/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "class.h" #include "android-base/stringprintf.h" #include "art_field-inl.h" #include "art_method-inl.h" #include "class_ext.h" #include "class_linker-inl.h" #include "class_loader.h" #include "class-inl.h" #include "dex_cache.h" #include "dex_file-inl.h" #include "dex_file_annotations.h" #include "gc/accounting/card_table-inl.h" #include "handle_scope-inl.h" #include "method.h" #include "object_array-inl.h" #include "object-inl.h" #include "object-refvisitor-inl.h" #include "object_lock.h" #include "runtime.h" #include "thread.h" #include "throwable.h" #include "utils.h" #include "well_known_classes.h" namespace art { namespace mirror { using android::base::StringPrintf; GcRoot<Class> Class::java_lang_Class_; void Class::SetClassClass(ObjPtr<Class> java_lang_Class) { CHECK(java_lang_Class_.IsNull()) << java_lang_Class_.Read() << " " << java_lang_Class; CHECK(java_lang_Class != nullptr); java_lang_Class->SetClassFlags(kClassFlagClass); java_lang_Class_ = GcRoot<Class>(java_lang_Class); } void Class::ResetClass() { CHECK(!java_lang_Class_.IsNull()); java_lang_Class_ = GcRoot<Class>(nullptr); } void Class::VisitRoots(RootVisitor* visitor) { java_lang_Class_.VisitRootIfNonNull(visitor, RootInfo(kRootStickyClass)); } ClassExt* Class::EnsureExtDataPresent(Thread* self) { ObjPtr<ClassExt> existing(GetExtData()); if (!existing.IsNull()) { return existing.Ptr(); } StackHandleScope<3> hs(self); // Handlerize 'this' since we are allocating here. Handle<Class> h_this(hs.NewHandle(this)); // Clear exception so we can allocate. Handle<Throwable> throwable(hs.NewHandle(self->GetException())); self->ClearException(); // Allocate the ClassExt Handle<ClassExt> new_ext(hs.NewHandle(ClassExt::Alloc(self))); if (new_ext == nullptr) { // OOM allocating the classExt. // TODO Should we restore the suppressed exception? self->AssertPendingOOMException(); return nullptr; } else { MemberOffset ext_offset(OFFSET_OF_OBJECT_MEMBER(Class, ext_data_)); bool set; // Set the ext_data_ field using CAS semantics. if (Runtime::Current()->IsActiveTransaction()) { set = h_this->CasFieldStrongSequentiallyConsistentObject<true>(ext_offset, ObjPtr<ClassExt>(nullptr), new_ext.Get()); } else { set = h_this->CasFieldStrongSequentiallyConsistentObject<false>(ext_offset, ObjPtr<ClassExt>(nullptr), new_ext.Get()); } ObjPtr<ClassExt> ret(set ? new_ext.Get() : h_this->GetExtData()); DCHECK(!set || h_this->GetExtData() == new_ext.Get()); CHECK(!ret.IsNull()); // Restore the exception if there was one. if (throwable != nullptr) { self->SetException(throwable.Get()); } return ret.Ptr(); } } void Class::SetStatus(Handle<Class> h_this, Status new_status, Thread* self) { Status old_status = h_this->GetStatus(); ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); bool class_linker_initialized = class_linker != nullptr && class_linker->IsInitialized(); if (LIKELY(class_linker_initialized)) { if (UNLIKELY(new_status <= old_status && new_status != kStatusErrorUnresolved && new_status != kStatusErrorResolved && new_status != kStatusRetired)) { LOG(FATAL) << "Unexpected change back of class status for " << h_this->PrettyClass() << " " << old_status << " -> " << new_status; } if (new_status >= kStatusResolved || old_status >= kStatusResolved) { // When classes are being resolved the resolution code should hold the lock. CHECK_EQ(h_this->GetLockOwnerThreadId(), self->GetThreadId()) << "Attempt to change status of class while not holding its lock: " << h_this->PrettyClass() << " " << old_status << " -> " << new_status; } } if (UNLIKELY(IsErroneous(new_status))) { CHECK(!h_this->IsErroneous()) << "Attempt to set as erroneous an already erroneous class " << h_this->PrettyClass() << " old_status: " << old_status << " new_status: " << new_status; CHECK_EQ(new_status == kStatusErrorResolved, old_status >= kStatusResolved); if (VLOG_IS_ON(class_linker)) { LOG(ERROR) << "Setting " << h_this->PrettyDescriptor() << " to erroneous."; if (self->IsExceptionPending()) { LOG(ERROR) << "Exception: " << self->GetException()->Dump(); } } ObjPtr<ClassExt> ext(h_this->EnsureExtDataPresent(self)); if (!ext.IsNull()) { self->AssertPendingException(); ext->SetVerifyError(self->GetException()); } else { self->AssertPendingOOMException(); } self->AssertPendingException(); } static_assert(sizeof(Status) == sizeof(uint32_t), "Size of status not equal to uint32"); if (Runtime::Current()->IsActiveTransaction()) { h_this->SetField32Volatile<true>(StatusOffset(), new_status); } else { h_this->SetField32Volatile<false>(StatusOffset(), new_status); } // Setting the object size alloc fast path needs to be after the status write so that if the // alloc path sees a valid object size, we would know that it's initialized as long as it has a // load-acquire/fake dependency. if (new_status == kStatusInitialized && !h_this->IsVariableSize()) { DCHECK_EQ(h_this->GetObjectSizeAllocFastPath(), std::numeric_limits<uint32_t>::max()); // Finalizable objects must always go slow path. if (!h_this->IsFinalizable()) { h_this->SetObjectSizeAllocFastPath(RoundUp(h_this->GetObjectSize(), kObjectAlignment)); } } if (!class_linker_initialized) { // When the class linker is being initialized its single threaded and by definition there can be // no waiters. During initialization classes may appear temporary but won't be retired as their // size was statically computed. } else { // Classes that are being resolved or initialized need to notify waiters that the class status // changed. See ClassLinker::EnsureResolved and ClassLinker::WaitForInitializeClass. if (h_this->IsTemp()) { // Class is a temporary one, ensure that waiters for resolution get notified of retirement // so that they can grab the new version of the class from the class linker's table. CHECK_LT(new_status, kStatusResolved) << h_this->PrettyDescriptor(); if (new_status == kStatusRetired || new_status == kStatusErrorUnresolved) { h_this->NotifyAll(self); } } else { CHECK_NE(new_status, kStatusRetired); if (old_status >= kStatusResolved || new_status >= kStatusResolved) { h_this->NotifyAll(self); } } } } void Class::SetDexCache(ObjPtr<DexCache> new_dex_cache) { SetFieldObject<false>(OFFSET_OF_OBJECT_MEMBER(Class, dex_cache_), new_dex_cache); } void Class::SetClassSize(uint32_t new_class_size) { if (kIsDebugBuild && new_class_size < GetClassSize()) { DumpClass(LOG_STREAM(FATAL_WITHOUT_ABORT), kDumpClassFullDetail); LOG(FATAL_WITHOUT_ABORT) << new_class_size << " vs " << GetClassSize(); LOG(FATAL) << "class=" << PrettyTypeOf(); } // Not called within a transaction. SetField32<false>(OFFSET_OF_OBJECT_MEMBER(Class, class_size_), new_class_size); } // Return the class' name. The exact format is bizarre, but it's the specified behavior for // Class.getName: keywords for primitive types, regular "[I" form for primitive arrays (so "int" // but "[I"), and arrays of reference types written between "L" and ";" but with dots rather than // slashes (so "java.lang.String" but "[Ljava.lang.String;"). Madness. String* Class::ComputeName(Handle<Class> h_this) { String* name = h_this->GetName(); if (name != nullptr) { return name; } std::string temp; const char* descriptor = h_this->GetDescriptor(&temp); Thread* self = Thread::Current(); if ((descriptor[0] != 'L') && (descriptor[0] != '[')) { // The descriptor indicates that this is the class for // a primitive type; special-case the return value. const char* c_name = nullptr; switch (descriptor[0]) { case 'Z': c_name = "boolean"; break; case 'B': c_name = "byte"; break; case 'C': c_name = "char"; break; case 'S': c_name = "short"; break; case 'I': c_name = "int"; break; case 'J': c_name = "long"; break; case 'F': c_name = "float"; break; case 'D': c_name = "double"; break; case 'V': c_name = "void"; break; default: LOG(FATAL) << "Unknown primitive type: " << PrintableChar(descriptor[0]); } name = String::AllocFromModifiedUtf8(self, c_name); } else { // Convert the UTF-8 name to a java.lang.String. The name must use '.' to separate package // components. name = String::AllocFromModifiedUtf8(self, DescriptorToDot(descriptor).c_str()); } h_this->SetName(name); return name; } void Class::DumpClass(std::ostream& os, int flags) { if ((flags & kDumpClassFullDetail) == 0) { os << PrettyClass(); if ((flags & kDumpClassClassLoader) != 0) { os << ' ' << GetClassLoader(); } if ((flags & kDumpClassInitialized) != 0) { os << ' ' << GetStatus(); } os << "\n"; return; } Thread* const self = Thread::Current(); StackHandleScope<2> hs(self); Handle<Class> h_this(hs.NewHandle(this)); Handle<Class> h_super(hs.NewHandle(GetSuperClass())); auto image_pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize(); std::string temp; os << "----- " << (IsInterface() ? "interface" : "class") << " " << "'" << GetDescriptor(&temp) << "' cl=" << GetClassLoader() << " -----\n", os << " objectSize=" << SizeOf() << " " << "(" << (h_super != nullptr ? h_super->SizeOf() : -1) << " from super)\n", os << StringPrintf(" access=0x%04x.%04x\n", GetAccessFlags() >> 16, GetAccessFlags() & kAccJavaFlagsMask); if (h_super != nullptr) { os << " super='" << h_super->PrettyClass() << "' (cl=" << h_super->GetClassLoader() << ")\n"; } if (IsArrayClass()) { os << " componentType=" << PrettyClass(GetComponentType()) << "\n"; } const size_t num_direct_interfaces = NumDirectInterfaces(); if (num_direct_interfaces > 0) { os << " interfaces (" << num_direct_interfaces << "):\n"; for (size_t i = 0; i < num_direct_interfaces; ++i) { ObjPtr<Class> interface = GetDirectInterface(self, h_this.Get(), i); if (interface == nullptr) { os << StringPrintf(" %2zd: nullptr!\n", i); } else { ObjPtr<ClassLoader> cl = interface->GetClassLoader(); os << StringPrintf(" %2zd: %s (cl=%p)\n", i, PrettyClass(interface).c_str(), cl.Ptr()); } } } if (!IsLoaded()) { os << " class not yet loaded"; } else { // After this point, this may have moved due to GetDirectInterface. os << " vtable (" << h_this->NumVirtualMethods() << " entries, " << (h_super != nullptr ? h_super->NumVirtualMethods() : 0) << " in super):\n"; for (size_t i = 0; i < NumVirtualMethods(); ++i) { os << StringPrintf(" %2zd: %s\n", i, ArtMethod::PrettyMethod( h_this->GetVirtualMethodDuringLinking(i, image_pointer_size)).c_str()); } os << " direct methods (" << h_this->NumDirectMethods() << " entries):\n"; for (size_t i = 0; i < h_this->NumDirectMethods(); ++i) { os << StringPrintf(" %2zd: %s\n", i, ArtMethod::PrettyMethod( h_this->GetDirectMethod(i, image_pointer_size)).c_str()); } if (h_this->NumStaticFields() > 0) { os << " static fields (" << h_this->NumStaticFields() << " entries):\n"; if (h_this->IsResolved()) { for (size_t i = 0; i < h_this->NumStaticFields(); ++i) { os << StringPrintf(" %2zd: %s\n", i, ArtField::PrettyField(h_this->GetStaticField(i)).c_str()); } } else { os << " <not yet available>"; } } if (h_this->NumInstanceFields() > 0) { os << " instance fields (" << h_this->NumInstanceFields() << " entries):\n"; if (h_this->IsResolved()) { for (size_t i = 0; i < h_this->NumInstanceFields(); ++i) { os << StringPrintf(" %2zd: %s\n", i, ArtField::PrettyField(h_this->GetInstanceField(i)).c_str()); } } else { os << " <not yet available>"; } } } } void Class::SetReferenceInstanceOffsets(uint32_t new_reference_offsets) { if (kIsDebugBuild && new_reference_offsets != kClassWalkSuper) { // Sanity check that the number of bits set in the reference offset bitmap // agrees with the number of references uint32_t count = 0; for (ObjPtr<Class> c = this; c != nullptr; c = c->GetSuperClass()) { count += c->NumReferenceInstanceFieldsDuringLinking(); } // +1 for the Class in Object. CHECK_EQ(static_cast<uint32_t>(POPCOUNT(new_reference_offsets)) + 1, count); } // Not called within a transaction. SetField32<false>(OFFSET_OF_OBJECT_MEMBER(Class, reference_instance_offsets_), new_reference_offsets); } bool Class::IsInSamePackage(const StringPiece& descriptor1, const StringPiece& descriptor2) { size_t i = 0; size_t min_length = std::min(descriptor1.size(), descriptor2.size()); while (i < min_length && descriptor1[i] == descriptor2[i]) { ++i; } if (descriptor1.find('/', i) != StringPiece::npos || descriptor2.find('/', i) != StringPiece::npos) { return false; } else { return true; } } bool Class::IsInSamePackage(ObjPtr<Class> that) { ObjPtr<Class> klass1 = this; ObjPtr<Class> klass2 = that; if (klass1 == klass2) { return true; } // Class loaders must match. if (klass1->GetClassLoader() != klass2->GetClassLoader()) { return false; } // Arrays are in the same package when their element classes are. while (klass1->IsArrayClass()) { klass1 = klass1->GetComponentType(); } while (klass2->IsArrayClass()) { klass2 = klass2->GetComponentType(); } // trivial check again for array types if (klass1 == klass2) { return true; } // Compare the package part of the descriptor string. std::string temp1, temp2; return IsInSamePackage(klass1->GetDescriptor(&temp1), klass2->GetDescriptor(&temp2)); } bool Class::IsThrowableClass() { return WellKnownClasses::ToClass(WellKnownClasses::java_lang_Throwable)->IsAssignableFrom(this); } void Class::SetClassLoader(ObjPtr<ClassLoader> new_class_loader) { if (Runtime::Current()->IsActiveTransaction()) { SetFieldObject<true>(OFFSET_OF_OBJECT_MEMBER(Class, class_loader_), new_class_loader); } else { SetFieldObject<false>(OFFSET_OF_OBJECT_MEMBER(Class, class_loader_), new_class_loader); } } ArtMethod* Class::FindInterfaceMethod(const StringPiece& name, const StringPiece& signature, PointerSize pointer_size) { // Check the current class before checking the interfaces. ArtMethod* method = FindDeclaredVirtualMethod(name, signature, pointer_size); if (method != nullptr) { return method; } int32_t iftable_count = GetIfTableCount(); ObjPtr<IfTable> iftable = GetIfTable(); for (int32_t i = 0; i < iftable_count; ++i) { method = iftable->GetInterface(i)->FindDeclaredVirtualMethod(name, signature, pointer_size); if (method != nullptr) { return method; } } return nullptr; } ArtMethod* Class::FindInterfaceMethod(const StringPiece& name, const Signature& signature, PointerSize pointer_size) { // Check the current class before checking the interfaces. ArtMethod* method = FindDeclaredVirtualMethod(name, signature, pointer_size); if (method != nullptr) { return method; } int32_t iftable_count = GetIfTableCount(); ObjPtr<IfTable> iftable = GetIfTable(); for (int32_t i = 0; i < iftable_count; ++i) { method = iftable->GetInterface(i)->FindDeclaredVirtualMethod(name, signature, pointer_size); if (method != nullptr) { return method; } } return nullptr; } ArtMethod* Class::FindInterfaceMethod(ObjPtr<DexCache> dex_cache, uint32_t dex_method_idx, PointerSize pointer_size) { // Check the current class before checking the interfaces. ArtMethod* method = FindDeclaredVirtualMethod(dex_cache, dex_method_idx, pointer_size); if (method != nullptr) { return method; } int32_t iftable_count = GetIfTableCount(); ObjPtr<IfTable> iftable = GetIfTable(); for (int32_t i = 0; i < iftable_count; ++i) { method = iftable->GetInterface(i)->FindDeclaredVirtualMethod( dex_cache, dex_method_idx, pointer_size); if (method != nullptr) { return method; } } return nullptr; } ArtMethod* Class::FindDeclaredDirectMethod(const StringPiece& name, const StringPiece& signature, PointerSize pointer_size) { for (auto& method : GetDirectMethods(pointer_size)) { if (name == method.GetName() && method.GetSignature() == signature) { return &method; } } return nullptr; } ArtMethod* Class::FindDeclaredDirectMethod(const StringPiece& name, const Signature& signature, PointerSize pointer_size) { for (auto& method : GetDirectMethods(pointer_size)) { if (name == method.GetName() && signature == method.GetSignature()) { return &method; } } return nullptr; } ArtMethod* Class::FindDeclaredDirectMethod(ObjPtr<DexCache> dex_cache, uint32_t dex_method_idx, PointerSize pointer_size) { if (GetDexCache() == dex_cache) { for (auto& method : GetDirectMethods(pointer_size)) { if (method.GetDexMethodIndex() == dex_method_idx) { return &method; } } } return nullptr; } ArtMethod* Class::FindDirectMethod(const StringPiece& name, const StringPiece& signature, PointerSize pointer_size) { for (ObjPtr<Class> klass = this; klass != nullptr; klass = klass->GetSuperClass()) { ArtMethod* method = klass->FindDeclaredDirectMethod(name, signature, pointer_size); if (method != nullptr) { return method; } } return nullptr; } ArtMethod* Class::FindDirectMethod(const StringPiece& name, const Signature& signature, PointerSize pointer_size) { for (ObjPtr<Class> klass = this; klass != nullptr; klass = klass->GetSuperClass()) { ArtMethod* method = klass->FindDeclaredDirectMethod(name, signature, pointer_size); if (method != nullptr) { return method; } } return nullptr; } ArtMethod* Class::FindDirectMethod(ObjPtr<DexCache> dex_cache, uint32_t dex_method_idx, PointerSize pointer_size) { for (ObjPtr<Class> klass = this; klass != nullptr; klass = klass->GetSuperClass()) { ArtMethod* method = klass->FindDeclaredDirectMethod(dex_cache, dex_method_idx, pointer_size); if (method != nullptr) { return method; } } return nullptr; } ArtMethod* Class::FindDeclaredDirectMethodByName(const StringPiece& name, PointerSize pointer_size) { for (auto& method : GetDirectMethods(pointer_size)) { ArtMethod* const np_method = method.GetInterfaceMethodIfProxy(pointer_size); if (name == np_method->GetName()) { return &method; } } return nullptr; } // TODO These should maybe be changed to be named FindOwnedVirtualMethod or something similar // because they do not only find 'declared' methods and will return copied methods. This behavior is // desired and correct but the naming can lead to confusion because in the java language declared // excludes interface methods which might be found by this. ArtMethod* Class::FindDeclaredVirtualMethod(const StringPiece& name, const StringPiece& signature, PointerSize pointer_size) { for (auto& method : GetVirtualMethods(pointer_size)) { ArtMethod* const np_method = method.GetInterfaceMethodIfProxy(pointer_size); if (name == np_method->GetName() && np_method->GetSignature() == signature) { return &method; } } return nullptr; } ArtMethod* Class::FindDeclaredVirtualMethod(const StringPiece& name, const Signature& signature, PointerSize pointer_size) { for (auto& method : GetVirtualMethods(pointer_size)) { ArtMethod* const np_method = method.GetInterfaceMethodIfProxy(pointer_size); if (name == np_method->GetName() && signature == np_method->GetSignature()) { return &method; } } return nullptr; } ArtMethod* Class::FindDeclaredVirtualMethod(ObjPtr<DexCache> dex_cache, uint32_t dex_method_idx, PointerSize pointer_size) { if (GetDexCache() == dex_cache) { for (auto& method : GetDeclaredVirtualMethods(pointer_size)) { if (method.GetDexMethodIndex() == dex_method_idx) { return &method; } } } return nullptr; } ArtMethod* Class::FindDeclaredVirtualMethodByName(const StringPiece& name, PointerSize pointer_size) { for (auto& method : GetVirtualMethods(pointer_size)) { ArtMethod* const np_method = method.GetInterfaceMethodIfProxy(pointer_size); if (name == np_method->GetName()) { return &method; } } return nullptr; } ArtMethod* Class::FindVirtualMethod(const StringPiece& name, const StringPiece& signature, PointerSize pointer_size) { for (ObjPtr<Class> klass = this; klass != nullptr; klass = klass->GetSuperClass()) { ArtMethod* method = klass->FindDeclaredVirtualMethod(name, signature, pointer_size); if (method != nullptr) { return method; } } return nullptr; } ArtMethod* Class::FindVirtualMethod(const StringPiece& name, const Signature& signature, PointerSize pointer_size) { for (ObjPtr<Class> klass = this; klass != nullptr; klass = klass->GetSuperClass()) { ArtMethod* method = klass->FindDeclaredVirtualMethod(name, signature, pointer_size); if (method != nullptr) { return method; } } return nullptr; } ArtMethod* Class::FindVirtualMethod(ObjPtr<DexCache> dex_cache, uint32_t dex_method_idx, PointerSize pointer_size) { for (ObjPtr<Class> klass = this; klass != nullptr; klass = klass->GetSuperClass()) { ArtMethod* method = klass->FindDeclaredVirtualMethod(dex_cache, dex_method_idx, pointer_size); if (method != nullptr) { return method; } } return nullptr; } ArtMethod* Class::FindVirtualMethodForInterfaceSuper(ArtMethod* method, PointerSize pointer_size) { DCHECK(method->GetDeclaringClass()->IsInterface()); DCHECK(IsInterface()) << "Should only be called on a interface class"; // Check if we have one defined on this interface first. This includes searching copied ones to // get any conflict methods. Conflict methods are copied into each subtype from the supertype. We // don't do any indirect method checks here. for (ArtMethod& iface_method : GetVirtualMethods(pointer_size)) { if (method->HasSameNameAndSignature(&iface_method)) { return &iface_method; } } std::vector<ArtMethod*> abstract_methods; // Search through the IFTable for a working version. We don't need to check for conflicts // because if there was one it would appear in this classes virtual_methods_ above. Thread* self = Thread::Current(); StackHandleScope<2> hs(self); MutableHandle<IfTable> iftable(hs.NewHandle(GetIfTable())); MutableHandle<Class> iface(hs.NewHandle<Class>(nullptr)); size_t iftable_count = GetIfTableCount(); // Find the method. We don't need to check for conflicts because they would have been in the // copied virtuals of this interface. Order matters, traverse in reverse topological order; most // subtypiest interfaces get visited first. for (size_t k = iftable_count; k != 0;) { k--; DCHECK_LT(k, iftable->Count()); iface.Assign(iftable->GetInterface(k)); // Iterate through every declared method on this interface. Each direct method's name/signature // is unique so the order of the inner loop doesn't matter. for (auto& method_iter : iface->GetDeclaredVirtualMethods(pointer_size)) { ArtMethod* current_method = &method_iter; if (current_method->HasSameNameAndSignature(method)) { if (current_method->IsDefault()) { // Handle JLS soft errors, a default method from another superinterface tree can // "override" an abstract method(s) from another superinterface tree(s). To do this, // ignore any [default] method which are dominated by the abstract methods we've seen so // far. Check if overridden by any in abstract_methods. We do not need to check for // default_conflicts because we would hit those before we get to this loop. bool overridden = false; for (ArtMethod* possible_override : abstract_methods) { DCHECK(possible_override->HasSameNameAndSignature(current_method)); if (iface->IsAssignableFrom(possible_override->GetDeclaringClass())) { overridden = true; break; } } if (!overridden) { return current_method; } } else { // Is not default. // This might override another default method. Just stash it for now. abstract_methods.push_back(current_method); } } } } // If we reach here we either never found any declaration of the method (in which case // 'abstract_methods' is empty or we found no non-overriden default methods in which case // 'abstract_methods' contains a number of abstract implementations of the methods. We choose one // of these arbitrarily. return abstract_methods.empty() ? nullptr : abstract_methods[0]; } ArtMethod* Class::FindClassInitializer(PointerSize pointer_size) { for (ArtMethod& method : GetDirectMethods(pointer_size)) { if (method.IsClassInitializer()) { DCHECK_STREQ(method.GetName(), "<clinit>"); DCHECK_STREQ(method.GetSignature().ToString().c_str(), "()V"); return &method; } } return nullptr; } // Custom binary search to avoid double comparisons from std::binary_search. static ArtField* FindFieldByNameAndType(LengthPrefixedArray<ArtField>* fields, const StringPiece& name, const StringPiece& type) REQUIRES_SHARED(Locks::mutator_lock_) { if (fields == nullptr) { return nullptr; } size_t low = 0; size_t high = fields->size(); ArtField* ret = nullptr; while (low < high) { size_t mid = (low + high) / 2; ArtField& field = fields->At(mid); // Fields are sorted by class, then name, then type descriptor. This is verified in dex file // verifier. There can be multiple fields with the same in the same class name due to proguard. int result = StringPiece(field.GetName()).Compare(name); if (result == 0) { result = StringPiece(field.GetTypeDescriptor()).Compare(type); } if (result < 0) { low = mid + 1; } else if (result > 0) { high = mid; } else { ret = &field; break; } } if (kIsDebugBuild) { ArtField* found = nullptr; for (ArtField& field : MakeIterationRangeFromLengthPrefixedArray(fields)) { if (name == field.GetName() && type == field.GetTypeDescriptor()) { found = &field; break; } } CHECK_EQ(found, ret) << "Found " << found->PrettyField() << " vs " << ret->PrettyField(); } return ret; } ArtField* Class::FindDeclaredInstanceField(const StringPiece& name, const StringPiece& type) { // Binary search by name. Interfaces are not relevant because they can't contain instance fields. return FindFieldByNameAndType(GetIFieldsPtr(), name, type); } ArtField* Class::FindDeclaredInstanceField(ObjPtr<DexCache> dex_cache, uint32_t dex_field_idx) { if (GetDexCache() == dex_cache) { for (ArtField& field : GetIFields()) { if (field.GetDexFieldIndex() == dex_field_idx) { return &field; } } } return nullptr; } ArtField* Class::FindInstanceField(const StringPiece& name, const StringPiece& type) { // Is the field in this class, or any of its superclasses? // Interfaces are not relevant because they can't contain instance fields. for (ObjPtr<Class> c = this; c != nullptr; c = c->GetSuperClass()) { ArtField* f = c->FindDeclaredInstanceField(name, type); if (f != nullptr) { return f; } } return nullptr; } ArtField* Class::FindInstanceField(ObjPtr<DexCache> dex_cache, uint32_t dex_field_idx) { // Is the field in this class, or any of its superclasses? // Interfaces are not relevant because they can't contain instance fields. for (ObjPtr<Class> c = this; c != nullptr; c = c->GetSuperClass()) { ArtField* f = c->FindDeclaredInstanceField(dex_cache, dex_field_idx); if (f != nullptr) { return f; } } return nullptr; } ArtField* Class::FindDeclaredStaticField(const StringPiece& name, const StringPiece& type) { DCHECK(type != nullptr); return FindFieldByNameAndType(GetSFieldsPtr(), name, type); } ArtField* Class::FindDeclaredStaticField(ObjPtr<DexCache> dex_cache, uint32_t dex_field_idx) { if (dex_cache == GetDexCache()) { for (ArtField& field : GetSFields()) { if (field.GetDexFieldIndex() == dex_field_idx) { return &field; } } } return nullptr; } ArtField* Class::FindStaticField(Thread* self, ObjPtr<Class> klass, const StringPiece& name, const StringPiece& type) { // Is the field in this class (or its interfaces), or any of its // superclasses (or their interfaces)? for (ObjPtr<Class> k = klass; k != nullptr; k = k->GetSuperClass()) { // Is the field in this class? ArtField* f = k->FindDeclaredStaticField(name, type); if (f != nullptr) { return f; } // Is this field in any of this class' interfaces? for (uint32_t i = 0, num_interfaces = k->NumDirectInterfaces(); i != num_interfaces; ++i) { ObjPtr<Class> interface = GetDirectInterface(self, k, i); DCHECK(interface != nullptr); f = FindStaticField(self, interface, name, type); if (f != nullptr) { return f; } } } return nullptr; } ArtField* Class::FindStaticField(Thread* self, ObjPtr<Class> klass, ObjPtr<DexCache> dex_cache, uint32_t dex_field_idx) { for (ObjPtr<Class> k = klass; k != nullptr; k = k->GetSuperClass()) { // Is the field in this class? ArtField* f = k->FindDeclaredStaticField(dex_cache, dex_field_idx); if (f != nullptr) { return f; } // Though GetDirectInterface() should not cause thread suspension when called // from here, it takes a Handle as an argument, so we need to wrap `k`. ScopedAssertNoThreadSuspension ants(__FUNCTION__); // Is this field in any of this class' interfaces? for (uint32_t i = 0, num_interfaces = k->NumDirectInterfaces(); i != num_interfaces; ++i) { ObjPtr<Class> interface = GetDirectInterface(self, k, i); DCHECK(interface != nullptr); f = FindStaticField(self, interface, dex_cache, dex_field_idx); if (f != nullptr) { return f; } } } return nullptr; } ArtField* Class::FindField(Thread* self, ObjPtr<Class> klass, const StringPiece& name, const StringPiece& type) { // Find a field using the JLS field resolution order for (ObjPtr<Class> k = klass; k != nullptr; k = k->GetSuperClass()) { // Is the field in this class? ArtField* f = k->FindDeclaredInstanceField(name, type); if (f != nullptr) { return f; } f = k->FindDeclaredStaticField(name, type); if (f != nullptr) { return f; } // Is this field in any of this class' interfaces? for (uint32_t i = 0, num_interfaces = k->NumDirectInterfaces(); i != num_interfaces; ++i) { ObjPtr<Class> interface = GetDirectInterface(self, k, i); DCHECK(interface != nullptr); f = FindStaticField(self, interface, name, type); if (f != nullptr) { return f; } } } return nullptr; } void Class::SetSkipAccessChecksFlagOnAllMethods(PointerSize pointer_size) { DCHECK(IsVerified()); for (auto& m : GetMethods(pointer_size)) { if (!m.IsNative() && m.IsInvokable()) { m.SetSkipAccessChecks(); } } } const char* Class::GetDescriptor(std::string* storage) { if (IsPrimitive()) { return Primitive::Descriptor(GetPrimitiveType()); } else if (IsArrayClass()) { return GetArrayDescriptor(storage); } else if (IsProxyClass()) { *storage = Runtime::Current()->GetClassLinker()->GetDescriptorForProxy(this); return storage->c_str(); } else { const DexFile& dex_file = GetDexFile(); const DexFile::TypeId& type_id = dex_file.GetTypeId(GetClassDef()->class_idx_); return dex_file.GetTypeDescriptor(type_id); } } const char* Class::GetArrayDescriptor(std::string* storage) { std::string temp; const char* elem_desc = GetComponentType()->GetDescriptor(&temp); *storage = "["; *storage += elem_desc; return storage->c_str(); } const DexFile::ClassDef* Class::GetClassDef() { uint16_t class_def_idx = GetDexClassDefIndex(); if (class_def_idx == DexFile::kDexNoIndex16) { return nullptr; } return &GetDexFile().GetClassDef(class_def_idx); } dex::TypeIndex Class::GetDirectInterfaceTypeIdx(uint32_t idx) { DCHECK(!IsPrimitive()); DCHECK(!IsArrayClass()); return GetInterfaceTypeList()->GetTypeItem(idx).type_idx_; } ObjPtr<Class> Class::GetDirectInterface(Thread* self, ObjPtr<Class> klass, uint32_t idx) { DCHECK(klass != nullptr); DCHECK(!klass->IsPrimitive()); if (klass->IsArrayClass()) { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); // Use ClassLinker::LookupClass(); avoid poisoning ObjPtr<>s by ClassLinker::FindSystemClass(). ObjPtr<Class> interface; if (idx == 0) { interface = class_linker->LookupClass(self, "Ljava/lang/Cloneable;", nullptr); } else { DCHECK_EQ(1U, idx); interface = class_linker->LookupClass(self, "Ljava/io/Serializable;", nullptr); } DCHECK(interface != nullptr); return interface; } else if (klass->IsProxyClass()) { ObjPtr<ObjectArray<Class>> interfaces = klass->GetProxyInterfaces(); DCHECK(interfaces != nullptr); return interfaces->Get(idx); } else { dex::TypeIndex type_idx = klass->GetDirectInterfaceTypeIdx(idx); ObjPtr<Class> interface = ClassLinker::LookupResolvedType( type_idx, klass->GetDexCache(), klass->GetClassLoader()); return interface; } } ObjPtr<Class> Class::ResolveDirectInterface(Thread* self, Handle<Class> klass, uint32_t idx) { ObjPtr<Class> interface = GetDirectInterface(self, klass.Get(), idx); if (interface == nullptr) { DCHECK(!klass->IsArrayClass()); DCHECK(!klass->IsProxyClass()); dex::TypeIndex type_idx = klass->GetDirectInterfaceTypeIdx(idx); interface = Runtime::Current()->GetClassLinker()->ResolveType(klass->GetDexFile(), type_idx, klass.Get()); CHECK(interface != nullptr || self->IsExceptionPending()); } return interface; } ObjPtr<Class> Class::GetCommonSuperClass(Handle<Class> klass) { DCHECK(klass != nullptr); DCHECK(!klass->IsInterface()); DCHECK(!IsInterface()); ObjPtr<Class> common_super_class = this; while (!common_super_class->IsAssignableFrom(klass.Get())) { ObjPtr<Class> old_common = common_super_class; common_super_class = old_common->GetSuperClass(); DCHECK(common_super_class != nullptr) << old_common->PrettyClass(); } return common_super_class; } const char* Class::GetSourceFile() { const DexFile& dex_file = GetDexFile(); const DexFile::ClassDef* dex_class_def = GetClassDef(); if (dex_class_def == nullptr) { // Generated classes have no class def. return nullptr; } return dex_file.GetSourceFile(*dex_class_def); } std::string Class::GetLocation() { ObjPtr<DexCache> dex_cache = GetDexCache(); if (dex_cache != nullptr && !IsProxyClass()) { return dex_cache->GetLocation()->ToModifiedUtf8(); } // Arrays and proxies are generated and have no corresponding dex file location. return "generated class"; } const DexFile::TypeList* Class::GetInterfaceTypeList() { const DexFile::ClassDef* class_def = GetClassDef(); if (class_def == nullptr) { return nullptr; } return GetDexFile().GetInterfacesList(*class_def); } void Class::PopulateEmbeddedVTable(PointerSize pointer_size) { PointerArray* table = GetVTableDuringLinking(); CHECK(table != nullptr) << PrettyClass(); const size_t table_length = table->GetLength(); SetEmbeddedVTableLength(table_length); for (size_t i = 0; i < table_length; i++) { SetEmbeddedVTableEntry(i, table->GetElementPtrSize<ArtMethod*>(i, pointer_size), pointer_size); } // Keep java.lang.Object class's vtable around for since it's easier // to be reused by array classes during their linking. if (!IsObjectClass()) { SetVTable(nullptr); } } class ReadBarrierOnNativeRootsVisitor { public: void operator()(ObjPtr<Object> obj ATTRIBUTE_UNUSED, MemberOffset offset ATTRIBUTE_UNUSED, bool is_static ATTRIBUTE_UNUSED) const {} void VisitRootIfNonNull(CompressedReference<Object>* root) const REQUIRES_SHARED(Locks::mutator_lock_) { if (!root->IsNull()) { VisitRoot(root); } } void VisitRoot(CompressedReference<Object>* root) const REQUIRES_SHARED(Locks::mutator_lock_) { ObjPtr<Object> old_ref = root->AsMirrorPtr(); ObjPtr<Object> new_ref = ReadBarrier::BarrierForRoot(root); if (old_ref != new_ref) { // Update the field atomically. This may fail if mutator updates before us, but it's ok. auto* atomic_root = reinterpret_cast<Atomic<CompressedReference<Object>>*>(root); atomic_root->CompareExchangeStrongSequentiallyConsistent( CompressedReference<Object>::FromMirrorPtr(old_ref.Ptr()), CompressedReference<Object>::FromMirrorPtr(new_ref.Ptr())); } } }; // The pre-fence visitor for Class::CopyOf(). class CopyClassVisitor { public: CopyClassVisitor(Thread* self, Handle<Class>* orig, size_t new_length, size_t copy_bytes, ImTable* imt, PointerSize pointer_size) : self_(self), orig_(orig), new_length_(new_length), copy_bytes_(copy_bytes), imt_(imt), pointer_size_(pointer_size) { } void operator()(ObjPtr<Object> obj, size_t usable_size ATTRIBUTE_UNUSED) const REQUIRES_SHARED(Locks::mutator_lock_) { StackHandleScope<1> hs(self_); Handle<mirror::Class> h_new_class_obj(hs.NewHandle(obj->AsClass())); Object::CopyObject(h_new_class_obj.Get(), orig_->Get(), copy_bytes_); Class::SetStatus(h_new_class_obj, Class::kStatusResolving, self_); h_new_class_obj->PopulateEmbeddedVTable(pointer_size_); h_new_class_obj->SetImt(imt_, pointer_size_); h_new_class_obj->SetClassSize(new_length_); // Visit all of the references to make sure there is no from space references in the native // roots. ObjPtr<Object>(h_new_class_obj.Get())->VisitReferences( ReadBarrierOnNativeRootsVisitor(), VoidFunctor()); } private: Thread* const self_; Handle<Class>* const orig_; const size_t new_length_; const size_t copy_bytes_; ImTable* imt_; const PointerSize pointer_size_; DISALLOW_COPY_AND_ASSIGN(CopyClassVisitor); }; Class* Class::CopyOf(Thread* self, int32_t new_length, ImTable* imt, PointerSize pointer_size) { DCHECK_GE(new_length, static_cast<int32_t>(sizeof(Class))); // We may get copied by a compacting GC. StackHandleScope<1> hs(self); Handle<Class> h_this(hs.NewHandle(this)); gc::Heap* heap = Runtime::Current()->GetHeap(); // The num_bytes (3rd param) is sizeof(Class) as opposed to SizeOf() // to skip copying the tail part that we will overwrite here. CopyClassVisitor visitor(self, &h_this, new_length, sizeof(Class), imt, pointer_size); ObjPtr<Object> new_class = kMovingClasses ? heap->AllocObject<true>(self, java_lang_Class_.Read(), new_length, visitor) : heap->AllocNonMovableObject<true>(self, java_lang_Class_.Read(), new_length, visitor); if (UNLIKELY(new_class == nullptr)) { self->AssertPendingOOMException(); return nullptr; } return new_class->AsClass(); } bool Class::ProxyDescriptorEquals(const char* match) { DCHECK(IsProxyClass()); return Runtime::Current()->GetClassLinker()->GetDescriptorForProxy(this) == match; } // TODO: Move this to java_lang_Class.cc? ArtMethod* Class::GetDeclaredConstructor( Thread* self, Handle<ObjectArray<Class>> args, PointerSize pointer_size) { for (auto& m : GetDirectMethods(pointer_size)) { // Skip <clinit> which is a static constructor, as well as non constructors. if (m.IsStatic() || !m.IsConstructor()) { continue; } // May cause thread suspension and exceptions. if (m.GetInterfaceMethodIfProxy(kRuntimePointerSize)->EqualParameters(args)) { return &m; } if (UNLIKELY(self->IsExceptionPending())) { return nullptr; } } return nullptr; } uint32_t Class::Depth() { uint32_t depth = 0; for (ObjPtr<Class> klass = this; klass->GetSuperClass() != nullptr; klass = klass->GetSuperClass()) { depth++; } return depth; } dex::TypeIndex Class::FindTypeIndexInOtherDexFile(const DexFile& dex_file) { std::string temp; const DexFile::TypeId* type_id = dex_file.FindTypeId(GetDescriptor(&temp)); return (type_id == nullptr) ? dex::TypeIndex(DexFile::kDexNoIndex) : dex_file.GetIndexForTypeId(*type_id); } template <PointerSize kPointerSize, bool kTransactionActive> ObjPtr<Method> Class::GetDeclaredMethodInternal( Thread* self, ObjPtr<Class> klass, ObjPtr<String> name, ObjPtr<ObjectArray<Class>> args) { // Covariant return types permit the class to define multiple // methods with the same name and parameter types. Prefer to // return a non-synthetic method in such situations. We may // still return a synthetic method to handle situations like // escalated visibility. We never return miranda methods that // were synthesized by the runtime. constexpr uint32_t kSkipModifiers = kAccMiranda | kAccSynthetic; StackHandleScope<3> hs(self); auto h_method_name = hs.NewHandle(name); if (UNLIKELY(h_method_name == nullptr)) { ThrowNullPointerException("name == null"); return nullptr; } auto h_args = hs.NewHandle(args); Handle<Class> h_klass = hs.NewHandle(klass); ArtMethod* result = nullptr; for (auto& m : h_klass->GetDeclaredVirtualMethods(kPointerSize)) { auto* np_method = m.GetInterfaceMethodIfProxy(kPointerSize); // May cause thread suspension. ObjPtr<String> np_name = np_method->GetNameAsString(self); if (!np_name->Equals(h_method_name.Get()) || !np_method->EqualParameters(h_args)) { if (UNLIKELY(self->IsExceptionPending())) { return nullptr; } continue; } auto modifiers = m.GetAccessFlags(); if ((modifiers & kSkipModifiers) == 0) { return Method::CreateFromArtMethod<kPointerSize, kTransactionActive>(self, &m); } if ((modifiers & kAccMiranda) == 0) { result = &m; // Remember as potential result if it's not a miranda method. } } if (result == nullptr) { for (auto& m : h_klass->GetDirectMethods(kPointerSize)) { auto modifiers = m.GetAccessFlags(); if ((modifiers & kAccConstructor) != 0) { continue; } auto* np_method = m.GetInterfaceMethodIfProxy(kPointerSize); // May cause thread suspension. ObjPtr<String> np_name = np_method->GetNameAsString(self); if (np_name == nullptr) { self->AssertPendingException(); return nullptr; } if (!np_name->Equals(h_method_name.Get()) || !np_method->EqualParameters(h_args)) { if (UNLIKELY(self->IsExceptionPending())) { return nullptr; } continue; } if ((modifiers & kSkipModifiers) == 0) { return Method::CreateFromArtMethod<kPointerSize, kTransactionActive>(self, &m); } // Direct methods cannot be miranda methods, so this potential result must be synthetic. result = &m; } } return result != nullptr ? Method::CreateFromArtMethod<kPointerSize, kTransactionActive>(self, result) : nullptr; } template ObjPtr<Method> Class::GetDeclaredMethodInternal<PointerSize::k32, false>( Thread* self, ObjPtr<Class> klass, ObjPtr<String> name, ObjPtr<ObjectArray<Class>> args); template ObjPtr<Method> Class::GetDeclaredMethodInternal<PointerSize::k32, true>( Thread* self, ObjPtr<Class> klass, ObjPtr<String> name, ObjPtr<ObjectArray<Class>> args); template ObjPtr<Method> Class::GetDeclaredMethodInternal<PointerSize::k64, false>( Thread* self, ObjPtr<Class> klass, ObjPtr<String> name, ObjPtr<ObjectArray<Class>> args); template ObjPtr<Method> Class::GetDeclaredMethodInternal<PointerSize::k64, true>( Thread* self, ObjPtr<Class> klass, ObjPtr<String> name, ObjPtr<ObjectArray<Class>> args); template <PointerSize kPointerSize, bool kTransactionActive> ObjPtr<Constructor> Class::GetDeclaredConstructorInternal( Thread* self, ObjPtr<Class> klass, ObjPtr<ObjectArray<Class>> args) { StackHandleScope<1> hs(self); ArtMethod* result = klass->GetDeclaredConstructor(self, hs.NewHandle(args), kPointerSize); return result != nullptr ? Constructor::CreateFromArtMethod<kPointerSize, kTransactionActive>(self, result) : nullptr; } // Constructor::CreateFromArtMethod<kTransactionActive>(self, result) template ObjPtr<Constructor> Class::GetDeclaredConstructorInternal<PointerSize::k32, false>( Thread* self, ObjPtr<Class> klass, ObjPtr<ObjectArray<Class>> args); template ObjPtr<Constructor> Class::GetDeclaredConstructorInternal<PointerSize::k32, true>( Thread* self, ObjPtr<Class> klass, ObjPtr<ObjectArray<Class>> args); template ObjPtr<Constructor> Class::GetDeclaredConstructorInternal<PointerSize::k64, false>( Thread* self, ObjPtr<Class> klass, ObjPtr<ObjectArray<Class>> args); template ObjPtr<Constructor> Class::GetDeclaredConstructorInternal<PointerSize::k64, true>( Thread* self, ObjPtr<Class> klass, ObjPtr<ObjectArray<Class>> args); int32_t Class::GetInnerClassFlags(Handle<Class> h_this, int32_t default_value) { if (h_this->IsProxyClass() || h_this->GetDexCache() == nullptr) { return default_value; } uint32_t flags; if (!annotations::GetInnerClassFlags(h_this, &flags)) { return default_value; } return flags; } void Class::SetObjectSizeAllocFastPath(uint32_t new_object_size) { if (Runtime::Current()->IsActiveTransaction()) { SetField32Volatile<true>(ObjectSizeAllocFastPathOffset(), new_object_size); } else { SetField32Volatile<false>(ObjectSizeAllocFastPathOffset(), new_object_size); } } std::string Class::PrettyDescriptor(ObjPtr<mirror::Class> klass) { if (klass == nullptr) { return "null"; } return klass->PrettyDescriptor(); } std::string Class::PrettyDescriptor() { std::string temp; return art::PrettyDescriptor(GetDescriptor(&temp)); } std::string Class::PrettyClass(ObjPtr<mirror::Class> c) { if (c == nullptr) { return "null"; } return c->PrettyClass(); } std::string Class::PrettyClass() { std::string result; result += "java.lang.Class<"; result += PrettyDescriptor(); result += ">"; return result; } std::string Class::PrettyClassAndClassLoader(ObjPtr<mirror::Class> c) { if (c == nullptr) { return "null"; } return c->PrettyClassAndClassLoader(); } std::string Class::PrettyClassAndClassLoader() { std::string result; result += "java.lang.Class<"; result += PrettyDescriptor(); result += ","; result += mirror::Object::PrettyTypeOf(GetClassLoader()); // TODO: add an identifying hash value for the loader result += ">"; return result; } template<VerifyObjectFlags kVerifyFlags> void Class::GetAccessFlagsDCheck() { // Check class is loaded/retired or this is java.lang.String that has a // circularity issue during loading the names of its members DCHECK(IsIdxLoaded<kVerifyFlags>() || IsRetired<kVerifyFlags>() || IsErroneous<static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis)>() || this == String::GetJavaLangString()) << "IsIdxLoaded=" << IsIdxLoaded<kVerifyFlags>() << " IsRetired=" << IsRetired<kVerifyFlags>() << " IsErroneous=" << IsErroneous<static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis)>() << " IsString=" << (this == String::GetJavaLangString()) << " status= " << GetStatus<kVerifyFlags>() << " descriptor=" << PrettyDescriptor(); } // Instantiate the common cases. template void Class::GetAccessFlagsDCheck<kVerifyNone>(); template void Class::GetAccessFlagsDCheck<kVerifyThis>(); template void Class::GetAccessFlagsDCheck<kVerifyReads>(); template void Class::GetAccessFlagsDCheck<kVerifyWrites>(); template void Class::GetAccessFlagsDCheck<kVerifyAll>(); } // namespace mirror } // namespace art