/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // // Test on loop optimizations, in particular around polynomial induction. // public class Main { /// CHECK-START: int Main.poly1() loop_optimization (before) /// CHECK-DAG: Phi loop:<<Loop:B\d+>> /// CHECK-DAG: Add loop:<<Loop>> /// CHECK-DAG: Add loop:<<Loop>> // /// CHECK-START: int Main.poly1() loop_optimization (after) /// CHECK-DAG: <<Zer:i\d+>> IntConstant 0 loop:none /// CHECK-DAG: <<Int:i\d+>> IntConstant 55 loop:none /// CHECK-DAG: <<Add:i\d+>> Add [<<Int>>,<<Zer>>] loop:none /// CHECK-DAG: Return [<<Add>>] loop:none // /// CHECK-START: int Main.poly1() instruction_simplifier$after_bce (after) /// CHECK-DAG: <<Int:i\d+>> IntConstant 55 loop:none /// CHECK-DAG: Return [<<Int>>] loop:none // /// CHECK-START: int Main.poly1() loop_optimization (after) /// CHECK-NOT: Phi public static int poly1() { int a = 0; for (int i = 0; i <= 10; i++) { a += i; } return a; } // Multiplication in linear induction has been optimized earlier, // but that does not stop the induction variable recognition // and loop optimizer. // /// CHECK-START: int Main.poly2(int) loop_optimization (before) /// CHECK-DAG: Phi loop:<<Loop:B\d+>> /// CHECK-DAG: Shl loop:<<Loop>> /// CHECK-DAG: Add loop:<<Loop>> /// CHECK-DAG: Add loop:<<Loop>> /// CHECK-DAG: Add loop:<<Loop>> /// CHECK-DAG: Add loop:<<Loop>> // /// CHECK-START: int Main.poly2(int) loop_optimization (after) /// CHECK-DAG: <<Par:i\d+>> ParameterValue loop:none /// CHECK-DAG: <<Int:i\d+>> IntConstant 185 loop:none /// CHECK-DAG: <<Add:i\d+>> Add [<<Int>>,<<Par>>] loop:none /// CHECK-DAG: Return [<<Add>>] loop:none // /// CHECK-START: int Main.poly2(int) loop_optimization (after) /// CHECK-NOT: Phi public static int poly2(int a) { for (int i = 0; i < 10; i++) { int k = 3 * i + 5; a += k; } return a; } /// CHECK-START: int Main.poly3() loop_optimization (before) /// CHECK-DAG: Phi loop:<<Loop:B\d+>> /// CHECK-DAG: Add loop:<<Loop>> /// CHECK-DAG: Add loop:<<Loop>> // /// CHECK-START: int Main.poly3() loop_optimization (after) /// CHECK-DAG: <<Ini:i\d+>> IntConstant 12345 loop:none /// CHECK-DAG: <<Int:i\d+>> IntConstant -2146736968 loop:none /// CHECK-DAG: <<Add:i\d+>> Add [<<Int>>,<<Ini>>] loop:none /// CHECK-DAG: Return [<<Add>>] loop:none // /// CHECK-START: int Main.poly3() instruction_simplifier$after_bce (after) /// CHECK-DAG: <<Int:i\d+>> IntConstant -2146724623 loop:none /// CHECK-DAG: Return [<<Int>>] loop:none // /// CHECK-START: int Main.poly3() loop_optimization (after) /// CHECK-NOT: Phi public static int poly3() { int a = 12345; for (int i = 0; i <= 10; i++) { a += (2147483646 * i + 67890); } return a; } /// CHECK-START: int Main.polyBCE1() BCE (before) /// CHECK-DAG: BoundsCheck loop:none /// CHECK-DAG: BoundsCheck loop:{{B\d+}} // /// CHECK-START: int Main.polyBCE1() BCE (after) /// CHECK-NOT: BoundsCheck /// CHECK-NOT: Deoptimize public static int polyBCE1() { int[] x = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 19, 20, 21, 22 }; int a = 0; int r = 0; for (int i = 0; i < 8; i++) { r += x[a]; a += i; } return r; } /// CHECK-START: int Main.polyBCE2() BCE (before) /// CHECK-DAG: BoundsCheck loop:none /// CHECK-DAG: BoundsCheck loop:{{B\d+}} // /// CHECK-START: int Main.polyBCE2() BCE (after) /// CHECK-NOT: BoundsCheck /// CHECK-NOT: Deoptimize public static int polyBCE2() { int[] x = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 19, 20, 21, 22, 23, 24, 25, 26, 27 }; int a = 1; int r = 0; for (int i = 0; i < 6; i++) { int k = 2 * i + 1; r -= x[a]; a += k; } return r; } /// CHECK-START: int Main.polyBCE3() BCE (before) /// CHECK-DAG: BoundsCheck loop:none /// CHECK-DAG: BoundsCheck loop:{{B\d+}} // /// CHECK-START: int Main.polyBCE3() BCE (after) /// CHECK-NOT: BoundsCheck /// CHECK-NOT: Deoptimize public static int polyBCE3() { int[] x = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38 }; int r = 0; int a1 = 1; int a2 = 2; for (int i = 0; i < 5; i++) { int t = a1 + a2; // two polynomials combined into new polynomial r -= x[t]; a1 += (3 * i + 1); a2 += (2 * i); } return r; } // // Verifier. // public static void main(String[] args) { expectEquals(55, poly1()); expectEquals(185, poly2(0)); expectEquals(192, poly2(7)); expectEquals(-2146724623, poly3()); expectEquals(64, polyBCE1()); expectEquals(-68, polyBCE2()); expectEquals(-80, polyBCE3()); System.out.println("passed"); } private static void expectEquals(int expected, int result) { if (expected != result) { throw new Error("Expected: " + expected + ", found: " + result); } } }