/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <atomic.h> #include <gpio.h> #include <nanohubPacket.h> #include <plat/exti.h> #include <plat/gpio.h> #include <platform.h> #include <plat/syscfg.h> #include <sensors.h> #include <seos.h> #include <spi.h> #include <i2c.h> #include <timer.h> #include <stdlib.h> #include <string.h> #define LPS22HB_APP_ID APP_ID_MAKE(NANOHUB_VENDOR_STMICRO, 1) #define LPS22HB_SPI_BUS_ID 1 #define LPS22HB_SPI_SPEED_HZ 8000000 /* Sensor defs */ #define LPS22HB_INT_CFG_REG_ADDR 0x0B #define LPS22HB_LIR_BIT 0x04 #define LPS22HB_WAI_REG_ADDR 0x0F #define LPS22HB_WAI_REG_VAL 0xB1 #define LPS22HB_SOFT_RESET_REG_ADDR 0x11 #define LPS22HB_SOFT_RESET_BIT 0x04 #define LPS22HB_ODR_REG_ADDR 0x10 #define LPS22HB_ODR_ONE_SHOT 0x00 #define LPS22HB_ODR_1_HZ 0x10 #define LPS22HB_ODR_10_HZ 0x20 #define LPS22HB_ODR_25_HZ 0x30 #define LPS22HB_ODR_50_HZ 0x40 #define LPS22HB_ODR_75_HZ 0x50 #define LPS22HB_PRESS_OUTXL_REG_ADDR 0x28 #define LPS22HB_TEMP_OUTL_REG_ADDR 0x2B #define LPS22HB_INT1_REG_ADDR 0x23 #define LPS22HB_INT2_REG_ADDR 0x24 #define LPS22HB_INT1_PIN GPIO_PA(4) #define LPS22HB_INT2_PIN GPIO_PB(0) #define LPS22HB_HECTO_PASCAL(baro_val) (baro_val/4096) #define LPS22HB_CENTIGRADES(temp_val) (temp_val/100) enum lps22hbSensorEvents { EVT_COMM_DONE = EVT_APP_START + 1, EVT_INT1_RAISED, EVT_SENSOR_BARO_TIMER, EVT_SENSOR_TEMP_TIMER, EVT_TEST, }; enum lps22hbSensorState { SENSOR_BOOT, SENSOR_VERIFY_ID, SENSOR_INIT, SENSOR_BARO_POWER_UP, SENSOR_BARO_POWER_DOWN, SENSOR_TEMP_POWER_UP, SENSOR_TEMP_POWER_DOWN, SENSOR_READ_SAMPLES, }; #define LPS22HB_USE_I2C 1 #if defined(LPS22HB_USE_I2C) #define I2C_BUS_ID 0 #define I2C_SPEED 400000 #define LPS22HB_I2C_ADDR 0x5D #else #define SPI_READ 0x80 #define SPI_WRITE 0x00 #define SPI_MAX_PCK_NUM 1 #endif enum lps22hbSensorIndex { BARO = 0, TEMP, NUM_OF_SENSOR, }; //#define NUM_OF_SENSOR 1 struct lps22hbSensor { uint32_t handle; }; /* Task structure */ struct lps22hbTask { uint32_t tid; /* timer */ uint32_t baroTimerHandle; uint32_t tempTimerHandle; /* sensor flags */ bool baroOn; bool baroReading; bool baroWantRead; bool tempOn; bool tempReading; bool tempWantRead; //int sensLastRead; #if defined(LPS22HB_USE_I2C) #else /* SPI */ spi_cs_t cs; struct SpiMode mode; struct SpiDevice *spiDev; struct SpiPacket spi_pck[SPI_MAX_PCK_NUM]; #endif unsigned char sens_buf[6]; /* Communication functions */ void (*comm_tx)(uint8_t addr, uint8_t data, uint32_t delay, void *cookie); void (*comm_rx)(uint8_t addr, uint16_t len, uint32_t delay, void *cookie); /* sensors */ struct lps22hbSensor sensors[NUM_OF_SENSOR]; }; static struct lps22hbTask mTask; #if defined(LPS22HB_USE_I2C) static void i2cCallback(void *cookie, size_t tx, size_t rx, int err) #else static void spiCallback(void *cookie, int err) #endif { osEnqueuePrivateEvt(EVT_COMM_DONE, cookie, NULL, mTask.tid); } #if defined(LPS22HB_USE_I2C) static void i2c_read(uint8_t addr, uint16_t len, uint32_t delay, void *cookie) { mTask.sens_buf[0] = 0x80 | addr; i2cMasterTxRx(I2C_BUS_ID, LPS22HB_I2C_ADDR, &mTask.sens_buf[0], 1, &mTask.sens_buf[1], len, &i2cCallback, cookie); } static void i2c_write(uint8_t addr, uint8_t data, uint32_t delay, void *cookie) { mTask.sens_buf[0] = addr; mTask.sens_buf[1] = data; i2cMasterTx(I2C_BUS_ID, LPS22HB_I2C_ADDR, mTask.sens_buf, 2, &i2cCallback, cookie); } #else static void spi_read(uint8_t addr, uint16_t len, uint32_t delay, void *cookie) { mTask.sens_buf[0] = SPI_READ | addr; mTask.spi_pck[0].size = len + 1; mTask.spi_pck[0].txBuf = mTask.spi_pck[0].rxBuf = &mTask.sens_buf[0]; mTask.spi_pck[0].delay = delay * 1000; spiMasterRxTx(mTask.spiDev, mTask.cs, &mTask.spi_pck[0], 1/*mTask.spi_pck_num*/, &mTask.mode, spiCallback, cookie); } static void spi_write(uint8_t addr, uint8_t data, uint32_t delay, void *cookie) { mTask.sens_buf[0] = SPI_WRITE | addr; mTask.sens_buf[1] = data; mTask.spi_pck[0].size = 2; mTask.spi_pck[0].txBuf = mTask.spi_pck[0].rxBuf = &mTask.sens_buf[0]; mTask.spi_pck[0].delay = delay * 1000; spiMasterRxTx(mTask.spiDev, mTask.cs, &mTask.spi_pck[0], 1/*mTask.spi_pck_num*/, &mTask.mode, spiCallback, cookie); } static void spi_init(void) { mTask.mode.speed = LPS22HB_SPI_SPEED_HZ; mTask.mode.bitsPerWord = 8; mTask.mode.cpol = SPI_CPOL_IDLE_HI; mTask.mode.cpha = SPI_CPHA_TRAILING_EDGE; mTask.mode.nssChange = true; mTask.mode.format = SPI_FORMAT_MSB_FIRST; mTask.cs = GPIO_PB(12); spiMasterRequest(LPS22HB_SPI_BUS_ID, &(mTask.spiDev)); } #endif /* Sensor Info */ static void sensorBaroTimerCallback(uint32_t timerId, void *data) { osEnqueuePrivateEvt(EVT_SENSOR_BARO_TIMER, data, NULL, mTask.tid); } static void sensorTempTimerCallback(uint32_t timerId, void *data) { osEnqueuePrivateEvt(EVT_SENSOR_TEMP_TIMER, data, NULL, mTask.tid); } #define DEC_INFO(name, type, axis, inter, samples, rates, raw, scale, bias) \ .sensorName = name, \ .sensorType = type, \ .numAxis = axis, \ .interrupt = inter, \ .minSamples = samples, \ .supportedRates = rates, \ .rawType = raw, \ .rawScale = scale, \ .biasType = bias static uint32_t lps22hbRates[] = { SENSOR_HZ(1.0f), SENSOR_HZ(10.0f), SENSOR_HZ(25.0f), SENSOR_HZ(50.0f), SENSOR_HZ(75.0f), 0 }; // should match "supported rates in length" and be the timer length for that rate in nanosecs static const uint64_t lps22hbRatesRateVals[] = { 1 * 1000000000ULL, 1000000000ULL / 10, 1000000000ULL / 25, 1000000000ULL / 50, 1000000000ULL / 75, }; static const struct SensorInfo lps22hbSensorInfo[NUM_OF_SENSOR] = { { DEC_INFO("Pressure", SENS_TYPE_BARO, NUM_AXIS_EMBEDDED, NANOHUB_INT_NONWAKEUP, 300, lps22hbRates, 0, 0, 0) }, { DEC_INFO("Temperature", SENS_TYPE_TEMP, NUM_AXIS_EMBEDDED, NANOHUB_INT_NONWAKEUP, 20, lps22hbRates, 0, 0, 0) }, }; /* Sensor Operations */ static bool baroPower(bool on, void *cookie) { bool oldMode = mTask.baroOn || mTask.tempOn; bool newMode = on || mTask.tempOn; uint32_t state = on ? SENSOR_BARO_POWER_UP : SENSOR_BARO_POWER_DOWN; //osLog(LOG_INFO, "baro power %d (%d) %d %d\n", oldMode, newMode, mTask.baroOn, mTask.tempOn); if (!on && mTask.baroTimerHandle) { timTimerCancel(mTask.baroTimerHandle); mTask.baroTimerHandle = 0; mTask.baroReading = false; } if (oldMode != newMode) { if (on) mTask.comm_tx(LPS22HB_ODR_REG_ADDR, LPS22HB_ODR_10_HZ, 0, (void *)state); else mTask.comm_tx(LPS22HB_ODR_REG_ADDR, LPS22HB_ODR_ONE_SHOT, 0, (void *)state); } else sensorSignalInternalEvt(mTask.sensors[BARO].handle, SENSOR_INTERNAL_EVT_POWER_STATE_CHG, on, 0); mTask.baroReading = false; mTask.baroOn = on; return true; } static bool baroFwUpload(void *cookie) { return sensorSignalInternalEvt(mTask.sensors[BARO].handle, SENSOR_INTERNAL_EVT_FW_STATE_CHG, 1, 0); } static bool baroSetRate(uint32_t rate, uint64_t latency, void *cookie) { //osLog(LOG_INFO, "baro set rate %ld (%lld)\n", rate, latency); if (mTask.baroTimerHandle) timTimerCancel(mTask.baroTimerHandle); mTask.baroTimerHandle = timTimerSet(sensorTimerLookupCommon(lps22hbRates, lps22hbRatesRateVals, rate), 0, 50, sensorBaroTimerCallback, NULL, false); return sensorSignalInternalEvt(mTask.sensors[BARO].handle, SENSOR_INTERNAL_EVT_RATE_CHG, rate, latency); } static bool baroFlush(void *cookie) { return osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_BARO), SENSOR_DATA_EVENT_FLUSH, NULL); } static bool tempPower(bool on, void *cookie) { bool oldMode = mTask.baroOn || mTask.tempOn; bool newMode = on || mTask.baroOn; uint32_t state = on ? SENSOR_TEMP_POWER_UP : SENSOR_TEMP_POWER_DOWN; //osLog(LOG_INFO, "temp power %d (%d) %d %d\n", oldMode, newMode, mTask.baroOn, mTask.tempOn); if (!on && mTask.tempTimerHandle) { timTimerCancel(mTask.tempTimerHandle); mTask.tempTimerHandle = 0; mTask.tempReading = false; } if (oldMode != newMode) { if (on) mTask.comm_tx(LPS22HB_ODR_REG_ADDR, LPS22HB_ODR_10_HZ, 0, (void *)state); else mTask.comm_tx(LPS22HB_ODR_REG_ADDR, LPS22HB_ODR_ONE_SHOT, 0, (void *)state); } else sensorSignalInternalEvt(mTask.sensors[TEMP].handle, SENSOR_INTERNAL_EVT_POWER_STATE_CHG, on, 0); mTask.tempReading = false; mTask.tempOn = on; return true; } static bool tempFwUpload(void *cookie) { return sensorSignalInternalEvt(mTask.sensors[TEMP].handle, SENSOR_INTERNAL_EVT_FW_STATE_CHG, 1, 0); } static bool tempSetRate(uint32_t rate, uint64_t latency, void *cookie) { if (mTask.tempTimerHandle) timTimerCancel(mTask.tempTimerHandle); //osLog(LOG_INFO, "temp set rate %ld (%lld)\n", rate, latency); mTask.tempTimerHandle = timTimerSet(sensorTimerLookupCommon(lps22hbRates, lps22hbRatesRateVals, rate), 0, 50, sensorTempTimerCallback, NULL, false); return sensorSignalInternalEvt(mTask.sensors[TEMP].handle, SENSOR_INTERNAL_EVT_RATE_CHG, rate, latency); } static bool tempFlush(void *cookie) { return osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_BARO), SENSOR_DATA_EVENT_FLUSH, NULL); } #define DEC_OPS(power, firmware, rate, flush, cal, cfg) \ .sensorPower = power, \ .sensorFirmwareUpload = firmware, \ .sensorSetRate = rate, \ .sensorFlush = flush, \ .sensorCalibrate = cal, \ .sensorCfgData = cfg static const struct SensorOps lps22hbSensorOps[NUM_OF_SENSOR] = { { DEC_OPS(baroPower, baroFwUpload, baroSetRate, baroFlush, NULL, NULL) }, { DEC_OPS(tempPower, tempFwUpload, tempSetRate, tempFlush, NULL, NULL) }, }; static uint8_t *wai; static uint8_t *baro_samples; static uint8_t *temp_samples; static void handleCommDoneEvt(const void* evtData) { uint8_t i; int baro_val; short temp_val; uint32_t state = (uint32_t)evtData; union EmbeddedDataPoint sample; switch (state) { case SENSOR_BOOT: mTask.comm_rx(LPS22HB_WAI_REG_ADDR, 1, 1, (void *)SENSOR_VERIFY_ID); break; case SENSOR_VERIFY_ID: wai = &mTask.sens_buf[1]; if (LPS22HB_WAI_REG_VAL != wai[0]) { osLog(LOG_INFO, "WAI returned is: %02x\n", *wai); break; } osLog(LOG_INFO, "Device ID is correct! (%02x)\n", *wai); for (i = 0; i < NUM_OF_SENSOR; i++) sensorRegisterInitComplete(mTask.sensors[i].handle); /* TEST the environment in standalone mode */ //osEnqueuePrivateEvt(EVT_TEST, NULL, NULL, mTask.tid); break; case SENSOR_INIT: for (i = 0; i < NUM_OF_SENSOR; i++) sensorRegisterInitComplete(mTask.sensors[i].handle); break; case SENSOR_BARO_POWER_UP: sensorSignalInternalEvt(mTask.sensors[BARO].handle, SENSOR_INTERNAL_EVT_POWER_STATE_CHG, true, 0); break; case SENSOR_BARO_POWER_DOWN: sensorSignalInternalEvt(mTask.sensors[BARO].handle, SENSOR_INTERNAL_EVT_POWER_STATE_CHG, false, 0); break; case SENSOR_TEMP_POWER_UP: sensorSignalInternalEvt(mTask.sensors[TEMP].handle, SENSOR_INTERNAL_EVT_POWER_STATE_CHG, true, 0); break; case SENSOR_TEMP_POWER_DOWN: sensorSignalInternalEvt(mTask.sensors[TEMP].handle, SENSOR_INTERNAL_EVT_POWER_STATE_CHG, false, 0); break; case SENSOR_READ_SAMPLES: if (mTask.baroOn && mTask.baroWantRead) { mTask.baroWantRead = false; baro_samples = &mTask.sens_buf[1]; baro_val = ((baro_samples[2] << 16) & 0xff0000) | ((baro_samples[1] << 8) & 0xff00) | (baro_samples[0]); mTask.baroReading = false; sample.fdata = LPS22HB_HECTO_PASCAL((float)baro_val); //osLog(LOG_INFO, "baro: %p\n", sample.vptr); osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_BARO), sample.vptr, NULL); } if (mTask.tempOn && mTask.tempWantRead) { mTask.tempWantRead = false; temp_samples = &mTask.sens_buf[4]; temp_val = ((temp_samples[1] << 8) & 0xff00) | (temp_samples[0]); mTask.tempReading = false; sample.fdata = LPS22HB_CENTIGRADES((float)temp_val); //osLog(LOG_INFO, "temp: %p\n", sample.vptr); osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_TEMP), sample.vptr, NULL); } break; default: break; } } static void handleEvent(uint32_t evtType, const void* evtData) { switch (evtType) { case EVT_APP_START: osLog(LOG_INFO, "LPS22HB DRIVER: EVT_APP_START\n"); osEventUnsubscribe(mTask.tid, EVT_APP_START); mTask.comm_tx(LPS22HB_SOFT_RESET_REG_ADDR, LPS22HB_SOFT_RESET_BIT, 0, (void *)SENSOR_BOOT); break; case EVT_COMM_DONE: //osLog(LOG_INFO, "LPS22HB DRIVER: EVT_COMM_DONE %d\n", (int)evtData); handleCommDoneEvt(evtData); break; case EVT_SENSOR_BARO_TIMER: //osLog(LOG_INFO, "LPS22HB DRIVER: EVT_SENSOR_BARO_TIMER\n"); mTask.baroWantRead = true; /* Start sampling for a value */ if (!mTask.baroReading && !mTask.tempReading) { mTask.baroReading = true; mTask.comm_rx(LPS22HB_PRESS_OUTXL_REG_ADDR, 5, 1, (void *)SENSOR_READ_SAMPLES); } break; case EVT_SENSOR_TEMP_TIMER: //osLog(LOG_INFO, "LPS22HB DRIVER: EVT_SENSOR_TEMP_TIMER\n"); mTask.tempWantRead = true; /* Start sampling for a value */ if (!mTask.baroReading && !mTask.tempReading) { mTask.tempReading = true; mTask.comm_rx(LPS22HB_PRESS_OUTXL_REG_ADDR, 5, 1, (void *)SENSOR_READ_SAMPLES); } break; case EVT_INT1_RAISED: osLog(LOG_INFO, "LPS22HB DRIVER: EVT_INT1_RAISED\n"); break; case EVT_TEST: osLog(LOG_INFO, "LPS22HB DRIVER: EVT_TEST\n"); baroPower(true, NULL); tempPower(true, NULL); baroSetRate(SENSOR_HZ(1), 0, NULL); tempSetRate(SENSOR_HZ(1), 0, NULL); break; default: break; } } static bool startTask(uint32_t task_id) { uint8_t i; mTask.tid = task_id; osLog(LOG_INFO, "LPS22HB DRIVER started\n"); mTask.baroOn = mTask.tempOn = false; mTask.baroReading = mTask.tempReading = false; /* Init the communication part */ #if defined(LPS22HB_USE_I2C) i2cMasterRequest(I2C_BUS_ID, I2C_SPEED); mTask.comm_tx = i2c_write; mTask.comm_rx = i2c_read; #else spi_init(); mTask.comm_tx = spi_write; mTask.comm_rx = spi_read; #endif for (i = 0; i < NUM_OF_SENSOR; i++) { mTask.sensors[i].handle = sensorRegister(&lps22hbSensorInfo[i], &lps22hbSensorOps[i], NULL, false); } osEventSubscribe(mTask.tid, EVT_APP_START); return true; } static void endTask(void) { osLog(LOG_INFO, "LPS22HB DRIVER ended\n"); #if defined(LPS22HB_USE_I2C) #else spiMasterRelease(mTask.spiDev); #endif } INTERNAL_APP_INIT(LPS22HB_APP_ID, 0, startTask, endTask, handleEvent);