/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_MIRROR_OBJECT_ARRAY_INL_H_ #define ART_RUNTIME_MIRROR_OBJECT_ARRAY_INL_H_ #include "object_array.h" #include <string> #include "android-base/stringprintf.h" #include "array-inl.h" #include "class.h" #include "gc/heap.h" #include "object-inl.h" #include "obj_ptr-inl.h" #include "runtime.h" #include "handle_scope-inl.h" #include "thread.h" #include "utils.h" namespace art { namespace mirror { template<class T> inline ObjectArray<T>* ObjectArray<T>::Alloc(Thread* self, ObjPtr<Class> object_array_class, int32_t length, gc::AllocatorType allocator_type) { Array* array = Array::Alloc<true>(self, object_array_class.Ptr(), length, ComponentSizeShiftWidth(kHeapReferenceSize), allocator_type); if (UNLIKELY(array == nullptr)) { return nullptr; } DCHECK_EQ(array->GetClass()->GetComponentSizeShift(), ComponentSizeShiftWidth(kHeapReferenceSize)); return array->AsObjectArray<T>(); } template<class T> inline ObjectArray<T>* ObjectArray<T>::Alloc(Thread* self, ObjPtr<Class> object_array_class, int32_t length) { return Alloc(self, object_array_class, length, Runtime::Current()->GetHeap()->GetCurrentAllocator()); } template<class T> template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption> inline T* ObjectArray<T>::Get(int32_t i) { if (!CheckIsValidIndex(i)) { DCHECK(Thread::Current()->IsExceptionPending()); return nullptr; } return GetFieldObject<T, kVerifyFlags, kReadBarrierOption>(OffsetOfElement(i)); } template<class T> template<VerifyObjectFlags kVerifyFlags> inline bool ObjectArray<T>::CheckAssignable(ObjPtr<T> object) { if (object != nullptr) { Class* element_class = GetClass<kVerifyFlags>()->GetComponentType(); if (UNLIKELY(!object->InstanceOf(element_class))) { ThrowArrayStoreException(object); return false; } } return true; } template<class T> inline void ObjectArray<T>::Set(int32_t i, ObjPtr<T> object) { if (Runtime::Current()->IsActiveTransaction()) { Set<true>(i, object); } else { Set<false>(i, object); } } template<class T> template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags> inline void ObjectArray<T>::Set(int32_t i, ObjPtr<T> object) { if (CheckIsValidIndex(i) && CheckAssignable<kVerifyFlags>(object)) { SetFieldObject<kTransactionActive, kCheckTransaction, kVerifyFlags>(OffsetOfElement(i), object); } else { DCHECK(Thread::Current()->IsExceptionPending()); } } template<class T> template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags> inline void ObjectArray<T>::SetWithoutChecks(int32_t i, ObjPtr<T> object) { DCHECK(CheckIsValidIndex<kVerifyFlags>(i)); DCHECK(CheckAssignable<static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis)>(object)); SetFieldObject<kTransactionActive, kCheckTransaction, kVerifyFlags>(OffsetOfElement(i), object); } template<class T> template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags> inline void ObjectArray<T>::SetWithoutChecksAndWriteBarrier(int32_t i, ObjPtr<T> object) { DCHECK(CheckIsValidIndex<kVerifyFlags>(i)); // TODO: enable this check. It fails when writing the image in ImageWriter::FixupObjectArray. // DCHECK(CheckAssignable(object)); SetFieldObjectWithoutWriteBarrier<kTransactionActive, kCheckTransaction, kVerifyFlags>( OffsetOfElement(i), object); } template<class T> template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption> inline T* ObjectArray<T>::GetWithoutChecks(int32_t i) { DCHECK(CheckIsValidIndex(i)); return GetFieldObject<T, kVerifyFlags, kReadBarrierOption>(OffsetOfElement(i)); } template<class T> inline void ObjectArray<T>::AssignableMemmove(int32_t dst_pos, ObjPtr<ObjectArray<T>> src, int32_t src_pos, int32_t count) { if (kIsDebugBuild) { for (int i = 0; i < count; ++i) { // The get will perform the VerifyObject. src->GetWithoutChecks(src_pos + i); } } // Perform the memmove using int memmove then perform the write barrier. static_assert(sizeof(HeapReference<T>) == sizeof(uint32_t), "art::mirror::HeapReference<T> and uint32_t have different sizes."); // TODO: Optimize this later? // We can't use memmove since it does not handle read barriers and may do by per byte copying. // See b/32012820. const bool copy_forward = (src != this) || (dst_pos < src_pos) || (dst_pos - src_pos >= count); if (copy_forward) { // Forward copy. bool baker_non_gray_case = false; if (kUseReadBarrier && kUseBakerReadBarrier) { uintptr_t fake_address_dependency; if (!ReadBarrier::IsGray(src.Ptr(), &fake_address_dependency)) { baker_non_gray_case = true; DCHECK_EQ(fake_address_dependency, 0U); src.Assign(reinterpret_cast<ObjectArray<T>*>( reinterpret_cast<uintptr_t>(src.Ptr()) | fake_address_dependency)); for (int i = 0; i < count; ++i) { // We can skip the RB here because 'src' isn't gray. T* obj = src->template GetWithoutChecks<kDefaultVerifyFlags, kWithoutReadBarrier>( src_pos + i); SetWithoutChecksAndWriteBarrier<false>(dst_pos + i, obj); } } } if (!baker_non_gray_case) { for (int i = 0; i < count; ++i) { // We need a RB here. ObjectArray::GetWithoutChecks() contains a RB. T* obj = src->GetWithoutChecks(src_pos + i); SetWithoutChecksAndWriteBarrier<false>(dst_pos + i, obj); } } } else { // Backward copy. bool baker_non_gray_case = false; if (kUseReadBarrier && kUseBakerReadBarrier) { uintptr_t fake_address_dependency; if (!ReadBarrier::IsGray(src.Ptr(), &fake_address_dependency)) { baker_non_gray_case = true; DCHECK_EQ(fake_address_dependency, 0U); src.Assign(reinterpret_cast<ObjectArray<T>*>( reinterpret_cast<uintptr_t>(src.Ptr()) | fake_address_dependency)); for (int i = count - 1; i >= 0; --i) { // We can skip the RB here because 'src' isn't gray. T* obj = src->template GetWithoutChecks<kDefaultVerifyFlags, kWithoutReadBarrier>( src_pos + i); SetWithoutChecksAndWriteBarrier<false>(dst_pos + i, obj); } } } if (!baker_non_gray_case) { for (int i = count - 1; i >= 0; --i) { // We need a RB here. ObjectArray::GetWithoutChecks() contains a RB. T* obj = src->GetWithoutChecks(src_pos + i); SetWithoutChecksAndWriteBarrier<false>(dst_pos + i, obj); } } } Runtime::Current()->GetHeap()->WriteBarrierArray(this, dst_pos, count); if (kIsDebugBuild) { for (int i = 0; i < count; ++i) { // The get will perform the VerifyObject. GetWithoutChecks(dst_pos + i); } } } template<class T> inline void ObjectArray<T>::AssignableMemcpy(int32_t dst_pos, ObjPtr<ObjectArray<T>> src, int32_t src_pos, int32_t count) { if (kIsDebugBuild) { for (int i = 0; i < count; ++i) { // The get will perform the VerifyObject. src->GetWithoutChecks(src_pos + i); } } // Perform the memmove using int memcpy then perform the write barrier. static_assert(sizeof(HeapReference<T>) == sizeof(uint32_t), "art::mirror::HeapReference<T> and uint32_t have different sizes."); // TODO: Optimize this later? // We can't use memmove since it does not handle read barriers and may do by per byte copying. // See b/32012820. bool baker_non_gray_case = false; if (kUseReadBarrier && kUseBakerReadBarrier) { uintptr_t fake_address_dependency; if (!ReadBarrier::IsGray(src.Ptr(), &fake_address_dependency)) { baker_non_gray_case = true; DCHECK_EQ(fake_address_dependency, 0U); src.Assign(reinterpret_cast<ObjectArray<T>*>( reinterpret_cast<uintptr_t>(src.Ptr()) | fake_address_dependency)); for (int i = 0; i < count; ++i) { // We can skip the RB here because 'src' isn't gray. Object* obj = src->template GetWithoutChecks<kDefaultVerifyFlags, kWithoutReadBarrier>( src_pos + i); SetWithoutChecksAndWriteBarrier<false>(dst_pos + i, obj); } } } if (!baker_non_gray_case) { for (int i = 0; i < count; ++i) { // We need a RB here. ObjectArray::GetWithoutChecks() contains a RB. T* obj = src->GetWithoutChecks(src_pos + i); SetWithoutChecksAndWriteBarrier<false>(dst_pos + i, obj); } } Runtime::Current()->GetHeap()->WriteBarrierArray(this, dst_pos, count); if (kIsDebugBuild) { for (int i = 0; i < count; ++i) { // The get will perform the VerifyObject. GetWithoutChecks(dst_pos + i); } } } template<class T> template<bool kTransactionActive> inline void ObjectArray<T>::AssignableCheckingMemcpy(int32_t dst_pos, ObjPtr<ObjectArray<T>> src, int32_t src_pos, int32_t count, bool throw_exception) { DCHECK_NE(this, src) << "This case should be handled with memmove that handles overlaps correctly"; // We want to avoid redundant IsAssignableFrom checks where possible, so we cache a class that // we know is assignable to the destination array's component type. Class* dst_class = GetClass()->GetComponentType(); Class* lastAssignableElementClass = dst_class; T* o = nullptr; int i = 0; bool baker_non_gray_case = false; if (kUseReadBarrier && kUseBakerReadBarrier) { uintptr_t fake_address_dependency; if (!ReadBarrier::IsGray(src.Ptr(), &fake_address_dependency)) { baker_non_gray_case = true; DCHECK_EQ(fake_address_dependency, 0U); src.Assign(reinterpret_cast<ObjectArray<T>*>( reinterpret_cast<uintptr_t>(src.Ptr()) | fake_address_dependency)); for (; i < count; ++i) { // The follow get operations force the objects to be verified. // We can skip the RB here because 'src' isn't gray. o = src->template GetWithoutChecks<kDefaultVerifyFlags, kWithoutReadBarrier>( src_pos + i); if (o == nullptr) { // Null is always assignable. SetWithoutChecks<kTransactionActive>(dst_pos + i, nullptr); } else { // TODO: use the underlying class reference to avoid uncompression when not necessary. Class* o_class = o->GetClass(); if (LIKELY(lastAssignableElementClass == o_class)) { SetWithoutChecks<kTransactionActive>(dst_pos + i, o); } else if (LIKELY(dst_class->IsAssignableFrom(o_class))) { lastAssignableElementClass = o_class; SetWithoutChecks<kTransactionActive>(dst_pos + i, o); } else { // Can't put this element into the array, break to perform write-barrier and throw // exception. break; } } } } } if (!baker_non_gray_case) { for (; i < count; ++i) { // The follow get operations force the objects to be verified. // We need a RB here. ObjectArray::GetWithoutChecks() contains a RB. o = src->GetWithoutChecks(src_pos + i); if (o == nullptr) { // Null is always assignable. SetWithoutChecks<kTransactionActive>(dst_pos + i, nullptr); } else { // TODO: use the underlying class reference to avoid uncompression when not necessary. Class* o_class = o->GetClass(); if (LIKELY(lastAssignableElementClass == o_class)) { SetWithoutChecks<kTransactionActive>(dst_pos + i, o); } else if (LIKELY(dst_class->IsAssignableFrom(o_class))) { lastAssignableElementClass = o_class; SetWithoutChecks<kTransactionActive>(dst_pos + i, o); } else { // Can't put this element into the array, break to perform write-barrier and throw // exception. break; } } } } Runtime::Current()->GetHeap()->WriteBarrierArray(this, dst_pos, count); if (UNLIKELY(i != count)) { std::string actualSrcType(mirror::Object::PrettyTypeOf(o)); std::string dstType(PrettyTypeOf()); Thread* self = Thread::Current(); std::string msg = android::base::StringPrintf( "source[%d] of type %s cannot be stored in destination array of type %s", src_pos + i, actualSrcType.c_str(), dstType.c_str()); if (throw_exception) { self->ThrowNewException("Ljava/lang/ArrayStoreException;", msg.c_str()); } else { LOG(FATAL) << msg; } } } template<class T> inline ObjectArray<T>* ObjectArray<T>::CopyOf(Thread* self, int32_t new_length) { DCHECK_GE(new_length, 0); // We may get copied by a compacting GC. StackHandleScope<1> hs(self); Handle<ObjectArray<T>> h_this(hs.NewHandle(this)); gc::Heap* heap = Runtime::Current()->GetHeap(); gc::AllocatorType allocator_type = heap->IsMovableObject(this) ? heap->GetCurrentAllocator() : heap->GetCurrentNonMovingAllocator(); ObjectArray<T>* new_array = Alloc(self, GetClass(), new_length, allocator_type); if (LIKELY(new_array != nullptr)) { new_array->AssignableMemcpy(0, h_this.Get(), 0, std::min(h_this->GetLength(), new_length)); } return new_array; } template<class T> inline MemberOffset ObjectArray<T>::OffsetOfElement(int32_t i) { return MemberOffset(DataOffset(kHeapReferenceSize).Int32Value() + (i * kHeapReferenceSize)); } template<class T> template<typename Visitor> inline void ObjectArray<T>::VisitReferences(const Visitor& visitor) { const size_t length = static_cast<size_t>(GetLength()); for (size_t i = 0; i < length; ++i) { visitor(this, OffsetOfElement(i), false); } } } // namespace mirror } // namespace art #endif // ART_RUNTIME_MIRROR_OBJECT_ARRAY_INL_H_