/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_TEST_TI_AGENT_TI_UTF_H_ #define ART_TEST_TI_AGENT_TI_UTF_H_ #include <inttypes.h> #include <string.h> #include "android-base/logging.h" namespace art { namespace ti { inline size_t CountModifiedUtf8Chars(const char* utf8, size_t byte_count) { DCHECK_LE(byte_count, strlen(utf8)); size_t len = 0; const char* end = utf8 + byte_count; for (; utf8 < end; ++utf8) { int ic = *utf8; len++; if (LIKELY((ic & 0x80) == 0)) { // One-byte encoding. continue; } // Two- or three-byte encoding. utf8++; if ((ic & 0x20) == 0) { // Two-byte encoding. continue; } utf8++; if ((ic & 0x10) == 0) { // Three-byte encoding. continue; } // Four-byte encoding: needs to be converted into a surrogate // pair. utf8++; len++; } return len; } inline uint16_t GetTrailingUtf16Char(uint32_t maybe_pair) { return static_cast<uint16_t>(maybe_pair >> 16); } inline uint16_t GetLeadingUtf16Char(uint32_t maybe_pair) { return static_cast<uint16_t>(maybe_pair & 0x0000FFFF); } inline uint32_t GetUtf16FromUtf8(const char** utf8_data_in) { const uint8_t one = *(*utf8_data_in)++; if ((one & 0x80) == 0) { // one-byte encoding return one; } const uint8_t two = *(*utf8_data_in)++; if ((one & 0x20) == 0) { // two-byte encoding return ((one & 0x1f) << 6) | (two & 0x3f); } const uint8_t three = *(*utf8_data_in)++; if ((one & 0x10) == 0) { return ((one & 0x0f) << 12) | ((two & 0x3f) << 6) | (three & 0x3f); } // Four byte encodings need special handling. We'll have // to convert them into a surrogate pair. const uint8_t four = *(*utf8_data_in)++; // Since this is a 4 byte UTF-8 sequence, it will lie between // U+10000 and U+1FFFFF. // // TODO: What do we do about values in (U+10FFFF, U+1FFFFF) ? The // spec says they're invalid but nobody appears to check for them. const uint32_t code_point = ((one & 0x0f) << 18) | ((two & 0x3f) << 12) | ((three & 0x3f) << 6) | (four & 0x3f); uint32_t surrogate_pair = 0; // Step two: Write out the high (leading) surrogate to the bottom 16 bits // of the of the 32 bit type. surrogate_pair |= ((code_point >> 10) + 0xd7c0) & 0xffff; // Step three : Write out the low (trailing) surrogate to the top 16 bits. surrogate_pair |= ((code_point & 0x03ff) + 0xdc00) << 16; return surrogate_pair; } inline void ConvertUtf16ToModifiedUtf8(char* utf8_out, size_t byte_count, const uint16_t* utf16_in, size_t char_count) { if (LIKELY(byte_count == char_count)) { // Common case where all characters are ASCII. const uint16_t *utf16_end = utf16_in + char_count; for (const uint16_t *p = utf16_in; p < utf16_end;) { *utf8_out++ = static_cast<char>(*p++); } return; } // String contains non-ASCII characters. while (char_count--) { const uint16_t ch = *utf16_in++; if (ch > 0 && ch <= 0x7f) { *utf8_out++ = ch; } else { // Char_count == 0 here implies we've encountered an unpaired // surrogate and we have no choice but to encode it as 3-byte UTF // sequence. Note that unpaired surrogates can occur as a part of // "normal" operation. if ((ch >= 0xd800 && ch <= 0xdbff) && (char_count > 0)) { const uint16_t ch2 = *utf16_in; // Check if the other half of the pair is within the expected // range. If it isn't, we will have to emit both "halves" as // separate 3 byte sequences. if (ch2 >= 0xdc00 && ch2 <= 0xdfff) { utf16_in++; char_count--; const uint32_t code_point = (ch << 10) + ch2 - 0x035fdc00; *utf8_out++ = (code_point >> 18) | 0xf0; *utf8_out++ = ((code_point >> 12) & 0x3f) | 0x80; *utf8_out++ = ((code_point >> 6) & 0x3f) | 0x80; *utf8_out++ = (code_point & 0x3f) | 0x80; continue; } } if (ch > 0x07ff) { // Three byte encoding. *utf8_out++ = (ch >> 12) | 0xe0; *utf8_out++ = ((ch >> 6) & 0x3f) | 0x80; *utf8_out++ = (ch & 0x3f) | 0x80; } else /*(ch > 0x7f || ch == 0)*/ { // Two byte encoding. *utf8_out++ = (ch >> 6) | 0xc0; *utf8_out++ = (ch & 0x3f) | 0x80; } } } } inline size_t CountUtf8Bytes(const uint16_t* chars, size_t char_count) { size_t result = 0; const uint16_t *end = chars + char_count; while (chars < end) { const uint16_t ch = *chars++; if (LIKELY(ch != 0 && ch < 0x80)) { result++; continue; } if (ch < 0x800) { result += 2; continue; } if (ch >= 0xd800 && ch < 0xdc00) { if (chars < end) { const uint16_t ch2 = *chars; // If we find a properly paired surrogate, we emit it as a 4 byte // UTF sequence. If we find an unpaired leading or trailing surrogate, // we emit it as a 3 byte sequence like would have done earlier. if (ch2 >= 0xdc00 && ch2 < 0xe000) { chars++; result += 4; continue; } } } result += 3; } return result; } } // namespace ti } // namespace art #endif // ART_TEST_TI_AGENT_TI_UTF_H_