask = AUDIO_CHANNEL_OUT_STEREO; out->supported_channel_masks[0] = AUDIO_CHANNEL_OUT_STEREO; out->handle = handle; pcm_profile = get_pcm_device(PCM_PLAYBACK, devices); if (pcm_profile == NULL) { ret = -EINVAL; goto error_open; } out->config = pcm_profile->config; /* Init use case and pcm_config */ if (out->flags & (AUDIO_OUTPUT_FLAG_DEEP_BUFFER)) { out->usecase = USECASE_AUDIO_PLAYBACK_DEEP_BUFFER; out->config = pcm_config_deep_buffer; out->sample_rate = out->config.rate; ALOGV("%s: use AUDIO_PLAYBACK_DEEP_BUFFER",__func__); } else { out->usecase = USECASE_AUDIO_PLAYBACK; out->sample_rate = out->config.rate; } if (flags & AUDIO_OUTPUT_FLAG_PRIMARY) { if (adev->primary_output == NULL) adev->primary_output = out; else { ALOGE("%s: Primary output is already opened", __func__); ret = -EEXIST; goto error_open; } } /* Check if this usecase is already existing */ pthread_mutex_lock(&adev->lock); if (get_usecase_from_id(adev, out->usecase) != NULL) { ALOGE("%s: Usecase (%d) is already present", __func__, out->usecase); pthread_mutex_unlock(&adev->lock); ret = -EEXIST; goto error_open; } pthread_mutex_unlock(&adev->lock); out->stream.common.get_sample_rate = out_get_sample_rate; out->stream.common.set_sample_rate = out_set_sample_rate; out->stream.common.get_buffer_size = out_get_buffer_size; out->stream.common.get_channels = out_get_channels; out->stream.common.get_format = out_get_format; out->stream.common.set_format = out_set_format; out->stream.common.standby = out_standby; out->stream.common.dump = out_dump; out->stream.common.set_parameters = out_set_parameters; out->stream.common.get_parameters = out_get_parameters; out->stream.common.add_audio_effect = out_add_audio_effect; out->stream.common.remove_audio_effect = out_remove_audio_effect; out->stream.get_latency = out_get_latency; out->stream.set_volume = out_set_volume; out->stream.write = out_write; out->stream.get_render_position = out_get_render_position; out->stream.get_next_write_timestamp = out_get_next_write_timestamp; out->stream.get_presentation_position = out_get_presentation_position; out->standby = 1; /* out->muted = false; by calloc() */ /* out->written = 0; by calloc() */ pthread_mutex_init(&out->lock, (const pthread_mutexattr_t *) NULL); pthread_mutex_init(&out->pre_lock, (const pthread_mutexattr_t *) NULL); pthread_cond_init(&out->cond, (const pthread_condattr_t *) NULL); config->format = out->stream.common.get_format(&out->stream.common); config->channel_mask = out->stream.common.get_channels(&out->stream.common); config->sample_rate = out->stream.common.get_sample_rate(&out->stream.common); *stream_out = &out->stream; ALOGV("%s: exit", __func__); return 0; error_open: free(out); *stream_out = NULL; ALOGV("%s: exit: ret %d", __func__, ret); return ret; } static void adev_close_output_stream(struct audio_hw_device *dev, struct audio_stream_out *stream) { struct stream_out *out = (struct stream_out *)stream; struct audio_device *adev = out->dev; (void)dev; ALOGV("%s: enter", __func__); out_standby(&stream->common); pthread_cond_destroy(&out->cond); pthread_mutex_destroy(&out->lock); pthread_mutex_destroy(&out->pre_lock); free(out->proc_buf_out); free(stream); ALOGV("%s: exit", __func__); } static int adev_set_parameters(struct audio_hw_device *dev, const char *kvpairs) { struct audio_device *adev = (struct audio_device *)dev; struct str_parms *parms; char *str; char value[32]; int val; int ret; ALOGV("%s: enter: %s", __func__, kvpairs); parms = str_parms_create_str(kvpairs); ret = str_parms_get_str(parms, AUDIO_PARAMETER_KEY_TTY_MODE, value, sizeof(value)); if (ret >= 0) { int tty_mode; if (strcmp(value, AUDIO_PARAMETER_VALUE_TTY_OFF) == 0) tty_mode = TTY_MODE_OFF; else if (strcmp(value, AUDIO_PARAMETER_VALUE_TTY_VCO) == 0) tty_mode = TTY_MODE_VCO; else if (strcmp(value, AUDIO_PARAMETER_VALUE_TTY_HCO) == 0) tty_mode = TTY_MODE_HCO; else if (strcmp(value, AUDIO_PARAMETER_VALUE_TTY_FULL) == 0) tty_mode = TTY_MODE_FULL; else return -EINVAL; pthread_mutex_lock(&adev->lock); if (tty_mode != adev->tty_mode) { adev->tty_mode = tty_mode; if (adev->in_call) select_devices(adev, USECASE_VOICE_CALL); } pthread_mutex_unlock(&adev->lock); } ret = str_parms_get_str(parms, AUDIO_PARAMETER_KEY_BT_NREC, value, sizeof(value)); if (ret >= 0) { /* When set to false, HAL should disable EC and NS * But it is currently not supported. */ if (strcmp(value, AUDIO_PARAMETER_VALUE_ON) == 0) adev->bluetooth_nrec = true; else adev->bluetooth_nrec = false; } ret = str_parms_get_str(parms, "screen_state", value, sizeof(value)); if (ret >= 0) { if (strcmp(value, AUDIO_PARAMETER_VALUE_ON) == 0) adev->screen_off = false; else adev->screen_off = true; } ret = str_parms_get_int(parms, "rotation", &val); if (ret >= 0) { bool reverse_speakers = false; switch(val) { /* Assume 0deg rotation means the front camera is up with the usb port * on the lower left when the user is facing the screen. This assumption * is device-specific, not platform-specific like this code. */ case 180: reverse_speakers = true; break; case 0: case 90: case 270: break; default: ALOGE("%s: unexpected rotation of %d", __func__, val); } pthread_mutex_lock(&adev->lock); if (adev->speaker_lr_swap != reverse_speakers) { adev->speaker_lr_swap = reverse_speakers; struct mixer_card *mixer_card; mixer_card = adev_get_mixer_for_card(adev, SOUND_CARD); if (mixer_card) audio_route_apply_and_update_path(mixer_card->audio_route, reverse_speakers ? "speaker-lr-reverse" : "speaker-lr-normal"); } pthread_mutex_unlock(&adev->lock); } str_parms_destroy(parms); ALOGV("%s: exit with code(%d)", __func__, ret); return ret; } static char* adev_get_parameters(const struct audio_hw_device *dev, const char *keys) { (void)dev; (void)keys; return strdup(""); } static int adev_init_check(const struct audio_hw_device *dev) { (void)dev; return 0; } static int adev_set_voice_volume(struct audio_hw_device *dev, float volume) { int ret = 0; struct audio_device *adev = (struct audio_device *)dev; pthread_mutex_lock(&adev->lock); /* cache volume */ adev->voice_volume = volume; ret = set_voice_volume_l(adev, adev->voice_volume); pthread_mutex_unlock(&adev->lock); return ret; } static int adev_set_master_volume(struct audio_hw_device *dev, float volume) { (void)dev; (void)volume; return -ENOSYS; } static int adev_get_master_volume(struct audio_hw_device *dev, float *volume) { (void)dev; (void)volume; return -ENOSYS; } static int adev_set_master_mute(struct audio_hw_device *dev, bool muted) { (void)dev; (void)muted; return -ENOSYS; } static int adev_get_master_mute(struct audio_hw_device *dev, bool *muted) { (void)dev; (void)muted; return -ENOSYS; } static int adev_set_mode(struct audio_hw_device *dev, audio_mode_t mode) { struct audio_device *adev = (struct audio_device *)dev; pthread_mutex_lock(&adev->lock); if (adev->mode != mode) { ALOGI("%s mode = %d", __func__, mode); adev->mode = mode; } pthread_mutex_unlock(&adev->lock); return 0; } static int adev_set_mic_mute(struct audio_hw_device *dev, bool state) { struct audio_device *adev = (struct audio_device *)dev; int err = 0; pthread_mutex_lock(&adev->lock); adev->mic_mute = state; if (adev->mode == AUDIO_MODE_IN_CALL) { /* TODO */ } pthread_mutex_unlock(&adev->lock); return err; } static int adev_get_mic_mute(const struct audio_hw_device *dev, bool *state) { struct audio_device *adev = (struct audio_device *)dev; *state = adev->mic_mute; return 0; } static size_t adev_get_input_buffer_size(const struct audio_hw_device *dev, const struct audio_config *config) { (void)dev; /* NOTE: we default to built in mic which may cause a mismatch between what we * report here and the actual buffer size */ return get_input_buffer_size(config->sample_rate, config->format, audio_channel_count_from_in_mask(config->channel_mask), PCM_CAPTURE /* usecase_type */, AUDIO_DEVICE_IN_BUILTIN_MIC); } static int adev_open_input_stream(struct audio_hw_device *dev, audio_io_handle_t handle __unused, audio_devices_t devices, struct audio_config *config, struct audio_stream_in **stream_in, audio_input_flags_t flags, const char *address __unused, audio_source_t source) { struct audio_device *adev = (struct audio_device *)dev; struct stream_in *in; struct pcm_device_profile *pcm_profile; ALOGV("%s: enter", __func__); *stream_in = NULL; if (check_input_parameters(config->sample_rate, config->format, audio_channel_count_from_in_mask(config->channel_mask)) != 0) return -EINVAL; usecase_type_t usecase_type = (source == AUDIO_SOURCE_HOTWORD) ? PCM_HOTWORD_STREAMING : PCM_CAPTURE; pcm_profile = get_pcm_device(usecase_type, devices); if (pcm_profile == NULL) return -EINVAL; in = (struct stream_in *)calloc(1, sizeof(struct stream_in)); in->stream.common.get_sample_rate = in_get_sample_rate; in->stream.common.set_sample_rate = in_set_sample_rate; in->stream.common.get_buffer_size = in_get_buffer_size; in->stream.common.get_channels = in_get_channels; in->stream.common.get_format = in_get_format; in->stream.common.set_format = in_set_format; in->stream.common.standby = in_standby; in->stream.common.dump = in_dump; in->stream.common.set_parameters = in_set_parameters; in->stream.common.get_parameters = in_get_parameters; in->stream.common.add_audio_effect = in_add_audio_effect; in->stream.common.remove_audio_effect = in_remove_audio_effect; in->stream.set_gain = in_set_gain; in->stream.read = in_read; in->stream.get_input_frames_lost = in_get_input_frames_lost; in->devices = devices; in->source = source; in->dev = adev; in->standby = 1; in->main_channels = config->channel_mask; in->requested_rate = config->sample_rate; if (config->sample_rate != CAPTURE_DEFAULT_SAMPLING_RATE) flags = flags & ~AUDIO_INPUT_FLAG_FAST; in->input_flags = flags; /* HW codec is limited to default channels. No need to update with * requested channels */ in->config = pcm_profile->config; /* Update config params with the requested sample rate and channels */ if (source == AUDIO_SOURCE_HOTWORD) { in->usecase = USECASE_AUDIO_CAPTURE_HOTWORD; } else { in->usecase = USECASE_AUDIO_CAPTURE; } in->usecase_type = usecase_type; pthread_mutex_init(&in->lock, (const pthread_mutexattr_t *) NULL); pthread_mutex_init(&in->pre_lock, (const pthread_mutexattr_t *) NULL); *stream_in = &in->stream; ALOGV("%s: exit", __func__); return 0; } static void adev_close_input_stream(struct audio_hw_device *dev, struct audio_stream_in *stream) { struct audio_device *adev = (struct audio_device *)dev; struct stream_in *in = (struct stream_in*)stream; ALOGV("%s", __func__); /* prevent concurrent out_set_parameters, or out_write from standby */ pthread_mutex_lock(&adev->lock_inputs); in_standby_l(in); pthread_mutex_destroy(&in->lock); pthread_mutex_destroy(&in->pre_lock); free(in->proc_buf_out); #ifdef PREPROCESSING_ENABLED int i; for (i=0; i<in->num_preprocessors; i++) { free(in->preprocessors[i].channel_configs); } if (in->read_buf) { free(in->read_buf); } if (in->proc_buf_in) { free(in->proc_buf_in); } if (in->resampler) { release_resampler(in->resampler); } #endif free(stream); pthread_mutex_unlock(&adev->lock_inputs); return; } static int adev_dump(const audio_hw_device_t *device, int fd) { (void)device; (void)fd; return 0; } static int adev_close(hw_device_t *device) { struct audio_device *adev = (struct audio_device *)device; free(adev->snd_dev_ref_cnt); free_mixer_list(adev); free(device); return 0; } static int adev_open(const hw_module_t *module, const char *name, hw_device_t **device) { struct audio_device *adev; int i, ret, retry_count; ALOGV("%s: enter", __func__); if (strcmp(name, AUDIO_HARDWARE_INTERFACE) != 0) return -EINVAL; adev = calloc(1, sizeof(struct audio_device)); adev->device.common.tag = HARDWARE_DEVICE_TAG; adev->device.common.version = AUDIO_DEVICE_API_VERSION_2_0; adev->device.common.module = (struct hw_module_t *)module; adev->device.common.close = adev_close; adev->device.init_check = adev_init_check; adev->device.set_voice_volume = adev_set_voice_volume; adev->device.set_master_volume = adev_set_master_volume; adev->device.get_master_volume = adev_get_master_volume; adev->device.set_master_mute = adev_set_master_mute; adev->device.get_master_mute = adev_get_master_mute; adev->device.set_mode = adev_set_mode; adev->device.set_mic_mute = adev_set_mic_mute; adev->device.get_mic_mute = adev_get_mic_mute; adev->device.set_parameters = adev_set_parameters; adev->device.get_parameters = adev_get_parameters; adev->device.get_input_buffer_size = adev_get_input_buffer_size; adev->device.open_output_stream = adev_open_output_stream; adev->device.close_output_stream = adev_close_output_stream; adev->device.open_input_stream = adev_open_input_stream; adev->device.close_input_stream = adev_close_input_stream; adev->device.dump = adev_dump; /* Set the default route before the PCM stream is opened */ adev->mode = AUDIO_MODE_NORMAL; adev->active_input = NULL; adev->primary_output = NULL; adev->voice_volume = 1.0f; adev->tty_mode = TTY_MODE_OFF; adev->bluetooth_nrec = true; adev->in_call = false; /* adev->cur_hdmi_channels = 0; by calloc() */ adev->snd_dev_ref_cnt = calloc(SND_DEVICE_MAX, sizeof(int)); adev->dualmic_config = DUALMIC_CONFIG_NONE; adev->ns_in_voice_rec = false; list_init(&adev->usecase_list); if (mixer_init(adev) != 0) { free(adev->snd_dev_ref_cnt); free(adev); ALOGE("%s: Failed to init, aborting.", __func__); *device = NULL; return -EINVAL; } if (access(SOUND_TRIGGER_HAL_LIBRARY_PATH, R_OK) == 0) { adev->sound_trigger_lib = dlopen(SOUND_TRIGGER_HAL_LIBRARY_PATH, RTLD_NOW); if (adev->sound_trigger_lib == NULL) { ALOGE("%s: DLOPEN failed for %s", __func__, SOUND_TRIGGER_HAL_LIBRARY_PATH); } else { ALOGV("%s: DLOPEN successful for %s", __func__, SOUND_TRIGGER_HAL_LIBRARY_PATH); adev->sound_trigger_open_for_streaming = (int (*)(void))dlsym(adev->sound_trigger_lib, "sound_trigger_open_for_streaming"); adev->sound_trigger_read_samples = (size_t (*)(int, void *, size_t))dlsym( adev->sound_trigger_lib, "sound_trigger_read_samples"); adev->sound_trigger_close_for_streaming = (int (*)(int))dlsym( adev->sound_trigger_lib, "sound_trigger_close_for_streaming"); if (!adev->sound_trigger_open_for_streaming || !adev->sound_trigger_read_samples || !adev->sound_trigger_close_for_streaming) { ALOGE("%s: Error grabbing functions in %s", __func__, SOUND_TRIGGER_HAL_LIBRARY_PATH); adev->sound_trigger_open_for_streaming = 0; adev->sound_trigger_read_samples = 0; adev->sound_trigger_close_for_streaming = 0; } } } *device = &adev->device.common; cras_dsp_init("/system/etc/cras/speakerdsp.ini"); ALOGV("%s: exit", __func__); return 0; } static struct hw_module_methods_t hal_module_methods = { .open = adev_open, }; struct audio_module HAL_MODULE_INFO_SYM = { .common = { .tag = HARDWARE_MODULE_TAG, .module_api_version = AUDIO_MODULE_API_VERSION_0_1, .hal_api_version = HARDWARE_HAL_API_VERSION, .id = AUDIO_HARDWARE_MODULE_ID, .name = "NVIDIA Tegra Audio HAL", .author = "The Android Open Source Project", .methods = &hal_module_methods, }, };