/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "verifier_deps.h" #include <cstring> #include "art_field-inl.h" #include "art_method-inl.h" #include "base/stl_util.h" #include "compiler_callbacks.h" #include "dex_file-inl.h" #include "indenter.h" #include "leb128.h" #include "mirror/class-inl.h" #include "mirror/class_loader.h" #include "obj_ptr-inl.h" #include "runtime.h" namespace art { namespace verifier { VerifierDeps::VerifierDeps(const std::vector<const DexFile*>& dex_files) { for (const DexFile* dex_file : dex_files) { DCHECK(GetDexFileDeps(*dex_file) == nullptr); std::unique_ptr<DexFileDeps> deps(new DexFileDeps()); dex_deps_.emplace(dex_file, std::move(deps)); } } void VerifierDeps::MergeWith(const VerifierDeps& other, const std::vector<const DexFile*>& dex_files) { DCHECK(dex_deps_.size() == other.dex_deps_.size()); for (const DexFile* dex_file : dex_files) { DexFileDeps* my_deps = GetDexFileDeps(*dex_file); const DexFileDeps& other_deps = *other.GetDexFileDeps(*dex_file); // We currently collect extra strings only on the main `VerifierDeps`, // which should be the one passed as `this` in this method. DCHECK(other_deps.strings_.empty()); MergeSets(my_deps->assignable_types_, other_deps.assignable_types_); MergeSets(my_deps->unassignable_types_, other_deps.unassignable_types_); MergeSets(my_deps->classes_, other_deps.classes_); MergeSets(my_deps->fields_, other_deps.fields_); MergeSets(my_deps->direct_methods_, other_deps.direct_methods_); MergeSets(my_deps->virtual_methods_, other_deps.virtual_methods_); MergeSets(my_deps->interface_methods_, other_deps.interface_methods_); for (dex::TypeIndex entry : other_deps.unverified_classes_) { my_deps->unverified_classes_.push_back(entry); } } } VerifierDeps::DexFileDeps* VerifierDeps::GetDexFileDeps(const DexFile& dex_file) { auto it = dex_deps_.find(&dex_file); return (it == dex_deps_.end()) ? nullptr : it->second.get(); } const VerifierDeps::DexFileDeps* VerifierDeps::GetDexFileDeps(const DexFile& dex_file) const { auto it = dex_deps_.find(&dex_file); return (it == dex_deps_.end()) ? nullptr : it->second.get(); } // Access flags that impact vdex verification. static constexpr uint32_t kAccVdexAccessFlags = kAccPublic | kAccPrivate | kAccProtected | kAccStatic | kAccInterface; template <typename T> uint16_t VerifierDeps::GetAccessFlags(T* element) { static_assert(kAccJavaFlagsMask == 0xFFFF, "Unexpected value of a constant"); if (element == nullptr) { return VerifierDeps::kUnresolvedMarker; } else { uint16_t access_flags = Low16Bits(element->GetAccessFlags()) & kAccVdexAccessFlags; CHECK_NE(access_flags, VerifierDeps::kUnresolvedMarker); return access_flags; } } dex::StringIndex VerifierDeps::GetClassDescriptorStringId(const DexFile& dex_file, ObjPtr<mirror::Class> klass) { DCHECK(klass != nullptr); ObjPtr<mirror::DexCache> dex_cache = klass->GetDexCache(); // Array and proxy classes do not have a dex cache. if (!klass->IsArrayClass() && !klass->IsProxyClass()) { DCHECK(dex_cache != nullptr) << klass->PrettyClass(); if (dex_cache->GetDexFile() == &dex_file) { // FindStringId is slow, try to go through the class def if we have one. const DexFile::ClassDef* class_def = klass->GetClassDef(); DCHECK(class_def != nullptr) << klass->PrettyClass(); const DexFile::TypeId& type_id = dex_file.GetTypeId(class_def->class_idx_); if (kIsDebugBuild) { std::string temp; CHECK_EQ(GetIdFromString(dex_file, klass->GetDescriptor(&temp)), type_id.descriptor_idx_); } return type_id.descriptor_idx_; } } std::string temp; return GetIdFromString(dex_file, klass->GetDescriptor(&temp)); } // Try to find the string descriptor of the class. type_idx is a best guess of a matching string id. static dex::StringIndex TryGetClassDescriptorStringId(const DexFile& dex_file, dex::TypeIndex type_idx, ObjPtr<mirror::Class> klass) REQUIRES_SHARED(Locks::mutator_lock_) { if (!klass->IsArrayClass()) { const DexFile::TypeId& type_id = dex_file.GetTypeId(type_idx); const DexFile& klass_dex = klass->GetDexFile(); const DexFile::TypeId& klass_type_id = klass_dex.GetTypeId(klass->GetClassDef()->class_idx_); if (strcmp(dex_file.GetTypeDescriptor(type_id), klass_dex.GetTypeDescriptor(klass_type_id)) == 0) { return type_id.descriptor_idx_; } } return dex::StringIndex::Invalid(); } dex::StringIndex VerifierDeps::GetMethodDeclaringClassStringId(const DexFile& dex_file, uint32_t dex_method_index, ArtMethod* method) { static_assert(kAccJavaFlagsMask == 0xFFFF, "Unexpected value of a constant"); if (method == nullptr) { return dex::StringIndex(VerifierDeps::kUnresolvedMarker); } const dex::StringIndex string_id = TryGetClassDescriptorStringId( dex_file, dex_file.GetMethodId(dex_method_index).class_idx_, method->GetDeclaringClass()); if (string_id.IsValid()) { // Got lucky using the original dex file, return based on the input dex file. DCHECK_EQ(GetClassDescriptorStringId(dex_file, method->GetDeclaringClass()), string_id); return string_id; } return GetClassDescriptorStringId(dex_file, method->GetDeclaringClass()); } dex::StringIndex VerifierDeps::GetFieldDeclaringClassStringId(const DexFile& dex_file, uint32_t dex_field_idx, ArtField* field) { static_assert(kAccJavaFlagsMask == 0xFFFF, "Unexpected value of a constant"); if (field == nullptr) { return dex::StringIndex(VerifierDeps::kUnresolvedMarker); } const dex::StringIndex string_id = TryGetClassDescriptorStringId( dex_file, dex_file.GetFieldId(dex_field_idx).class_idx_, field->GetDeclaringClass()); if (string_id.IsValid()) { // Got lucky using the original dex file, return based on the input dex file. DCHECK_EQ(GetClassDescriptorStringId(dex_file, field->GetDeclaringClass()), string_id); return string_id; } return GetClassDescriptorStringId(dex_file, field->GetDeclaringClass()); } static inline VerifierDeps* GetMainVerifierDeps() { // The main VerifierDeps is the one set in the compiler callbacks, which at the // end of verification will have all the per-thread VerifierDeps merged into it. CompilerCallbacks* callbacks = Runtime::Current()->GetCompilerCallbacks(); if (callbacks == nullptr) { return nullptr; } return callbacks->GetVerifierDeps(); } static inline VerifierDeps* GetThreadLocalVerifierDeps() { // During AOT, each thread has its own VerifierDeps, to avoid lock contention. At the end // of full verification, these VerifierDeps will be merged into the main one. if (!Runtime::Current()->IsAotCompiler()) { return nullptr; } return Thread::Current()->GetVerifierDeps(); } static bool FindExistingStringId(const std::vector<std::string>& strings, const std::string& str, uint32_t* found_id) { uint32_t num_extra_ids = strings.size(); for (size_t i = 0; i < num_extra_ids; ++i) { if (strings[i] == str) { *found_id = i; return true; } } return false; } dex::StringIndex VerifierDeps::GetIdFromString(const DexFile& dex_file, const std::string& str) { const DexFile::StringId* string_id = dex_file.FindStringId(str.c_str()); if (string_id != nullptr) { // String is in the DEX file. Return its ID. return dex_file.GetIndexForStringId(*string_id); } // String is not in the DEX file. Assign a new ID to it which is higher than // the number of strings in the DEX file. // We use the main `VerifierDeps` for adding new strings to simplify // synchronization/merging of these entries between threads. VerifierDeps* singleton = GetMainVerifierDeps(); DexFileDeps* deps = singleton->GetDexFileDeps(dex_file); DCHECK(deps != nullptr); uint32_t num_ids_in_dex = dex_file.NumStringIds(); uint32_t found_id; { ReaderMutexLock mu(Thread::Current(), *Locks::verifier_deps_lock_); if (FindExistingStringId(deps->strings_, str, &found_id)) { return dex::StringIndex(num_ids_in_dex + found_id); } } { WriterMutexLock mu(Thread::Current(), *Locks::verifier_deps_lock_); if (FindExistingStringId(deps->strings_, str, &found_id)) { return dex::StringIndex(num_ids_in_dex + found_id); } deps->strings_.push_back(str); dex::StringIndex new_id(num_ids_in_dex + deps->strings_.size() - 1); CHECK_GE(new_id.index_, num_ids_in_dex); // check for overflows DCHECK_EQ(str, singleton->GetStringFromId(dex_file, new_id)); return new_id; } } std::string VerifierDeps::GetStringFromId(const DexFile& dex_file, dex::StringIndex string_id) const { uint32_t num_ids_in_dex = dex_file.NumStringIds(); if (string_id.index_ < num_ids_in_dex) { return std::string(dex_file.StringDataByIdx(string_id)); } else { const DexFileDeps* deps = GetDexFileDeps(dex_file); DCHECK(deps != nullptr); string_id.index_ -= num_ids_in_dex; CHECK_LT(string_id.index_, deps->strings_.size()); return deps->strings_[string_id.index_]; } } bool VerifierDeps::IsInClassPath(ObjPtr<mirror::Class> klass) const { DCHECK(klass != nullptr); // For array types, we return whether the non-array component type // is in the classpath. while (klass->IsArrayClass()) { klass = klass->GetComponentType(); } if (klass->IsPrimitive()) { return true; } ObjPtr<mirror::DexCache> dex_cache = klass->GetDexCache(); DCHECK(dex_cache != nullptr); const DexFile* dex_file = dex_cache->GetDexFile(); DCHECK(dex_file != nullptr); // Test if the `dex_deps_` contains an entry for `dex_file`. If not, the dex // file was not registered as being compiled and we assume `klass` is in the // classpath. return (GetDexFileDeps(*dex_file) == nullptr); } void VerifierDeps::AddClassResolution(const DexFile& dex_file, dex::TypeIndex type_idx, mirror::Class* klass) { DexFileDeps* dex_deps = GetDexFileDeps(dex_file); if (dex_deps == nullptr) { // This invocation is from verification of a dex file which is not being compiled. return; } if (klass != nullptr && !IsInClassPath(klass)) { // Class resolved into one of the DEX files which are being compiled. // This is not a classpath dependency. return; } dex_deps->classes_.emplace(ClassResolution(type_idx, GetAccessFlags(klass))); } void VerifierDeps::AddFieldResolution(const DexFile& dex_file, uint32_t field_idx, ArtField* field) { DexFileDeps* dex_deps = GetDexFileDeps(dex_file); if (dex_deps == nullptr) { // This invocation is from verification of a dex file which is not being compiled. return; } if (field != nullptr && !IsInClassPath(field->GetDeclaringClass())) { // Field resolved into one of the DEX files which are being compiled. // This is not a classpath dependency. return; } dex_deps->fields_.emplace(FieldResolution(field_idx, GetAccessFlags(field), GetFieldDeclaringClassStringId(dex_file, field_idx, field))); } void VerifierDeps::AddMethodResolution(const DexFile& dex_file, uint32_t method_idx, MethodResolutionKind resolution_kind, ArtMethod* method) { DexFileDeps* dex_deps = GetDexFileDeps(dex_file); if (dex_deps == nullptr) { // This invocation is from verification of a dex file which is not being compiled. return; } if (method != nullptr && !IsInClassPath(method->GetDeclaringClass())) { // Method resolved into one of the DEX files which are being compiled. // This is not a classpath dependency. return; } MethodResolution method_tuple(method_idx, GetAccessFlags(method), GetMethodDeclaringClassStringId(dex_file, method_idx, method)); if (resolution_kind == kDirectMethodResolution) { dex_deps->direct_methods_.emplace(method_tuple); } else if (resolution_kind == kVirtualMethodResolution) { dex_deps->virtual_methods_.emplace(method_tuple); } else { DCHECK_EQ(resolution_kind, kInterfaceMethodResolution); dex_deps->interface_methods_.emplace(method_tuple); } } mirror::Class* VerifierDeps::FindOneClassPathBoundaryForInterface(mirror::Class* destination, mirror::Class* source) const { DCHECK(destination->IsInterface()); DCHECK(IsInClassPath(destination)); Thread* thread = Thread::Current(); mirror::Class* current = source; // Record the classes that are at the boundary between the compiled DEX files and // the classpath. We will check those classes later to find one class that inherits // `destination`. std::vector<ObjPtr<mirror::Class>> boundaries; // If the destination is a direct interface of a class defined in the DEX files being // compiled, no need to record it. while (!IsInClassPath(current)) { for (size_t i = 0; i < current->NumDirectInterfaces(); ++i) { ObjPtr<mirror::Class> direct = mirror::Class::GetDirectInterface(thread, current, i); if (direct == destination) { return nullptr; } else if (IsInClassPath(direct)) { boundaries.push_back(direct); } } current = current->GetSuperClass(); } DCHECK(current != nullptr); boundaries.push_back(current); // Check if we have an interface defined in the DEX files being compiled, direclty // inheriting `destination`. int32_t iftable_count = source->GetIfTableCount(); ObjPtr<mirror::IfTable> iftable = source->GetIfTable(); for (int32_t i = 0; i < iftable_count; ++i) { mirror::Class* itf = iftable->GetInterface(i); if (!IsInClassPath(itf)) { for (size_t j = 0; j < itf->NumDirectInterfaces(); ++j) { ObjPtr<mirror::Class> direct = mirror::Class::GetDirectInterface(thread, itf, j); if (direct == destination) { return nullptr; } else if (IsInClassPath(direct)) { boundaries.push_back(direct); } } } } // Find a boundary making `source` inherit from `destination`. We must find one. for (const ObjPtr<mirror::Class>& boundary : boundaries) { if (destination->IsAssignableFrom(boundary)) { return boundary.Ptr(); } } LOG(FATAL) << "Should have found a classpath boundary"; UNREACHABLE(); } void VerifierDeps::AddAssignability(const DexFile& dex_file, mirror::Class* destination, mirror::Class* source, bool is_strict, bool is_assignable) { // Test that the method is only called on reference types. // Note that concurrent verification of `destination` and `source` may have // set their status to erroneous. However, the tests performed below rely // merely on no issues with linking (valid access flags, superclass and // implemented interfaces). If the class at any point reached the IsResolved // status, the requirement holds. This is guaranteed by RegTypeCache::ResolveClass. DCHECK(destination != nullptr); DCHECK(source != nullptr); if (destination->IsPrimitive() || source->IsPrimitive()) { // Primitive types are trivially non-assignable to anything else. // We do not need to record trivial assignability, as it will // not change across releases. return; } if (source->IsObjectClass() && !is_assignable) { // j.l.Object is trivially non-assignable to other types, don't // record it. return; } if (destination == source || destination->IsObjectClass() || (!is_strict && destination->IsInterface())) { // Cases when `destination` is trivially assignable from `source`. DCHECK(is_assignable); return; } if (destination->IsArrayClass() && source->IsArrayClass()) { // Both types are arrays. Break down to component types and add recursively. // This helps filter out destinations from compiled DEX files (see below) // and deduplicate entries with the same canonical component type. mirror::Class* destination_component = destination->GetComponentType(); mirror::Class* source_component = source->GetComponentType(); // Only perform the optimization if both types are resolved which guarantees // that they linked successfully, as required at the top of this method. if (destination_component->IsResolved() && source_component->IsResolved()) { AddAssignability(dex_file, destination_component, source_component, /* is_strict */ true, is_assignable); return; } } else { // We only do this check for non-array types, as arrays might have erroneous // component types which makes the IsAssignableFrom check unreliable. DCHECK_EQ(is_assignable, destination->IsAssignableFrom(source)); } DexFileDeps* dex_deps = GetDexFileDeps(dex_file); if (dex_deps == nullptr) { // This invocation is from verification of a DEX file which is not being compiled. return; } if (!IsInClassPath(destination) && !IsInClassPath(source)) { // Both `destination` and `source` are defined in the compiled DEX files. // No need to record a dependency. return; } if (!IsInClassPath(source)) { if (!destination->IsInterface() && !source->IsInterface()) { // Find the super class at the classpath boundary. Only that class // can change the assignability. do { source = source->GetSuperClass(); } while (!IsInClassPath(source)); // If that class is the actual destination, no need to record it. if (source == destination) { return; } } else if (is_assignable) { source = FindOneClassPathBoundaryForInterface(destination, source); if (source == nullptr) { // There was no classpath boundary, no need to record. return; } DCHECK(IsInClassPath(source)); } } // Get string IDs for both descriptors and store in the appropriate set. dex::StringIndex destination_id = GetClassDescriptorStringId(dex_file, destination); dex::StringIndex source_id = GetClassDescriptorStringId(dex_file, source); if (is_assignable) { dex_deps->assignable_types_.emplace(TypeAssignability(destination_id, source_id)); } else { dex_deps->unassignable_types_.emplace(TypeAssignability(destination_id, source_id)); } } void VerifierDeps::MaybeRecordVerificationStatus(const DexFile& dex_file, dex::TypeIndex type_idx, FailureKind failure_kind) { if (failure_kind == FailureKind::kNoFailure) { // We only record classes that did not fully verify at compile time. return; } VerifierDeps* thread_deps = GetThreadLocalVerifierDeps(); if (thread_deps != nullptr) { DexFileDeps* dex_deps = thread_deps->GetDexFileDeps(dex_file); dex_deps->unverified_classes_.push_back(type_idx); } } void VerifierDeps::MaybeRecordClassResolution(const DexFile& dex_file, dex::TypeIndex type_idx, mirror::Class* klass) { VerifierDeps* thread_deps = GetThreadLocalVerifierDeps(); if (thread_deps != nullptr) { thread_deps->AddClassResolution(dex_file, type_idx, klass); } } void VerifierDeps::MaybeRecordFieldResolution(const DexFile& dex_file, uint32_t field_idx, ArtField* field) { VerifierDeps* thread_deps = GetThreadLocalVerifierDeps(); if (thread_deps != nullptr) { thread_deps->AddFieldResolution(dex_file, field_idx, field); } } void VerifierDeps::MaybeRecordMethodResolution(const DexFile& dex_file, uint32_t method_idx, MethodResolutionKind resolution_kind, ArtMethod* method) { VerifierDeps* thread_deps = GetThreadLocalVerifierDeps(); if (thread_deps != nullptr) { thread_deps->AddMethodResolution(dex_file, method_idx, resolution_kind, method); } } void VerifierDeps::MaybeRecordAssignability(const DexFile& dex_file, mirror::Class* destination, mirror::Class* source, bool is_strict, bool is_assignable) { VerifierDeps* thread_deps = GetThreadLocalVerifierDeps(); if (thread_deps != nullptr) { thread_deps->AddAssignability(dex_file, destination, source, is_strict, is_assignable); } } namespace { static inline uint32_t DecodeUint32WithOverflowCheck(const uint8_t** in, const uint8_t* end) { CHECK_LT(*in, end); return DecodeUnsignedLeb128(in); } template<typename T> inline uint32_t Encode(T in); template<> inline uint32_t Encode<uint16_t>(uint16_t in) { return in; } template<> inline uint32_t Encode<uint32_t>(uint32_t in) { return in; } template<> inline uint32_t Encode<dex::TypeIndex>(dex::TypeIndex in) { return in.index_; } template<> inline uint32_t Encode<dex::StringIndex>(dex::StringIndex in) { return in.index_; } template<typename T> inline T Decode(uint32_t in); template<> inline uint16_t Decode<uint16_t>(uint32_t in) { return dchecked_integral_cast<uint16_t>(in); } template<> inline uint32_t Decode<uint32_t>(uint32_t in) { return in; } template<> inline dex::TypeIndex Decode<dex::TypeIndex>(uint32_t in) { return dex::TypeIndex(in); } template<> inline dex::StringIndex Decode<dex::StringIndex>(uint32_t in) { return dex::StringIndex(in); } template<typename T1, typename T2> static inline void EncodeTuple(std::vector<uint8_t>* out, const std::tuple<T1, T2>& t) { EncodeUnsignedLeb128(out, Encode(std::get<0>(t))); EncodeUnsignedLeb128(out, Encode(std::get<1>(t))); } template<typename T1, typename T2> static inline void DecodeTuple(const uint8_t** in, const uint8_t* end, std::tuple<T1, T2>* t) { T1 v1 = Decode<T1>(DecodeUint32WithOverflowCheck(in, end)); T2 v2 = Decode<T2>(DecodeUint32WithOverflowCheck(in, end)); *t = std::make_tuple(v1, v2); } template<typename T1, typename T2, typename T3> static inline void EncodeTuple(std::vector<uint8_t>* out, const std::tuple<T1, T2, T3>& t) { EncodeUnsignedLeb128(out, Encode(std::get<0>(t))); EncodeUnsignedLeb128(out, Encode(std::get<1>(t))); EncodeUnsignedLeb128(out, Encode(std::get<2>(t))); } template<typename T1, typename T2, typename T3> static inline void DecodeTuple(const uint8_t** in, const uint8_t* end, std::tuple<T1, T2, T3>* t) { T1 v1 = Decode<T1>(DecodeUint32WithOverflowCheck(in, end)); T2 v2 = Decode<T2>(DecodeUint32WithOverflowCheck(in, end)); T3 v3 = Decode<T3>(DecodeUint32WithOverflowCheck(in, end)); *t = std::make_tuple(v1, v2, v3); } template<typename T> static inline void EncodeSet(std::vector<uint8_t>* out, const std::set<T>& set) { EncodeUnsignedLeb128(out, set.size()); for (const T& entry : set) { EncodeTuple(out, entry); } } template <typename T> static inline void EncodeUint16Vector(std::vector<uint8_t>* out, const std::vector<T>& vector) { EncodeUnsignedLeb128(out, vector.size()); for (const T& entry : vector) { EncodeUnsignedLeb128(out, Encode(entry)); } } template<typename T> static inline void DecodeSet(const uint8_t** in, const uint8_t* end, std::set<T>* set) { DCHECK(set->empty()); size_t num_entries = DecodeUint32WithOverflowCheck(in, end); for (size_t i = 0; i < num_entries; ++i) { T tuple; DecodeTuple(in, end, &tuple); set->emplace(tuple); } } template<typename T> static inline void DecodeUint16Vector(const uint8_t** in, const uint8_t* end, std::vector<T>* vector) { DCHECK(vector->empty()); size_t num_entries = DecodeUint32WithOverflowCheck(in, end); vector->reserve(num_entries); for (size_t i = 0; i < num_entries; ++i) { vector->push_back( Decode<T>(dchecked_integral_cast<uint16_t>(DecodeUint32WithOverflowCheck(in, end)))); } } static inline void EncodeStringVector(std::vector<uint8_t>* out, const std::vector<std::string>& strings) { EncodeUnsignedLeb128(out, strings.size()); for (const std::string& str : strings) { const uint8_t* data = reinterpret_cast<const uint8_t*>(str.c_str()); size_t length = str.length() + 1; out->insert(out->end(), data, data + length); DCHECK_EQ(0u, out->back()); } } static inline void DecodeStringVector(const uint8_t** in, const uint8_t* end, std::vector<std::string>* strings) { DCHECK(strings->empty()); size_t num_strings = DecodeUint32WithOverflowCheck(in, end); strings->reserve(num_strings); for (size_t i = 0; i < num_strings; ++i) { CHECK_LT(*in, end); const char* string_start = reinterpret_cast<const char*>(*in); strings->emplace_back(std::string(string_start)); *in += strings->back().length() + 1; } } } // namespace void VerifierDeps::Encode(const std::vector<const DexFile*>& dex_files, std::vector<uint8_t>* buffer) const { for (const DexFile* dex_file : dex_files) { const DexFileDeps& deps = *GetDexFileDeps(*dex_file); EncodeStringVector(buffer, deps.strings_); EncodeSet(buffer, deps.assignable_types_); EncodeSet(buffer, deps.unassignable_types_); EncodeSet(buffer, deps.classes_); EncodeSet(buffer, deps.fields_); EncodeSet(buffer, deps.direct_methods_); EncodeSet(buffer, deps.virtual_methods_); EncodeSet(buffer, deps.interface_methods_); EncodeUint16Vector(buffer, deps.unverified_classes_); } } VerifierDeps::VerifierDeps(const std::vector<const DexFile*>& dex_files, ArrayRef<const uint8_t> data) : VerifierDeps(dex_files) { if (data.empty()) { // Return eagerly, as the first thing we expect from VerifierDeps data is // the number of created strings, even if there is no dependency. // Currently, only the boot image does not have any VerifierDeps data. return; } const uint8_t* data_start = data.data(); const uint8_t* data_end = data_start + data.size(); for (const DexFile* dex_file : dex_files) { DexFileDeps* deps = GetDexFileDeps(*dex_file); DecodeStringVector(&data_start, data_end, &deps->strings_); DecodeSet(&data_start, data_end, &deps->assignable_types_); DecodeSet(&data_start, data_end, &deps->unassignable_types_); DecodeSet(&data_start, data_end, &deps->classes_); DecodeSet(&data_start, data_end, &deps->fields_); DecodeSet(&data_start, data_end, &deps->direct_methods_); DecodeSet(&data_start, data_end, &deps->virtual_methods_); DecodeSet(&data_start, data_end, &deps->interface_methods_); DecodeUint16Vector(&data_start, data_end, &deps->unverified_classes_); } CHECK_LE(data_start, data_end); } bool VerifierDeps::Equals(const VerifierDeps& rhs) const { if (dex_deps_.size() != rhs.dex_deps_.size()) { return false; } auto lhs_it = dex_deps_.begin(); auto rhs_it = rhs.dex_deps_.begin(); for (; (lhs_it != dex_deps_.end()) && (rhs_it != rhs.dex_deps_.end()); lhs_it++, rhs_it++) { const DexFile* lhs_dex_file = lhs_it->first; const DexFile* rhs_dex_file = rhs_it->first; if (lhs_dex_file != rhs_dex_file) { return false; } DexFileDeps* lhs_deps = lhs_it->second.get(); DexFileDeps* rhs_deps = rhs_it->second.get(); if (!lhs_deps->Equals(*rhs_deps)) { return false; } } DCHECK((lhs_it == dex_deps_.end()) && (rhs_it == rhs.dex_deps_.end())); return true; } bool VerifierDeps::DexFileDeps::Equals(const VerifierDeps::DexFileDeps& rhs) const { return (strings_ == rhs.strings_) && (assignable_types_ == rhs.assignable_types_) && (unassignable_types_ == rhs.unassignable_types_) && (classes_ == rhs.classes_) && (fields_ == rhs.fields_) && (direct_methods_ == rhs.direct_methods_) && (virtual_methods_ == rhs.virtual_methods_) && (interface_methods_ == rhs.interface_methods_) && (unverified_classes_ == rhs.unverified_classes_); } void VerifierDeps::Dump(VariableIndentationOutputStream* vios) const { for (const auto& dep : dex_deps_) { const DexFile& dex_file = *dep.first; vios->Stream() << "Dependencies of " << dex_file.GetLocation() << ":\n"; ScopedIndentation indent(vios); for (const std::string& str : dep.second->strings_) { vios->Stream() << "Extra string: " << str << "\n"; } for (const TypeAssignability& entry : dep.second->assignable_types_) { vios->Stream() << GetStringFromId(dex_file, entry.GetSource()) << " must be assignable to " << GetStringFromId(dex_file, entry.GetDestination()) << "\n"; } for (const TypeAssignability& entry : dep.second->unassignable_types_) { vios->Stream() << GetStringFromId(dex_file, entry.GetSource()) << " must not be assignable to " << GetStringFromId(dex_file, entry.GetDestination()) << "\n"; } for (const ClassResolution& entry : dep.second->classes_) { vios->Stream() << dex_file.StringByTypeIdx(entry.GetDexTypeIndex()) << (entry.IsResolved() ? " must be resolved " : "must not be resolved ") << " with access flags " << std::hex << entry.GetAccessFlags() << std::dec << "\n"; } for (const FieldResolution& entry : dep.second->fields_) { const DexFile::FieldId& field_id = dex_file.GetFieldId(entry.GetDexFieldIndex()); vios->Stream() << dex_file.GetFieldDeclaringClassDescriptor(field_id) << "->" << dex_file.GetFieldName(field_id) << ":" << dex_file.GetFieldTypeDescriptor(field_id) << " is expected to be "; if (!entry.IsResolved()) { vios->Stream() << "unresolved\n"; } else { vios->Stream() << "in class " << GetStringFromId(dex_file, entry.GetDeclaringClassIndex()) << ", and have the access flags " << std::hex << entry.GetAccessFlags() << std::dec << "\n"; } } for (const auto& entry : { std::make_pair(kDirectMethodResolution, dep.second->direct_methods_), std::make_pair(kVirtualMethodResolution, dep.second->virtual_methods_), std::make_pair(kInterfaceMethodResolution, dep.second->interface_methods_) }) { for (const MethodResolution& method : entry.second) { const DexFile::MethodId& method_id = dex_file.GetMethodId(method.GetDexMethodIndex()); vios->Stream() << dex_file.GetMethodDeclaringClassDescriptor(method_id) << "->" << dex_file.GetMethodName(method_id) << dex_file.GetMethodSignature(method_id).ToString() << " is expected to be "; if (!method.IsResolved()) { vios->Stream() << "unresolved\n"; } else { vios->Stream() << "in class " << GetStringFromId(dex_file, method.GetDeclaringClassIndex()) << ", have the access flags " << std::hex << method.GetAccessFlags() << std::dec << ", and be of kind " << entry.first << "\n"; } } } for (dex::TypeIndex type_index : dep.second->unverified_classes_) { vios->Stream() << dex_file.StringByTypeIdx(type_index) << " is expected to be verified at runtime\n"; } } } bool VerifierDeps::ValidateDependencies(Handle<mirror::ClassLoader> class_loader, Thread* self) const { for (const auto& entry : dex_deps_) { if (!VerifyDexFile(class_loader, *entry.first, *entry.second, self)) { return false; } } return true; } // TODO: share that helper with other parts of the compiler that have // the same lookup pattern. static mirror::Class* FindClassAndClearException(ClassLinker* class_linker, Thread* self, const char* name, Handle<mirror::ClassLoader> class_loader) REQUIRES_SHARED(Locks::mutator_lock_) { mirror::Class* result = class_linker->FindClass(self, name, class_loader); if (result == nullptr) { DCHECK(self->IsExceptionPending()); self->ClearException(); } return result; } bool VerifierDeps::VerifyAssignability(Handle<mirror::ClassLoader> class_loader, const DexFile& dex_file, const std::set<TypeAssignability>& assignables, bool expected_assignability, Thread* self) const { StackHandleScope<2> hs(self); ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); MutableHandle<mirror::Class> source(hs.NewHandle<mirror::Class>(nullptr)); MutableHandle<mirror::Class> destination(hs.NewHandle<mirror::Class>(nullptr)); for (const auto& entry : assignables) { const std::string& destination_desc = GetStringFromId(dex_file, entry.GetDestination()); destination.Assign( FindClassAndClearException(class_linker, self, destination_desc.c_str(), class_loader)); const std::string& source_desc = GetStringFromId(dex_file, entry.GetSource()); source.Assign( FindClassAndClearException(class_linker, self, source_desc.c_str(), class_loader)); if (destination == nullptr) { LOG(INFO) << "VerifiersDeps: Could not resolve class " << destination_desc; return false; } if (source == nullptr) { LOG(INFO) << "VerifierDeps: Could not resolve class " << source_desc; return false; } DCHECK(destination->IsResolved() && source->IsResolved()); if (destination->IsAssignableFrom(source.Get()) != expected_assignability) { LOG(INFO) << "VerifierDeps: Class " << destination_desc << (expected_assignability ? " not " : " ") << "assignable from " << source_desc; return false; } } return true; } bool VerifierDeps::VerifyClasses(Handle<mirror::ClassLoader> class_loader, const DexFile& dex_file, const std::set<ClassResolution>& classes, Thread* self) const { StackHandleScope<1> hs(self); ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); MutableHandle<mirror::Class> cls(hs.NewHandle<mirror::Class>(nullptr)); for (const auto& entry : classes) { const char* descriptor = dex_file.StringByTypeIdx(entry.GetDexTypeIndex()); cls.Assign(FindClassAndClearException(class_linker, self, descriptor, class_loader)); if (entry.IsResolved()) { if (cls == nullptr) { LOG(INFO) << "VerifierDeps: Could not resolve class " << descriptor; return false; } else if (entry.GetAccessFlags() != GetAccessFlags(cls.Get())) { LOG(INFO) << "VerifierDeps: Unexpected access flags on class " << descriptor << std::hex << " (expected=" << entry.GetAccessFlags() << ", actual=" << GetAccessFlags(cls.Get()) << ")" << std::dec; return false; } } else if (cls != nullptr) { LOG(INFO) << "VerifierDeps: Unexpected successful resolution of class " << descriptor; return false; } } return true; } static std::string GetFieldDescription(const DexFile& dex_file, uint32_t index) { const DexFile::FieldId& field_id = dex_file.GetFieldId(index); return std::string(dex_file.GetFieldDeclaringClassDescriptor(field_id)) + "->" + dex_file.GetFieldName(field_id) + ":" + dex_file.GetFieldTypeDescriptor(field_id); } bool VerifierDeps::VerifyFields(Handle<mirror::ClassLoader> class_loader, const DexFile& dex_file, const std::set<FieldResolution>& fields, Thread* self) const { // Check recorded fields are resolved the same way, have the same recorded class, // and have the same recorded flags. ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); for (const auto& entry : fields) { const DexFile::FieldId& field_id = dex_file.GetFieldId(entry.GetDexFieldIndex()); StringPiece name(dex_file.StringDataByIdx(field_id.name_idx_)); StringPiece type(dex_file.StringDataByIdx(dex_file.GetTypeId(field_id.type_idx_).descriptor_idx_)); // Only use field_id.class_idx_ when the entry is unresolved, which is rare. // Otherwise, we might end up resolving an application class, which is expensive. std::string expected_decl_klass = entry.IsResolved() ? GetStringFromId(dex_file, entry.GetDeclaringClassIndex()) : dex_file.StringByTypeIdx(field_id.class_idx_); mirror::Class* cls = FindClassAndClearException( class_linker, self, expected_decl_klass.c_str(), class_loader); if (cls == nullptr) { LOG(INFO) << "VerifierDeps: Could not resolve class " << expected_decl_klass; return false; } DCHECK(cls->IsResolved()); ArtField* field = mirror::Class::FindField(self, cls, name, type); if (entry.IsResolved()) { std::string temp; if (field == nullptr) { LOG(INFO) << "VerifierDeps: Could not resolve field " << GetFieldDescription(dex_file, entry.GetDexFieldIndex()); return false; } else if (expected_decl_klass != field->GetDeclaringClass()->GetDescriptor(&temp)) { LOG(INFO) << "VerifierDeps: Unexpected declaring class for field resolution " << GetFieldDescription(dex_file, entry.GetDexFieldIndex()) << " (expected=" << expected_decl_klass << ", actual=" << field->GetDeclaringClass()->GetDescriptor(&temp) << ")"; return false; } else if (entry.GetAccessFlags() != GetAccessFlags(field)) { LOG(INFO) << "VerifierDeps: Unexpected access flags for resolved field " << GetFieldDescription(dex_file, entry.GetDexFieldIndex()) << std::hex << " (expected=" << entry.GetAccessFlags() << ", actual=" << GetAccessFlags(field) << ")" << std::dec; return false; } } else if (field != nullptr) { LOG(INFO) << "VerifierDeps: Unexpected successful resolution of field " << GetFieldDescription(dex_file, entry.GetDexFieldIndex()); return false; } } return true; } static std::string GetMethodDescription(const DexFile& dex_file, uint32_t index) { const DexFile::MethodId& method_id = dex_file.GetMethodId(index); return std::string(dex_file.GetMethodDeclaringClassDescriptor(method_id)) + "->" + dex_file.GetMethodName(method_id) + dex_file.GetMethodSignature(method_id).ToString(); } bool VerifierDeps::VerifyMethods(Handle<mirror::ClassLoader> class_loader, const DexFile& dex_file, const std::set<MethodResolution>& methods, MethodResolutionKind kind, Thread* self) const { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); PointerSize pointer_size = class_linker->GetImagePointerSize(); for (const auto& entry : methods) { const DexFile::MethodId& method_id = dex_file.GetMethodId(entry.GetDexMethodIndex()); const char* name = dex_file.GetMethodName(method_id); const Signature signature = dex_file.GetMethodSignature(method_id); // Only use method_id.class_idx_ when the entry is unresolved, which is rare. // Otherwise, we might end up resolving an application class, which is expensive. std::string expected_decl_klass = entry.IsResolved() ? GetStringFromId(dex_file, entry.GetDeclaringClassIndex()) : dex_file.StringByTypeIdx(method_id.class_idx_); mirror::Class* cls = FindClassAndClearException( class_linker, self, expected_decl_klass.c_str(), class_loader); if (cls == nullptr) { LOG(INFO) << "VerifierDeps: Could not resolve class " << expected_decl_klass; return false; } DCHECK(cls->IsResolved()); ArtMethod* method = nullptr; if (kind == kDirectMethodResolution) { method = cls->FindDirectMethod(name, signature, pointer_size); } else if (kind == kVirtualMethodResolution) { method = cls->FindVirtualMethod(name, signature, pointer_size); } else { DCHECK_EQ(kind, kInterfaceMethodResolution); method = cls->FindInterfaceMethod(name, signature, pointer_size); } if (entry.IsResolved()) { std::string temp; if (method == nullptr) { LOG(INFO) << "VerifierDeps: Could not resolve " << kind << " method " << GetMethodDescription(dex_file, entry.GetDexMethodIndex()); return false; } else if (expected_decl_klass != method->GetDeclaringClass()->GetDescriptor(&temp)) { LOG(INFO) << "VerifierDeps: Unexpected declaring class for " << kind << " method resolution " << GetMethodDescription(dex_file, entry.GetDexMethodIndex()) << " (expected=" << expected_decl_klass << ", actual=" << method->GetDeclaringClass()->GetDescriptor(&temp) << ")"; return false; } else if (entry.GetAccessFlags() != GetAccessFlags(method)) { LOG(INFO) << "VerifierDeps: Unexpected access flags for resolved " << kind << " method resolution " << GetMethodDescription(dex_file, entry.GetDexMethodIndex()) << std::hex << " (expected=" << entry.GetAccessFlags() << ", actual=" << GetAccessFlags(method) << ")" << std::dec; return false; } } else if (method != nullptr) { LOG(INFO) << "VerifierDeps: Unexpected successful resolution of " << kind << " method " << GetMethodDescription(dex_file, entry.GetDexMethodIndex()); return false; } } return true; } bool VerifierDeps::VerifyDexFile(Handle<mirror::ClassLoader> class_loader, const DexFile& dex_file, const DexFileDeps& deps, Thread* self) const { bool result = VerifyAssignability( class_loader, dex_file, deps.assignable_types_, /* expected_assignability */ true, self); result = result && VerifyAssignability( class_loader, dex_file, deps.unassignable_types_, /* expected_assignability */ false, self); result = result && VerifyClasses(class_loader, dex_file, deps.classes_, self); result = result && VerifyFields(class_loader, dex_file, deps.fields_, self); result = result && VerifyMethods( class_loader, dex_file, deps.direct_methods_, kDirectMethodResolution, self); result = result && VerifyMethods( class_loader, dex_file, deps.virtual_methods_, kVirtualMethodResolution, self); result = result && VerifyMethods( class_loader, dex_file, deps.interface_methods_, kInterfaceMethodResolution, self); return result; } } // namespace verifier } // namespace art