/* Copyright (C) 2016 The Android Open Source Project * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This file implements interfaces from the file jvmti.h. This implementation * is licensed under the same terms as the file jvmti.h. The * copyright and license information for the file jvmti.h follows. * * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ #include "ti_redefine.h" #include <limits> #include "android-base/stringprintf.h" #include "art_field-inl.h" #include "art_method-inl.h" #include "art_jvmti.h" #include "base/array_slice.h" #include "base/logging.h" #include "class_linker-inl.h" #include "debugger.h" #include "dex_file.h" #include "dex_file_types.h" #include "events-inl.h" #include "gc/allocation_listener.h" #include "gc/heap.h" #include "instrumentation.h" #include "jdwp/jdwp.h" #include "jdwp/jdwp_constants.h" #include "jdwp/jdwp_event.h" #include "jdwp/object_registry.h" #include "jit/jit.h" #include "jit/jit_code_cache.h" #include "jni_env_ext-inl.h" #include "jvmti_allocator.h" #include "mirror/class-inl.h" #include "mirror/class_ext.h" #include "mirror/object.h" #include "non_debuggable_classes.h" #include "object_lock.h" #include "runtime.h" #include "ScopedLocalRef.h" #include "ti_class_loader.h" #include "transform.h" #include "verifier/method_verifier.h" #include "verifier/verifier_enums.h" namespace openjdkjvmti { using android::base::StringPrintf; // A helper that fills in a classes obsolete_methods_ and obsolete_dex_caches_ classExt fields as // they are created. This ensures that we can always call any method of an obsolete ArtMethod object // almost as soon as they are created since the GetObsoleteDexCache method will succeed. class ObsoleteMap { public: art::ArtMethod* FindObsoleteVersion(art::ArtMethod* original) REQUIRES(art::Locks::mutator_lock_, art::Roles::uninterruptible_) { auto method_pair = id_map_.find(original); if (method_pair != id_map_.end()) { art::ArtMethod* res = obsolete_methods_->GetElementPtrSize<art::ArtMethod*>( method_pair->second, art::kRuntimePointerSize); DCHECK(res != nullptr); DCHECK_EQ(original, res->GetNonObsoleteMethod()); return res; } else { return nullptr; } } void RecordObsolete(art::ArtMethod* original, art::ArtMethod* obsolete) REQUIRES(art::Locks::mutator_lock_, art::Roles::uninterruptible_) { DCHECK(original != nullptr); DCHECK(obsolete != nullptr); int32_t slot = next_free_slot_++; DCHECK_LT(slot, obsolete_methods_->GetLength()); DCHECK(nullptr == obsolete_methods_->GetElementPtrSize<art::ArtMethod*>(slot, art::kRuntimePointerSize)); DCHECK(nullptr == obsolete_dex_caches_->Get(slot)); obsolete_methods_->SetElementPtrSize(slot, obsolete, art::kRuntimePointerSize); obsolete_dex_caches_->Set(slot, original_dex_cache_); id_map_.insert({original, slot}); } ObsoleteMap(art::ObjPtr<art::mirror::PointerArray> obsolete_methods, art::ObjPtr<art::mirror::ObjectArray<art::mirror::DexCache>> obsolete_dex_caches, art::ObjPtr<art::mirror::DexCache> original_dex_cache) : next_free_slot_(0), obsolete_methods_(obsolete_methods), obsolete_dex_caches_(obsolete_dex_caches), original_dex_cache_(original_dex_cache) { // Figure out where the first unused slot in the obsolete_methods_ array is. while (obsolete_methods_->GetElementPtrSize<art::ArtMethod*>( next_free_slot_, art::kRuntimePointerSize) != nullptr) { DCHECK(obsolete_dex_caches_->Get(next_free_slot_) != nullptr); next_free_slot_++; } // Sanity check that the same slot in obsolete_dex_caches_ is free. DCHECK(obsolete_dex_caches_->Get(next_free_slot_) == nullptr); } private: int32_t next_free_slot_; std::unordered_map<art::ArtMethod*, int32_t> id_map_; // Pointers to the fields in mirror::ClassExt. These can be held as ObjPtr since this is only used // when we have an exclusive mutator_lock_ (i.e. all threads are suspended). art::ObjPtr<art::mirror::PointerArray> obsolete_methods_; art::ObjPtr<art::mirror::ObjectArray<art::mirror::DexCache>> obsolete_dex_caches_; art::ObjPtr<art::mirror::DexCache> original_dex_cache_; }; // This visitor walks thread stacks and allocates and sets up the obsolete methods. It also does // some basic sanity checks that the obsolete method is sane. class ObsoleteMethodStackVisitor : public art::StackVisitor { protected: ObsoleteMethodStackVisitor( art::Thread* thread, art::LinearAlloc* allocator, const std::unordered_set<art::ArtMethod*>& obsoleted_methods, ObsoleteMap* obsolete_maps) : StackVisitor(thread, /*context*/nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames), allocator_(allocator), obsoleted_methods_(obsoleted_methods), obsolete_maps_(obsolete_maps) { } ~ObsoleteMethodStackVisitor() OVERRIDE {} public: // Returns true if we successfully installed obsolete methods on this thread, filling // obsolete_maps_ with the translations if needed. Returns false and fills error_msg if we fail. // The stack is cleaned up when we fail. static void UpdateObsoleteFrames( art::Thread* thread, art::LinearAlloc* allocator, const std::unordered_set<art::ArtMethod*>& obsoleted_methods, ObsoleteMap* obsolete_maps) REQUIRES(art::Locks::mutator_lock_) { ObsoleteMethodStackVisitor visitor(thread, allocator, obsoleted_methods, obsolete_maps); visitor.WalkStack(); } bool VisitFrame() OVERRIDE REQUIRES(art::Locks::mutator_lock_) { art::ScopedAssertNoThreadSuspension snts("Fixing up the stack for obsolete methods."); art::ArtMethod* old_method = GetMethod(); if (obsoleted_methods_.find(old_method) != obsoleted_methods_.end()) { // We cannot ensure that the right dex file is used in inlined frames so we don't support // redefining them. DCHECK(!IsInInlinedFrame()) << "Inlined frames are not supported when using redefinition"; art::ArtMethod* new_obsolete_method = obsolete_maps_->FindObsoleteVersion(old_method); if (new_obsolete_method == nullptr) { // Create a new Obsolete Method and put it in the list. art::Runtime* runtime = art::Runtime::Current(); art::ClassLinker* cl = runtime->GetClassLinker(); auto ptr_size = cl->GetImagePointerSize(); const size_t method_size = art::ArtMethod::Size(ptr_size); auto* method_storage = allocator_->Alloc(art::Thread::Current(), method_size); CHECK(method_storage != nullptr) << "Unable to allocate storage for obsolete version of '" << old_method->PrettyMethod() << "'"; new_obsolete_method = new (method_storage) art::ArtMethod(); new_obsolete_method->CopyFrom(old_method, ptr_size); DCHECK_EQ(new_obsolete_method->GetDeclaringClass(), old_method->GetDeclaringClass()); new_obsolete_method->SetIsObsolete(); new_obsolete_method->SetDontCompile(); cl->SetEntryPointsForObsoleteMethod(new_obsolete_method); obsolete_maps_->RecordObsolete(old_method, new_obsolete_method); // Update JIT Data structures to point to the new method. art::jit::Jit* jit = art::Runtime::Current()->GetJit(); if (jit != nullptr) { // Notify the JIT we are making this obsolete method. It will update the jit's internal // structures to keep track of the new obsolete method. jit->GetCodeCache()->MoveObsoleteMethod(old_method, new_obsolete_method); } } DCHECK(new_obsolete_method != nullptr); SetMethod(new_obsolete_method); } return true; } private: // The linear allocator we should use to make new methods. art::LinearAlloc* allocator_; // The set of all methods which could be obsoleted. const std::unordered_set<art::ArtMethod*>& obsoleted_methods_; // A map from the original to the newly allocated obsolete method for frames on this thread. The // values in this map are added to the obsolete_methods_ (and obsolete_dex_caches_) fields of // the redefined classes ClassExt as it is filled. ObsoleteMap* obsolete_maps_; }; jvmtiError Redefiner::IsModifiableClass(jvmtiEnv* env ATTRIBUTE_UNUSED, jclass klass, jboolean* is_redefinable) { art::Thread* self = art::Thread::Current(); art::ScopedObjectAccess soa(self); art::StackHandleScope<1> hs(self); art::ObjPtr<art::mirror::Object> obj(self->DecodeJObject(klass)); if (obj.IsNull()) { return ERR(INVALID_CLASS); } art::Handle<art::mirror::Class> h_klass(hs.NewHandle(obj->AsClass())); std::string err_unused; *is_redefinable = Redefiner::GetClassRedefinitionError(h_klass, &err_unused) == OK ? JNI_TRUE : JNI_FALSE; return OK; } jvmtiError Redefiner::GetClassRedefinitionError(art::Handle<art::mirror::Class> klass, /*out*/std::string* error_msg) { if (klass->IsPrimitive()) { *error_msg = "Modification of primitive classes is not supported"; return ERR(UNMODIFIABLE_CLASS); } else if (klass->IsInterface()) { *error_msg = "Modification of Interface classes is currently not supported"; return ERR(UNMODIFIABLE_CLASS); } else if (klass->IsStringClass()) { *error_msg = "Modification of String class is not supported"; return ERR(UNMODIFIABLE_CLASS); } else if (klass->IsArrayClass()) { *error_msg = "Modification of Array classes is not supported"; return ERR(UNMODIFIABLE_CLASS); } else if (klass->IsProxyClass()) { *error_msg = "Modification of proxy classes is not supported"; return ERR(UNMODIFIABLE_CLASS); } for (jclass c : art::NonDebuggableClasses::GetNonDebuggableClasses()) { if (klass.Get() == art::Thread::Current()->DecodeJObject(c)->AsClass()) { *error_msg = "Class might have stack frames that cannot be made obsolete"; return ERR(UNMODIFIABLE_CLASS); } } return OK; } // Moves dex data to an anonymous, read-only mmap'd region. std::unique_ptr<art::MemMap> Redefiner::MoveDataToMemMap(const std::string& original_location, art::ArraySlice<const unsigned char> data, std::string* error_msg) { std::unique_ptr<art::MemMap> map(art::MemMap::MapAnonymous( StringPrintf("%s-transformed", original_location.c_str()).c_str(), nullptr, data.size(), PROT_READ|PROT_WRITE, /*low_4gb*/false, /*reuse*/false, error_msg)); if (map == nullptr) { return map; } memcpy(map->Begin(), &data.At(0), data.size()); // Make the dex files mmap read only. This matches how other DexFiles are mmaped and prevents // programs from corrupting it. map->Protect(PROT_READ); return map; } Redefiner::ClassRedefinition::ClassRedefinition( Redefiner* driver, jclass klass, const art::DexFile* redefined_dex_file, const char* class_sig, art::ArraySlice<const unsigned char> orig_dex_file) : driver_(driver), klass_(klass), dex_file_(redefined_dex_file), class_sig_(class_sig), original_dex_file_(orig_dex_file) { GetMirrorClass()->MonitorEnter(driver_->self_); } Redefiner::ClassRedefinition::~ClassRedefinition() { if (driver_ != nullptr) { GetMirrorClass()->MonitorExit(driver_->self_); } } jvmtiError Redefiner::RedefineClasses(ArtJvmTiEnv* env, EventHandler* event_handler, art::Runtime* runtime, art::Thread* self, jint class_count, const jvmtiClassDefinition* definitions, /*out*/std::string* error_msg) { if (env == nullptr) { *error_msg = "env was null!"; return ERR(INVALID_ENVIRONMENT); } else if (class_count < 0) { *error_msg = "class_count was less then 0"; return ERR(ILLEGAL_ARGUMENT); } else if (class_count == 0) { // We don't actually need to do anything. Just return OK. return OK; } else if (definitions == nullptr) { *error_msg = "null definitions!"; return ERR(NULL_POINTER); } std::vector<ArtClassDefinition> def_vector; def_vector.reserve(class_count); for (jint i = 0; i < class_count; i++) { jboolean is_modifiable = JNI_FALSE; jvmtiError res = env->IsModifiableClass(definitions[i].klass, &is_modifiable); if (res != OK) { return res; } else if (!is_modifiable) { return ERR(UNMODIFIABLE_CLASS); } // We make a copy of the class_bytes to pass into the retransformation. // This makes cleanup easier (since we unambiguously own the bytes) and also is useful since we // will need to keep the original bytes around unaltered for subsequent RetransformClasses calls // to get the passed in bytes. unsigned char* class_bytes_copy = nullptr; res = env->Allocate(definitions[i].class_byte_count, &class_bytes_copy); if (res != OK) { return res; } memcpy(class_bytes_copy, definitions[i].class_bytes, definitions[i].class_byte_count); ArtClassDefinition def; res = def.Init(env, definitions[i]); if (res != OK) { return res; } def_vector.push_back(std::move(def)); } // Call all the transformation events. jvmtiError res = Transformer::RetransformClassesDirect(env, event_handler, self, &def_vector); if (res != OK) { // Something went wrong with transformation! return res; } return RedefineClassesDirect(env, runtime, self, def_vector, error_msg); } jvmtiError Redefiner::RedefineClassesDirect(ArtJvmTiEnv* env, art::Runtime* runtime, art::Thread* self, const std::vector<ArtClassDefinition>& definitions, std::string* error_msg) { DCHECK(env != nullptr); if (definitions.size() == 0) { // We don't actually need to do anything. Just return OK. return OK; } // Stop JIT for the duration of this redefine since the JIT might concurrently compile a method we // are going to redefine. art::jit::ScopedJitSuspend suspend_jit; // Get shared mutator lock so we can lock all the classes. art::ScopedObjectAccess soa(self); Redefiner r(runtime, self, error_msg); for (const ArtClassDefinition& def : definitions) { // Only try to transform classes that have been modified. if (def.IsModified()) { jvmtiError res = r.AddRedefinition(env, def); if (res != OK) { return res; } } } return r.Run(); } jvmtiError Redefiner::AddRedefinition(ArtJvmTiEnv* env, const ArtClassDefinition& def) { std::string original_dex_location; jvmtiError ret = OK; if ((ret = GetClassLocation(env, def.GetClass(), &original_dex_location))) { *error_msg_ = "Unable to get original dex file location!"; return ret; } char* generic_ptr_unused = nullptr; char* signature_ptr = nullptr; if ((ret = env->GetClassSignature(def.GetClass(), &signature_ptr, &generic_ptr_unused)) != OK) { *error_msg_ = "Unable to get class signature!"; return ret; } JvmtiUniquePtr<char> generic_unique_ptr(MakeJvmtiUniquePtr(env, generic_ptr_unused)); JvmtiUniquePtr<char> signature_unique_ptr(MakeJvmtiUniquePtr(env, signature_ptr)); std::unique_ptr<art::MemMap> map(MoveDataToMemMap(original_dex_location, def.GetDexData(), error_msg_)); std::ostringstream os; if (map.get() == nullptr) { os << "Failed to create anonymous mmap for modified dex file of class " << def.GetName() << "in dex file " << original_dex_location << " because: " << *error_msg_; *error_msg_ = os.str(); return ERR(OUT_OF_MEMORY); } if (map->Size() < sizeof(art::DexFile::Header)) { *error_msg_ = "Could not read dex file header because dex_data was too short"; return ERR(INVALID_CLASS_FORMAT); } uint32_t checksum = reinterpret_cast<const art::DexFile::Header*>(map->Begin())->checksum_; std::unique_ptr<const art::DexFile> dex_file(art::DexFile::Open(map->GetName(), checksum, std::move(map), /*verify*/true, /*verify_checksum*/true, error_msg_)); if (dex_file.get() == nullptr) { os << "Unable to load modified dex file for " << def.GetName() << ": " << *error_msg_; *error_msg_ = os.str(); return ERR(INVALID_CLASS_FORMAT); } redefinitions_.push_back( Redefiner::ClassRedefinition(this, def.GetClass(), dex_file.release(), signature_ptr, def.GetNewOriginalDexFile())); return OK; } art::mirror::Class* Redefiner::ClassRedefinition::GetMirrorClass() { return driver_->self_->DecodeJObject(klass_)->AsClass(); } art::mirror::ClassLoader* Redefiner::ClassRedefinition::GetClassLoader() { return GetMirrorClass()->GetClassLoader(); } art::mirror::DexCache* Redefiner::ClassRedefinition::CreateNewDexCache( art::Handle<art::mirror::ClassLoader> loader) { return driver_->runtime_->GetClassLinker()->RegisterDexFile(*dex_file_, loader.Get()).Ptr(); } void Redefiner::RecordFailure(jvmtiError result, const std::string& class_sig, const std::string& error_msg) { *error_msg_ = StringPrintf("Unable to perform redefinition of '%s': %s", class_sig.c_str(), error_msg.c_str()); result_ = result; } art::mirror::Object* Redefiner::ClassRedefinition::AllocateOrGetOriginalDexFile() { // If we have been specifically given a new set of bytes use that if (original_dex_file_.size() != 0) { return art::mirror::ByteArray::AllocateAndFill( driver_->self_, reinterpret_cast<const signed char*>(&original_dex_file_.At(0)), original_dex_file_.size()); } // See if we already have one set. art::ObjPtr<art::mirror::ClassExt> ext(GetMirrorClass()->GetExtData()); if (!ext.IsNull()) { art::ObjPtr<art::mirror::Object> old_original_dex_file(ext->GetOriginalDexFile()); if (!old_original_dex_file.IsNull()) { // We do. Use it. return old_original_dex_file.Ptr(); } } // return the current dex_cache which has the dex file in it. art::ObjPtr<art::mirror::DexCache> current_dex_cache(GetMirrorClass()->GetDexCache()); // TODO Handle this or make it so it cannot happen. if (current_dex_cache->GetDexFile()->NumClassDefs() != 1) { LOG(WARNING) << "Current dex file has more than one class in it. Calling RetransformClasses " << "on this class might fail if no transformations are applied to it!"; } return current_dex_cache.Ptr(); } struct CallbackCtx { ObsoleteMap* obsolete_map; art::LinearAlloc* allocator; std::unordered_set<art::ArtMethod*> obsolete_methods; explicit CallbackCtx(ObsoleteMap* map, art::LinearAlloc* alloc) : obsolete_map(map), allocator(alloc) {} }; void DoAllocateObsoleteMethodsCallback(art::Thread* t, void* vdata) NO_THREAD_SAFETY_ANALYSIS { CallbackCtx* data = reinterpret_cast<CallbackCtx*>(vdata); ObsoleteMethodStackVisitor::UpdateObsoleteFrames(t, data->allocator, data->obsolete_methods, data->obsolete_map); } // This creates any ArtMethod* structures needed for obsolete methods and ensures that the stack is // updated so they will be run. // TODO Rewrite so we can do this only once regardless of how many redefinitions there are. void Redefiner::ClassRedefinition::FindAndAllocateObsoleteMethods(art::mirror::Class* art_klass) { art::ScopedAssertNoThreadSuspension ns("No thread suspension during thread stack walking"); art::mirror::ClassExt* ext = art_klass->GetExtData(); CHECK(ext->GetObsoleteMethods() != nullptr); art::ClassLinker* linker = driver_->runtime_->GetClassLinker(); // This holds pointers to the obsolete methods map fields which are updated as needed. ObsoleteMap map(ext->GetObsoleteMethods(), ext->GetObsoleteDexCaches(), art_klass->GetDexCache()); CallbackCtx ctx(&map, linker->GetAllocatorForClassLoader(art_klass->GetClassLoader())); // Add all the declared methods to the map for (auto& m : art_klass->GetDeclaredMethods(art::kRuntimePointerSize)) { if (m.IsIntrinsic()) { LOG(WARNING) << "Redefining intrinsic method " << m.PrettyMethod() << ". This may cause the " << "unexpected use of the original definition of " << m.PrettyMethod() << "in " << "methods that have already been compiled."; } // It is possible to simply filter out some methods where they cannot really become obsolete, // such as native methods and keep their original (possibly optimized) implementations. We don't // do this, however, since we would need to mark these functions (still in the classes // declared_methods array) as obsolete so we will find the correct dex file to get meta-data // from (for example about stack-frame size). Furthermore we would be unable to get some useful // error checking from the interpreter which ensure we don't try to start executing obsolete // methods. ctx.obsolete_methods.insert(&m); } { art::MutexLock mu(driver_->self_, *art::Locks::thread_list_lock_); art::ThreadList* list = art::Runtime::Current()->GetThreadList(); list->ForEach(DoAllocateObsoleteMethodsCallback, static_cast<void*>(&ctx)); } } // Try and get the declared method. First try to get a virtual method then a direct method if that's // not found. static art::ArtMethod* FindMethod(art::Handle<art::mirror::Class> klass, const char* name, art::Signature sig) REQUIRES_SHARED(art::Locks::mutator_lock_) { art::ArtMethod* m = klass->FindDeclaredVirtualMethod(name, sig, art::kRuntimePointerSize); if (m == nullptr) { m = klass->FindDeclaredDirectMethod(name, sig, art::kRuntimePointerSize); } return m; } bool Redefiner::ClassRedefinition::CheckSameMethods() { art::StackHandleScope<1> hs(driver_->self_); art::Handle<art::mirror::Class> h_klass(hs.NewHandle(GetMirrorClass())); DCHECK_EQ(dex_file_->NumClassDefs(), 1u); art::ClassDataItemIterator new_iter(*dex_file_, dex_file_->GetClassData(dex_file_->GetClassDef(0))); // Make sure we have the same number of methods. uint32_t num_new_method = new_iter.NumVirtualMethods() + new_iter.NumDirectMethods(); uint32_t num_old_method = h_klass->GetDeclaredMethodsSlice(art::kRuntimePointerSize).size(); if (num_new_method != num_old_method) { bool bigger = num_new_method > num_old_method; RecordFailure(bigger ? ERR(UNSUPPORTED_REDEFINITION_METHOD_ADDED) : ERR(UNSUPPORTED_REDEFINITION_METHOD_DELETED), StringPrintf("Total number of declared methods changed from %d to %d", num_old_method, num_new_method)); return false; } // Skip all of the fields. We should have already checked this. while (new_iter.HasNextStaticField() || new_iter.HasNextInstanceField()) { new_iter.Next(); } // Check each of the methods. NB we don't need to specifically check for removals since the 2 dex // files have the same number of methods, which means there must be an equal amount of additions // and removals. for (; new_iter.HasNextVirtualMethod() || new_iter.HasNextDirectMethod(); new_iter.Next()) { // Get the data on the method we are searching for const art::DexFile::MethodId& new_method_id = dex_file_->GetMethodId(new_iter.GetMemberIndex()); const char* new_method_name = dex_file_->GetMethodName(new_method_id); art::Signature new_method_signature = dex_file_->GetMethodSignature(new_method_id); art::ArtMethod* old_method = FindMethod(h_klass, new_method_name, new_method_signature); // If we got past the check for the same number of methods above that means there must be at // least one added and one removed method. We will return the ADDED failure message since it is // easier to get a useful error report for it. if (old_method == nullptr) { RecordFailure(ERR(UNSUPPORTED_REDEFINITION_METHOD_ADDED), StringPrintf("Unknown method '%s' (sig: %s) was added!", new_method_name, new_method_signature.ToString().c_str())); return false; } // Since direct methods have different flags than virtual ones (specifically direct methods must // have kAccPrivate or kAccStatic or kAccConstructor flags) we can tell if a method changes from // virtual to direct. uint32_t new_flags = new_iter.GetMethodAccessFlags(); if (new_flags != (old_method->GetAccessFlags() & art::kAccValidMethodFlags)) { RecordFailure(ERR(UNSUPPORTED_REDEFINITION_METHOD_MODIFIERS_CHANGED), StringPrintf("method '%s' (sig: %s) had different access flags", new_method_name, new_method_signature.ToString().c_str())); return false; } } return true; } bool Redefiner::ClassRedefinition::CheckSameFields() { art::StackHandleScope<1> hs(driver_->self_); art::Handle<art::mirror::Class> h_klass(hs.NewHandle(GetMirrorClass())); DCHECK_EQ(dex_file_->NumClassDefs(), 1u); art::ClassDataItemIterator new_iter(*dex_file_, dex_file_->GetClassData(dex_file_->GetClassDef(0))); const art::DexFile& old_dex_file = h_klass->GetDexFile(); art::ClassDataItemIterator old_iter(old_dex_file, old_dex_file.GetClassData(*h_klass->GetClassDef())); // Instance and static fields can be differentiated by their flags so no need to check them // separately. while (new_iter.HasNextInstanceField() || new_iter.HasNextStaticField()) { // Get the data on the method we are searching for const art::DexFile::FieldId& new_field_id = dex_file_->GetFieldId(new_iter.GetMemberIndex()); const char* new_field_name = dex_file_->GetFieldName(new_field_id); const char* new_field_type = dex_file_->GetFieldTypeDescriptor(new_field_id); if (!(old_iter.HasNextInstanceField() || old_iter.HasNextStaticField())) { // We are missing the old version of this method! RecordFailure(ERR(UNSUPPORTED_REDEFINITION_SCHEMA_CHANGED), StringPrintf("Unknown field '%s' (type: %s) added!", new_field_name, new_field_type)); return false; } const art::DexFile::FieldId& old_field_id = old_dex_file.GetFieldId(old_iter.GetMemberIndex()); const char* old_field_name = old_dex_file.GetFieldName(old_field_id); const char* old_field_type = old_dex_file.GetFieldTypeDescriptor(old_field_id); // Check name and type. if (strcmp(old_field_name, new_field_name) != 0 || strcmp(old_field_type, new_field_type) != 0) { RecordFailure(ERR(UNSUPPORTED_REDEFINITION_SCHEMA_CHANGED), StringPrintf("Field changed from '%s' (sig: %s) to '%s' (sig: %s)!", old_field_name, old_field_type, new_field_name, new_field_type)); return false; } // Since static fields have different flags than instance ones (specifically static fields must // have the kAccStatic flag) we can tell if a field changes from static to instance. if (new_iter.GetFieldAccessFlags() != old_iter.GetFieldAccessFlags()) { RecordFailure(ERR(UNSUPPORTED_REDEFINITION_SCHEMA_CHANGED), StringPrintf("Field '%s' (sig: %s) had different access flags", new_field_name, new_field_type)); return false; } new_iter.Next(); old_iter.Next(); } if (old_iter.HasNextInstanceField() || old_iter.HasNextStaticField()) { RecordFailure(ERR(UNSUPPORTED_REDEFINITION_SCHEMA_CHANGED), StringPrintf("field '%s' (sig: %s) is missing!", old_dex_file.GetFieldName(old_dex_file.GetFieldId( old_iter.GetMemberIndex())), old_dex_file.GetFieldTypeDescriptor(old_dex_file.GetFieldId( old_iter.GetMemberIndex())))); return false; } return true; } bool Redefiner::ClassRedefinition::CheckClass() { art::StackHandleScope<1> hs(driver_->self_); // Easy check that only 1 class def is present. if (dex_file_->NumClassDefs() != 1) { RecordFailure(ERR(ILLEGAL_ARGUMENT), StringPrintf("Expected 1 class def in dex file but found %d", dex_file_->NumClassDefs())); return false; } // Get the ClassDef from the new DexFile. // Since the dex file has only a single class def the index is always 0. const art::DexFile::ClassDef& def = dex_file_->GetClassDef(0); // Get the class as it is now. art::Handle<art::mirror::Class> current_class(hs.NewHandle(GetMirrorClass())); // Check the access flags didn't change. if (def.GetJavaAccessFlags() != (current_class->GetAccessFlags() & art::kAccValidClassFlags)) { RecordFailure(ERR(UNSUPPORTED_REDEFINITION_CLASS_MODIFIERS_CHANGED), "Cannot change modifiers of class by redefinition"); return false; } // Check class name. // These should have been checked by the dexfile verifier on load. DCHECK_NE(def.class_idx_, art::dex::TypeIndex::Invalid()) << "Invalid type index"; const char* descriptor = dex_file_->StringByTypeIdx(def.class_idx_); DCHECK(descriptor != nullptr) << "Invalid dex file structure!"; if (!current_class->DescriptorEquals(descriptor)) { std::string storage; RecordFailure(ERR(NAMES_DONT_MATCH), StringPrintf("expected file to contain class called '%s' but found '%s'!", current_class->GetDescriptor(&storage), descriptor)); return false; } if (current_class->IsObjectClass()) { if (def.superclass_idx_ != art::dex::TypeIndex::Invalid()) { RecordFailure(ERR(UNSUPPORTED_REDEFINITION_HIERARCHY_CHANGED), "Superclass added!"); return false; } } else { const char* super_descriptor = dex_file_->StringByTypeIdx(def.superclass_idx_); DCHECK(descriptor != nullptr) << "Invalid dex file structure!"; if (!current_class->GetSuperClass()->DescriptorEquals(super_descriptor)) { RecordFailure(ERR(UNSUPPORTED_REDEFINITION_HIERARCHY_CHANGED), "Superclass changed"); return false; } } const art::DexFile::TypeList* interfaces = dex_file_->GetInterfacesList(def); if (interfaces == nullptr) { if (current_class->NumDirectInterfaces() != 0) { RecordFailure(ERR(UNSUPPORTED_REDEFINITION_HIERARCHY_CHANGED), "Interfaces added"); return false; } } else { DCHECK(!current_class->IsProxyClass()); const art::DexFile::TypeList* current_interfaces = current_class->GetInterfaceTypeList(); if (current_interfaces == nullptr || current_interfaces->Size() != interfaces->Size()) { RecordFailure(ERR(UNSUPPORTED_REDEFINITION_HIERARCHY_CHANGED), "Interfaces added or removed"); return false; } // The order of interfaces is (barely) meaningful so we error if it changes. const art::DexFile& orig_dex_file = current_class->GetDexFile(); for (uint32_t i = 0; i < interfaces->Size(); i++) { if (strcmp( dex_file_->StringByTypeIdx(interfaces->GetTypeItem(i).type_idx_), orig_dex_file.StringByTypeIdx(current_interfaces->GetTypeItem(i).type_idx_)) != 0) { RecordFailure(ERR(UNSUPPORTED_REDEFINITION_HIERARCHY_CHANGED), "Interfaces changed or re-ordered"); return false; } } } return true; } bool Redefiner::ClassRedefinition::CheckRedefinable() { std::string err; art::StackHandleScope<1> hs(driver_->self_); art::Handle<art::mirror::Class> h_klass(hs.NewHandle(GetMirrorClass())); jvmtiError res = Redefiner::GetClassRedefinitionError(h_klass, &err); if (res != OK) { RecordFailure(res, err); return false; } else { return true; } } bool Redefiner::ClassRedefinition::CheckRedefinitionIsValid() { return CheckRedefinable() && CheckClass() && CheckSameFields() && CheckSameMethods(); } class RedefinitionDataIter; // A wrapper that lets us hold onto the arbitrary sized data needed for redefinitions in a // reasonably sane way. This adds no fields to the normal ObjectArray. By doing this we can avoid // having to deal with the fact that we need to hold an arbitrary number of references live. class RedefinitionDataHolder { public: enum DataSlot : int32_t { kSlotSourceClassLoader = 0, kSlotJavaDexFile = 1, kSlotNewDexFileCookie = 2, kSlotNewDexCache = 3, kSlotMirrorClass = 4, kSlotOrigDexFile = 5, kSlotOldObsoleteMethods = 6, kSlotOldDexCaches = 7, // Must be last one. kNumSlots = 8, }; // This needs to have a HandleScope passed in that is capable of creating a new Handle without // overflowing. Only one handle will be created. This object has a lifetime identical to that of // the passed in handle-scope. RedefinitionDataHolder(art::StackHandleScope<1>* hs, art::Runtime* runtime, art::Thread* self, std::vector<Redefiner::ClassRedefinition>* redefinitions) REQUIRES_SHARED(art::Locks::mutator_lock_) : arr_( hs->NewHandle( art::mirror::ObjectArray<art::mirror::Object>::Alloc( self, runtime->GetClassLinker()->GetClassRoot(art::ClassLinker::kObjectArrayClass), redefinitions->size() * kNumSlots))), redefinitions_(redefinitions) {} bool IsNull() const REQUIRES_SHARED(art::Locks::mutator_lock_) { return arr_.IsNull(); } art::mirror::ClassLoader* GetSourceClassLoader(jint klass_index) const REQUIRES_SHARED(art::Locks::mutator_lock_) { return art::down_cast<art::mirror::ClassLoader*>(GetSlot(klass_index, kSlotSourceClassLoader)); } art::mirror::Object* GetJavaDexFile(jint klass_index) const REQUIRES_SHARED(art::Locks::mutator_lock_) { return GetSlot(klass_index, kSlotJavaDexFile); } art::mirror::LongArray* GetNewDexFileCookie(jint klass_index) const REQUIRES_SHARED(art::Locks::mutator_lock_) { return art::down_cast<art::mirror::LongArray*>(GetSlot(klass_index, kSlotNewDexFileCookie)); } art::mirror::DexCache* GetNewDexCache(jint klass_index) const REQUIRES_SHARED(art::Locks::mutator_lock_) { return art::down_cast<art::mirror::DexCache*>(GetSlot(klass_index, kSlotNewDexCache)); } art::mirror::Class* GetMirrorClass(jint klass_index) const REQUIRES_SHARED(art::Locks::mutator_lock_) { return art::down_cast<art::mirror::Class*>(GetSlot(klass_index, kSlotMirrorClass)); } art::mirror::Object* GetOriginalDexFile(jint klass_index) const REQUIRES_SHARED(art::Locks::mutator_lock_) { return art::down_cast<art::mirror::Object*>(GetSlot(klass_index, kSlotOrigDexFile)); } art::mirror::PointerArray* GetOldObsoleteMethods(jint klass_index) const REQUIRES_SHARED(art::Locks::mutator_lock_) { return art::down_cast<art::mirror::PointerArray*>( GetSlot(klass_index, kSlotOldObsoleteMethods)); } art::mirror::ObjectArray<art::mirror::DexCache>* GetOldDexCaches(jint klass_index) const REQUIRES_SHARED(art::Locks::mutator_lock_) { return art::down_cast<art::mirror::ObjectArray<art::mirror::DexCache>*>( GetSlot(klass_index, kSlotOldDexCaches)); } void SetSourceClassLoader(jint klass_index, art::mirror::ClassLoader* loader) REQUIRES_SHARED(art::Locks::mutator_lock_) { SetSlot(klass_index, kSlotSourceClassLoader, loader); } void SetJavaDexFile(jint klass_index, art::mirror::Object* dexfile) REQUIRES_SHARED(art::Locks::mutator_lock_) { SetSlot(klass_index, kSlotJavaDexFile, dexfile); } void SetNewDexFileCookie(jint klass_index, art::mirror::LongArray* cookie) REQUIRES_SHARED(art::Locks::mutator_lock_) { SetSlot(klass_index, kSlotNewDexFileCookie, cookie); } void SetNewDexCache(jint klass_index, art::mirror::DexCache* cache) REQUIRES_SHARED(art::Locks::mutator_lock_) { SetSlot(klass_index, kSlotNewDexCache, cache); } void SetMirrorClass(jint klass_index, art::mirror::Class* klass) REQUIRES_SHARED(art::Locks::mutator_lock_) { SetSlot(klass_index, kSlotMirrorClass, klass); } void SetOriginalDexFile(jint klass_index, art::mirror::Object* bytes) REQUIRES_SHARED(art::Locks::mutator_lock_) { SetSlot(klass_index, kSlotOrigDexFile, bytes); } void SetOldObsoleteMethods(jint klass_index, art::mirror::PointerArray* methods) REQUIRES_SHARED(art::Locks::mutator_lock_) { SetSlot(klass_index, kSlotOldObsoleteMethods, methods); } void SetOldDexCaches(jint klass_index, art::mirror::ObjectArray<art::mirror::DexCache>* caches) REQUIRES_SHARED(art::Locks::mutator_lock_) { SetSlot(klass_index, kSlotOldDexCaches, caches); } int32_t Length() const REQUIRES_SHARED(art::Locks::mutator_lock_) { return arr_->GetLength() / kNumSlots; } std::vector<Redefiner::ClassRedefinition>* GetRedefinitions() REQUIRES_SHARED(art::Locks::mutator_lock_) { return redefinitions_; } bool operator==(const RedefinitionDataHolder& other) const REQUIRES_SHARED(art::Locks::mutator_lock_) { return arr_.Get() == other.arr_.Get(); } bool operator!=(const RedefinitionDataHolder& other) const REQUIRES_SHARED(art::Locks::mutator_lock_) { return !(*this == other); } RedefinitionDataIter begin() REQUIRES_SHARED(art::Locks::mutator_lock_); RedefinitionDataIter end() REQUIRES_SHARED(art::Locks::mutator_lock_); private: mutable art::Handle<art::mirror::ObjectArray<art::mirror::Object>> arr_; std::vector<Redefiner::ClassRedefinition>* redefinitions_; art::mirror::Object* GetSlot(jint klass_index, DataSlot slot) const REQUIRES_SHARED(art::Locks::mutator_lock_) { DCHECK_LT(klass_index, Length()); return arr_->Get((kNumSlots * klass_index) + slot); } void SetSlot(jint klass_index, DataSlot slot, art::ObjPtr<art::mirror::Object> obj) REQUIRES_SHARED(art::Locks::mutator_lock_) { DCHECK(!art::Runtime::Current()->IsActiveTransaction()); DCHECK_LT(klass_index, Length()); arr_->Set<false>((kNumSlots * klass_index) + slot, obj); } DISALLOW_COPY_AND_ASSIGN(RedefinitionDataHolder); }; class RedefinitionDataIter { public: RedefinitionDataIter(int32_t idx, RedefinitionDataHolder& holder) : idx_(idx), holder_(holder) {} RedefinitionDataIter(const RedefinitionDataIter&) = default; RedefinitionDataIter(RedefinitionDataIter&&) = default; RedefinitionDataIter& operator=(const RedefinitionDataIter&) = default; RedefinitionDataIter& operator=(RedefinitionDataIter&&) = default; bool operator==(const RedefinitionDataIter& other) const REQUIRES_SHARED(art::Locks::mutator_lock_) { return idx_ == other.idx_ && holder_ == other.holder_; } bool operator!=(const RedefinitionDataIter& other) const REQUIRES_SHARED(art::Locks::mutator_lock_) { return !(*this == other); } RedefinitionDataIter operator++() { // Value after modification. idx_++; return *this; } RedefinitionDataIter operator++(int) { RedefinitionDataIter temp = *this; idx_++; return temp; } RedefinitionDataIter operator+(ssize_t delta) const { RedefinitionDataIter temp = *this; temp += delta; return temp; } RedefinitionDataIter& operator+=(ssize_t delta) { idx_ += delta; return *this; } Redefiner::ClassRedefinition& GetRedefinition() REQUIRES_SHARED(art::Locks::mutator_lock_) { return (*holder_.GetRedefinitions())[idx_]; } RedefinitionDataHolder& GetHolder() { return holder_; } art::mirror::ClassLoader* GetSourceClassLoader() const REQUIRES_SHARED(art::Locks::mutator_lock_) { return holder_.GetSourceClassLoader(idx_); } art::mirror::Object* GetJavaDexFile() const REQUIRES_SHARED(art::Locks::mutator_lock_) { return holder_.GetJavaDexFile(idx_); } art::mirror::LongArray* GetNewDexFileCookie() const REQUIRES_SHARED(art::Locks::mutator_lock_) { return holder_.GetNewDexFileCookie(idx_); } art::mirror::DexCache* GetNewDexCache() const REQUIRES_SHARED(art::Locks::mutator_lock_) { return holder_.GetNewDexCache(idx_); } art::mirror::Class* GetMirrorClass() const REQUIRES_SHARED(art::Locks::mutator_lock_) { return holder_.GetMirrorClass(idx_); } art::mirror::Object* GetOriginalDexFile() const REQUIRES_SHARED(art::Locks::mutator_lock_) { return holder_.GetOriginalDexFile(idx_); } art::mirror::PointerArray* GetOldObsoleteMethods() const REQUIRES_SHARED(art::Locks::mutator_lock_) { return holder_.GetOldObsoleteMethods(idx_); } art::mirror::ObjectArray<art::mirror::DexCache>* GetOldDexCaches() const REQUIRES_SHARED(art::Locks::mutator_lock_) { return holder_.GetOldDexCaches(idx_); } int32_t GetIndex() const { return idx_; } void SetSourceClassLoader(art::mirror::ClassLoader* loader) REQUIRES_SHARED(art::Locks::mutator_lock_) { holder_.SetSourceClassLoader(idx_, loader); } void SetJavaDexFile(art::mirror::Object* dexfile) REQUIRES_SHARED(art::Locks::mutator_lock_) { holder_.SetJavaDexFile(idx_, dexfile); } void SetNewDexFileCookie(art::mirror::LongArray* cookie) REQUIRES_SHARED(art::Locks::mutator_lock_) { holder_.SetNewDexFileCookie(idx_, cookie); } void SetNewDexCache(art::mirror::DexCache* cache) REQUIRES_SHARED(art::Locks::mutator_lock_) { holder_.SetNewDexCache(idx_, cache); } void SetMirrorClass(art::mirror::Class* klass) REQUIRES_SHARED(art::Locks::mutator_lock_) { holder_.SetMirrorClass(idx_, klass); } void SetOriginalDexFile(art::mirror::Object* bytes) REQUIRES_SHARED(art::Locks::mutator_lock_) { holder_.SetOriginalDexFile(idx_, bytes); } void SetOldObsoleteMethods(art::mirror::PointerArray* methods) REQUIRES_SHARED(art::Locks::mutator_lock_) { holder_.SetOldObsoleteMethods(idx_, methods); } void SetOldDexCaches(art::mirror::ObjectArray<art::mirror::DexCache>* caches) REQUIRES_SHARED(art::Locks::mutator_lock_) { holder_.SetOldDexCaches(idx_, caches); } private: int32_t idx_; RedefinitionDataHolder& holder_; }; RedefinitionDataIter RedefinitionDataHolder::begin() { return RedefinitionDataIter(0, *this); } RedefinitionDataIter RedefinitionDataHolder::end() { return RedefinitionDataIter(Length(), *this); } bool Redefiner::ClassRedefinition::CheckVerification(const RedefinitionDataIter& iter) { DCHECK_EQ(dex_file_->NumClassDefs(), 1u); art::StackHandleScope<2> hs(driver_->self_); std::string error; // TODO Make verification log level lower art::verifier::FailureKind failure = art::verifier::MethodVerifier::VerifyClass(driver_->self_, dex_file_.get(), hs.NewHandle(iter.GetNewDexCache()), hs.NewHandle(GetClassLoader()), dex_file_->GetClassDef(0), /*class_def*/ nullptr, /*compiler_callbacks*/ false, /*allow_soft_failures*/ /*log_level*/ art::verifier::HardFailLogMode::kLogWarning, &error); bool passes = failure == art::verifier::FailureKind::kNoFailure; if (!passes) { RecordFailure(ERR(FAILS_VERIFICATION), "Failed to verify class. Error was: " + error); } return passes; } // Looks through the previously allocated cookies to see if we need to update them with another new // dexfile. This is so that even if multiple classes with the same classloader are redefined at // once they are all added to the classloader. bool Redefiner::ClassRedefinition::AllocateAndRememberNewDexFileCookie( art::Handle<art::mirror::ClassLoader> source_class_loader, art::Handle<art::mirror::Object> dex_file_obj, /*out*/RedefinitionDataIter* cur_data) { art::StackHandleScope<2> hs(driver_->self_); art::MutableHandle<art::mirror::LongArray> old_cookie( hs.NewHandle<art::mirror::LongArray>(nullptr)); bool has_older_cookie = false; // See if we already have a cookie that a previous redefinition got from the same classloader. for (auto old_data = cur_data->GetHolder().begin(); old_data != *cur_data; ++old_data) { if (old_data.GetSourceClassLoader() == source_class_loader.Get()) { // Since every instance of this classloader should have the same cookie associated with it we // can stop looking here. has_older_cookie = true; old_cookie.Assign(old_data.GetNewDexFileCookie()); break; } } if (old_cookie.IsNull()) { // No older cookie. Get it directly from the dex_file_obj // We should not have seen this classloader elsewhere. CHECK(!has_older_cookie); old_cookie.Assign(ClassLoaderHelper::GetDexFileCookie(dex_file_obj)); } // Use the old cookie to generate the new one with the new DexFile* added in. art::Handle<art::mirror::LongArray> new_cookie(hs.NewHandle(ClassLoaderHelper::AllocateNewDexFileCookie(driver_->self_, old_cookie, dex_file_.get()))); // Make sure the allocation worked. if (new_cookie.IsNull()) { return false; } // Save the cookie. cur_data->SetNewDexFileCookie(new_cookie.Get()); // If there are other copies of this same classloader we need to make sure that we all have the // same cookie. if (has_older_cookie) { for (auto old_data = cur_data->GetHolder().begin(); old_data != *cur_data; ++old_data) { // We will let the GC take care of the cookie we allocated for this one. if (old_data.GetSourceClassLoader() == source_class_loader.Get()) { old_data.SetNewDexFileCookie(new_cookie.Get()); } } } return true; } bool Redefiner::ClassRedefinition::FinishRemainingAllocations( /*out*/RedefinitionDataIter* cur_data) { art::ScopedObjectAccessUnchecked soa(driver_->self_); art::StackHandleScope<2> hs(driver_->self_); cur_data->SetMirrorClass(GetMirrorClass()); // This shouldn't allocate art::Handle<art::mirror::ClassLoader> loader(hs.NewHandle(GetClassLoader())); // The bootclasspath is handled specially so it doesn't have a j.l.DexFile. if (!art::ClassLinker::IsBootClassLoader(soa, loader.Get())) { cur_data->SetSourceClassLoader(loader.Get()); art::Handle<art::mirror::Object> dex_file_obj(hs.NewHandle( ClassLoaderHelper::FindSourceDexFileObject(driver_->self_, loader))); cur_data->SetJavaDexFile(dex_file_obj.Get()); if (dex_file_obj == nullptr) { RecordFailure(ERR(INTERNAL), "Unable to find dex file!"); return false; } // Allocate the new dex file cookie. if (!AllocateAndRememberNewDexFileCookie(loader, dex_file_obj, cur_data)) { driver_->self_->AssertPendingOOMException(); driver_->self_->ClearException(); RecordFailure(ERR(OUT_OF_MEMORY), "Unable to allocate dex file array for class loader"); return false; } } cur_data->SetNewDexCache(CreateNewDexCache(loader)); if (cur_data->GetNewDexCache() == nullptr) { driver_->self_->AssertPendingException(); driver_->self_->ClearException(); RecordFailure(ERR(OUT_OF_MEMORY), "Unable to allocate DexCache"); return false; } // We won't always need to set this field. cur_data->SetOriginalDexFile(AllocateOrGetOriginalDexFile()); if (cur_data->GetOriginalDexFile() == nullptr) { driver_->self_->AssertPendingOOMException(); driver_->self_->ClearException(); RecordFailure(ERR(OUT_OF_MEMORY), "Unable to allocate array for original dex file"); return false; } return true; } void Redefiner::ClassRedefinition::UnregisterBreakpoints() { DCHECK(art::Dbg::IsDebuggerActive()); art::JDWP::JdwpState* state = art::Dbg::GetJdwpState(); if (state != nullptr) { state->UnregisterLocationEventsOnClass(GetMirrorClass()); } } void Redefiner::UnregisterAllBreakpoints() { if (LIKELY(!art::Dbg::IsDebuggerActive())) { return; } for (Redefiner::ClassRedefinition& redef : redefinitions_) { redef.UnregisterBreakpoints(); } } bool Redefiner::CheckAllRedefinitionAreValid() { for (Redefiner::ClassRedefinition& redef : redefinitions_) { if (!redef.CheckRedefinitionIsValid()) { return false; } } return true; } void Redefiner::RestoreObsoleteMethodMapsIfUnneeded(RedefinitionDataHolder& holder) { for (RedefinitionDataIter data = holder.begin(); data != holder.end(); ++data) { data.GetRedefinition().RestoreObsoleteMethodMapsIfUnneeded(&data); } } bool Redefiner::EnsureAllClassAllocationsFinished(RedefinitionDataHolder& holder) { for (RedefinitionDataIter data = holder.begin(); data != holder.end(); ++data) { if (!data.GetRedefinition().EnsureClassAllocationsFinished(&data)) { return false; } } return true; } bool Redefiner::FinishAllRemainingAllocations(RedefinitionDataHolder& holder) { for (RedefinitionDataIter data = holder.begin(); data != holder.end(); ++data) { // Allocate the data this redefinition requires. if (!data.GetRedefinition().FinishRemainingAllocations(&data)) { return false; } } return true; } void Redefiner::ClassRedefinition::ReleaseDexFile() { dex_file_.release(); } void Redefiner::ReleaseAllDexFiles() { for (Redefiner::ClassRedefinition& redef : redefinitions_) { redef.ReleaseDexFile(); } } bool Redefiner::CheckAllClassesAreVerified(RedefinitionDataHolder& holder) { for (RedefinitionDataIter data = holder.begin(); data != holder.end(); ++data) { if (!data.GetRedefinition().CheckVerification(data)) { return false; } } return true; } class ScopedDisableConcurrentAndMovingGc { public: ScopedDisableConcurrentAndMovingGc(art::gc::Heap* heap, art::Thread* self) : heap_(heap), self_(self) { if (heap_->IsGcConcurrentAndMoving()) { heap_->IncrementDisableMovingGC(self_); } } ~ScopedDisableConcurrentAndMovingGc() { if (heap_->IsGcConcurrentAndMoving()) { heap_->DecrementDisableMovingGC(self_); } } private: art::gc::Heap* heap_; art::Thread* self_; }; jvmtiError Redefiner::Run() { art::StackHandleScope<1> hs(self_); // Allocate an array to hold onto all java temporary objects associated with this redefinition. // We will let this be collected after the end of this function. RedefinitionDataHolder holder(&hs, runtime_, self_, &redefinitions_); if (holder.IsNull()) { self_->AssertPendingOOMException(); self_->ClearException(); RecordFailure(ERR(OUT_OF_MEMORY), "Could not allocate storage for temporaries"); return result_; } // First we just allocate the ClassExt and its fields that we need. These can be updated // atomically without any issues (since we allocate the map arrays as empty) so we don't bother // doing a try loop. The other allocations we need to ensure that nothing has changed in the time // between allocating them and pausing all threads before we can update them so we need to do a // try loop. if (!CheckAllRedefinitionAreValid() || !EnsureAllClassAllocationsFinished(holder) || !FinishAllRemainingAllocations(holder) || !CheckAllClassesAreVerified(holder)) { return result_; } // At this point we can no longer fail without corrupting the runtime state. for (RedefinitionDataIter data = holder.begin(); data != holder.end(); ++data) { if (data.GetSourceClassLoader() == nullptr) { runtime_->GetClassLinker()->AppendToBootClassPath(self_, data.GetRedefinition().GetDexFile()); } } UnregisterAllBreakpoints(); // Disable GC and wait for it to be done if we are a moving GC. This is fine since we are done // allocating so no deadlocks. ScopedDisableConcurrentAndMovingGc sdcamgc(runtime_->GetHeap(), self_); // Do transition to final suspension // TODO We might want to give this its own suspended state! // TODO This isn't right. We need to change state without any chance of suspend ideally! art::ScopedThreadSuspension sts(self_, art::ThreadState::kNative); art::ScopedSuspendAll ssa("Final installation of redefined Classes!", /*long_suspend*/true); for (RedefinitionDataIter data = holder.begin(); data != holder.end(); ++data) { art::ScopedAssertNoThreadSuspension nts("Updating runtime objects for redefinition"); ClassRedefinition& redef = data.GetRedefinition(); if (data.GetSourceClassLoader() != nullptr) { ClassLoaderHelper::UpdateJavaDexFile(data.GetJavaDexFile(), data.GetNewDexFileCookie()); } art::mirror::Class* klass = data.GetMirrorClass(); // TODO Rewrite so we don't do a stack walk for each and every class. redef.FindAndAllocateObsoleteMethods(klass); redef.UpdateClass(klass, data.GetNewDexCache(), data.GetOriginalDexFile()); } RestoreObsoleteMethodMapsIfUnneeded(holder); // TODO We should check for if any of the redefined methods are intrinsic methods here and, if any // are, force a full-world deoptimization before finishing redefinition. If we don't do this then // methods that have been jitted prior to the current redefinition being applied might continue // to use the old versions of the intrinsics! // TODO Do the dex_file release at a more reasonable place. This works but it muddles who really // owns the DexFile and when ownership is transferred. ReleaseAllDexFiles(); return OK; } void Redefiner::ClassRedefinition::UpdateMethods(art::ObjPtr<art::mirror::Class> mclass, art::ObjPtr<art::mirror::DexCache> new_dex_cache, const art::DexFile::ClassDef& class_def) { art::ClassLinker* linker = driver_->runtime_->GetClassLinker(); art::PointerSize image_pointer_size = linker->GetImagePointerSize(); const art::DexFile::TypeId& declaring_class_id = dex_file_->GetTypeId(class_def.class_idx_); const art::DexFile& old_dex_file = mclass->GetDexFile(); // Update methods. for (art::ArtMethod& method : mclass->GetMethods(image_pointer_size)) { const art::DexFile::StringId* new_name_id = dex_file_->FindStringId(method.GetName()); art::dex::TypeIndex method_return_idx = dex_file_->GetIndexForTypeId(*dex_file_->FindTypeId(method.GetReturnTypeDescriptor())); const auto* old_type_list = method.GetParameterTypeList(); std::vector<art::dex::TypeIndex> new_type_list; for (uint32_t i = 0; old_type_list != nullptr && i < old_type_list->Size(); i++) { new_type_list.push_back( dex_file_->GetIndexForTypeId( *dex_file_->FindTypeId( old_dex_file.GetTypeDescriptor( old_dex_file.GetTypeId( old_type_list->GetTypeItem(i).type_idx_))))); } const art::DexFile::ProtoId* proto_id = dex_file_->FindProtoId(method_return_idx, new_type_list); CHECK(proto_id != nullptr || old_type_list == nullptr); const art::DexFile::MethodId* method_id = dex_file_->FindMethodId(declaring_class_id, *new_name_id, *proto_id); CHECK(method_id != nullptr); uint32_t dex_method_idx = dex_file_->GetIndexForMethodId(*method_id); method.SetDexMethodIndex(dex_method_idx); linker->SetEntryPointsToInterpreter(&method); method.SetCodeItemOffset(dex_file_->FindCodeItemOffset(class_def, dex_method_idx)); method.SetDexCacheResolvedMethods(new_dex_cache->GetResolvedMethods(), image_pointer_size); // Clear all the intrinsics related flags. method.ClearAccessFlags(art::kAccIntrinsic | (~art::kAccFlagsNotUsedByIntrinsic)); // Notify the jit that this method is redefined. art::jit::Jit* jit = driver_->runtime_->GetJit(); if (jit != nullptr) { jit->GetCodeCache()->NotifyMethodRedefined(&method); } } } void Redefiner::ClassRedefinition::UpdateFields(art::ObjPtr<art::mirror::Class> mclass) { // TODO The IFields & SFields pointers should be combined like the methods_ arrays were. for (auto fields_iter : {mclass->GetIFields(), mclass->GetSFields()}) { for (art::ArtField& field : fields_iter) { std::string declaring_class_name; const art::DexFile::TypeId* new_declaring_id = dex_file_->FindTypeId(field.GetDeclaringClass()->GetDescriptor(&declaring_class_name)); const art::DexFile::StringId* new_name_id = dex_file_->FindStringId(field.GetName()); const art::DexFile::TypeId* new_type_id = dex_file_->FindTypeId(field.GetTypeDescriptor()); CHECK(new_name_id != nullptr && new_type_id != nullptr && new_declaring_id != nullptr); const art::DexFile::FieldId* new_field_id = dex_file_->FindFieldId(*new_declaring_id, *new_name_id, *new_type_id); CHECK(new_field_id != nullptr); // We only need to update the index since the other data in the ArtField cannot be updated. field.SetDexFieldIndex(dex_file_->GetIndexForFieldId(*new_field_id)); } } } // Performs updates to class that will allow us to verify it. void Redefiner::ClassRedefinition::UpdateClass( art::ObjPtr<art::mirror::Class> mclass, art::ObjPtr<art::mirror::DexCache> new_dex_cache, art::ObjPtr<art::mirror::Object> original_dex_file) { DCHECK_EQ(dex_file_->NumClassDefs(), 1u); const art::DexFile::ClassDef& class_def = dex_file_->GetClassDef(0); UpdateMethods(mclass, new_dex_cache, class_def); UpdateFields(mclass); // Update the class fields. // Need to update class last since the ArtMethod gets its DexFile from the class (which is needed // to call GetReturnTypeDescriptor and GetParameterTypeList above). mclass->SetDexCache(new_dex_cache.Ptr()); mclass->SetDexClassDefIndex(dex_file_->GetIndexForClassDef(class_def)); mclass->SetDexTypeIndex(dex_file_->GetIndexForTypeId(*dex_file_->FindTypeId(class_sig_.c_str()))); art::ObjPtr<art::mirror::ClassExt> ext(mclass->GetExtData()); CHECK(!ext.IsNull()); ext->SetOriginalDexFile(original_dex_file); } // Restores the old obsolete methods maps if it turns out they weren't needed (ie there were no new // obsolete methods). void Redefiner::ClassRedefinition::RestoreObsoleteMethodMapsIfUnneeded( const RedefinitionDataIter* cur_data) { art::mirror::Class* klass = GetMirrorClass(); art::mirror::ClassExt* ext = klass->GetExtData(); art::mirror::PointerArray* methods = ext->GetObsoleteMethods(); art::mirror::PointerArray* old_methods = cur_data->GetOldObsoleteMethods(); int32_t old_length = old_methods == nullptr ? 0 : old_methods->GetLength(); int32_t expected_length = old_length + klass->NumDirectMethods() + klass->NumDeclaredVirtualMethods(); // Check to make sure we are only undoing this one. if (expected_length == methods->GetLength()) { for (int32_t i = 0; i < expected_length; i++) { art::ArtMethod* expected = nullptr; if (i < old_length) { expected = old_methods->GetElementPtrSize<art::ArtMethod*>(i, art::kRuntimePointerSize); } if (methods->GetElementPtrSize<art::ArtMethod*>(i, art::kRuntimePointerSize) != expected) { // We actually have some new obsolete methods. Just abort since we cannot safely shrink the // obsolete methods array. return; } } // No new obsolete methods! We can get rid of the maps. ext->SetObsoleteArrays(cur_data->GetOldObsoleteMethods(), cur_data->GetOldDexCaches()); } } // This function does all (java) allocations we need to do for the Class being redefined. // TODO Change this name maybe? bool Redefiner::ClassRedefinition::EnsureClassAllocationsFinished( /*out*/RedefinitionDataIter* cur_data) { art::StackHandleScope<2> hs(driver_->self_); art::Handle<art::mirror::Class> klass(hs.NewHandle( driver_->self_->DecodeJObject(klass_)->AsClass())); if (klass == nullptr) { RecordFailure(ERR(INVALID_CLASS), "Unable to decode class argument!"); return false; } // Allocate the classExt art::Handle<art::mirror::ClassExt> ext(hs.NewHandle(klass->EnsureExtDataPresent(driver_->self_))); if (ext == nullptr) { // No memory. Clear exception (it's not useful) and return error. driver_->self_->AssertPendingOOMException(); driver_->self_->ClearException(); RecordFailure(ERR(OUT_OF_MEMORY), "Could not allocate ClassExt"); return false; } // First save the old values of the 2 arrays that make up the obsolete methods maps. Then // allocate the 2 arrays that make up the obsolete methods map. Since the contents of the arrays // are only modified when all threads (other than the modifying one) are suspended we don't need // to worry about missing the unsyncronized writes to the array. We do synchronize when setting it // however, since that can happen at any time. cur_data->SetOldObsoleteMethods(ext->GetObsoleteMethods()); cur_data->SetOldDexCaches(ext->GetObsoleteDexCaches()); if (!ext->ExtendObsoleteArrays( driver_->self_, klass->GetDeclaredMethodsSlice(art::kRuntimePointerSize).size())) { // OOM. Clear exception and return error. driver_->self_->AssertPendingOOMException(); driver_->self_->ClearException(); RecordFailure(ERR(OUT_OF_MEMORY), "Unable to allocate/extend obsolete methods map"); return false; } return true; } } // namespace openjdkjvmti