/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <math.h> #include <floatRt.h> #include <algos/time_sync.h> void time_sync_reset(time_sync_t *sync) { sync->n = 0; sync->i = 0; sync->estimate_valid = false; sync->hold_count = 0; } bool time_sync_init(time_sync_t *sync) { time_sync_reset(sync); return true; } void time_sync_truncate(time_sync_t *sync, size_t window_size) { size_t k, m; sync->n = (window_size < sync->n) ? window_size : sync->n; sync->estimate_valid = false; // oldest sample index (new time_base) after truncation size_t bidx = (sync->i >= sync->n) ? (sync->i - sync->n) : (sync->i + NUM_TIME_SYNC_DATAPOINTS - sync->n); // left circular-shift oldest sample to index 0 for (k = 0; k < bidx; ++k) { uint64_t tmp1 = sync->time1[0]; uint64_t tmp2 = sync->time2[0]; for (m = 0; m < NUM_TIME_SYNC_DATAPOINTS - 1; ++m) { sync->time1[m] = sync->time1[m + 1]; sync->time2[m] = sync->time2[m + 1]; } sync->time1[NUM_TIME_SYNC_DATAPOINTS - 1] = tmp1; sync->time2[NUM_TIME_SYNC_DATAPOINTS - 1] = tmp2; } sync->i = (sync->n < NUM_TIME_SYNC_DATAPOINTS) ? sync->n : 0; } bool time_sync_add(time_sync_t *sync, uint64_t time1, uint64_t time2) { size_t i = sync->i; sync->time1[i] = time1; sync->time2[i] = time2; if (++i == NUM_TIME_SYNC_DATAPOINTS) { i = 0; } sync->i = i; size_t prev_n = sync->n; if (sync->n < NUM_TIME_SYNC_DATAPOINTS) { ++sync->n; } sync->estimate_valid = false; if (sync->hold_count > 0) { --sync->hold_count; time_sync_truncate(sync, prev_n); } return true; } bool time_sync_estimate_time1(time_sync_t *sync, uint64_t time2, uint64_t *time1) { size_t j; if (sync->n < 2) return false; *time1 = 0; if (!sync->estimate_valid) { size_t n = sync->n; // Rewind to the oldest sample in the history. size_t i = sync->i; if (n < NUM_TIME_SYNC_DATAPOINTS) { if (i != n) { return false; } i = 0; } uint64_t time1_base = sync->time1[i]; uint64_t time2_base = sync->time2[i]; // Least-square linear regresison: // Compute alpha and beta so that time1 = alpha + beta * time2. // x = time2, y = time1 float mean_x = 0.0f; float mean_y = 0.0f; float invN = 1.0f / n; size_t ii = i; for (j = 0; j < n; ++j) { mean_y += floatFromUint64(sync->time1[ii] - time1_base) * invN; mean_x += floatFromUint64(sync->time2[ii] - time2_base) * invN; if (++ii == NUM_TIME_SYNC_DATAPOINTS) { ii = 0; } } // Two-pass approach so that only values relative to mean are computed. // Typically, |y| and |x| are smaller than 8e8 in nsec. // So sum_x2 and sum_xy are smaller than 1e19. // That leaves plenty of room for blocking tasks. float sum_x2 = 0.0f, sum_xy = 0.0f; ii = i; for (j = 0; j < n; ++j) { float y = floatFromUint64(sync->time1[ii] - time1_base) - mean_y; float x = floatFromUint64(sync->time2[ii] - time2_base) - mean_x; sum_x2 += x * x; sum_xy += x * y; if (++ii == NUM_TIME_SYNC_DATAPOINTS) { ii = 0; } } float beta = sum_xy / sum_x2; float alpha = mean_y - beta * mean_x; sync->alpha = alpha; sync->beta = beta; sync->time1_base = time1_base; sync->time2_base = time2_base; sync->estimate_valid = true; } *time1 = sync->time1_base + floatToInt64(sync->alpha + sync->beta * floatFromInt64(time2 - sync->time2_base)); return true; } void time_sync_hold(time_sync_t *sync, uint8_t count) { sync->hold_count = count; }