/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "mem_map.h" #include <inttypes.h> #include <stdlib.h> #include <sys/mman.h> // For the PROT_* and MAP_* constants. #ifndef ANDROID_OS #include <sys/resource.h> #endif #include <memory> #include <sstream> #include "android-base/stringprintf.h" #include "android-base/unique_fd.h" #include "backtrace/BacktraceMap.h" #include "cutils/ashmem.h" #include "base/allocator.h" #include "base/memory_tool.h" #include "globals.h" #include "utils.h" #ifndef MAP_ANONYMOUS #define MAP_ANONYMOUS MAP_ANON #endif namespace art { using android::base::StringPrintf; using android::base::unique_fd; using Maps = AllocationTrackingMultiMap<void*, MemMap*, kAllocatorTagMaps>; // All the non-empty MemMaps. Use a multimap as we do a reserve-and-divide (eg ElfMap::Load()). static Maps* gMaps GUARDED_BY(MemMap::GetMemMapsLock()) = nullptr; static std::ostream& operator<<( std::ostream& os, std::pair<BacktraceMap::const_iterator, BacktraceMap::const_iterator> iters) { for (BacktraceMap::const_iterator it = iters.first; it != iters.second; ++it) { os << StringPrintf("0x%08x-0x%08x %c%c%c %s\n", static_cast<uint32_t>(it->start), static_cast<uint32_t>(it->end), (it->flags & PROT_READ) ? 'r' : '-', (it->flags & PROT_WRITE) ? 'w' : '-', (it->flags & PROT_EXEC) ? 'x' : '-', it->name.c_str()); } return os; } std::ostream& operator<<(std::ostream& os, const Maps& mem_maps) { os << "MemMap:" << std::endl; for (auto it = mem_maps.begin(); it != mem_maps.end(); ++it) { void* base = it->first; MemMap* map = it->second; CHECK_EQ(base, map->BaseBegin()); os << *map << std::endl; } return os; } std::mutex* MemMap::mem_maps_lock_ = nullptr; #if USE_ART_LOW_4G_ALLOCATOR // Handling mem_map in 32b address range for 64b architectures that do not support MAP_32BIT. // The regular start of memory allocations. The first 64KB is protected by SELinux. static constexpr uintptr_t LOW_MEM_START = 64 * KB; // Generate random starting position. // To not interfere with image position, take the image's address and only place it below. Current // formula (sketch): // // ART_BASE_ADDR = 0001XXXXXXXXXXXXXXX // ---------------------------------------- // = 0000111111111111111 // & ~(kPageSize - 1) =~0000000000000001111 // ---------------------------------------- // mask = 0000111111111110000 // & random data = YYYYYYYYYYYYYYYYYYY // ----------------------------------- // tmp = 0000YYYYYYYYYYY0000 // + LOW_MEM_START = 0000000000001000000 // -------------------------------------- // start // // arc4random as an entropy source is exposed in Bionic, but not in glibc. When we // do not have Bionic, simply start with LOW_MEM_START. // Function is standalone so it can be tested somewhat in mem_map_test.cc. #ifdef __BIONIC__ uintptr_t CreateStartPos(uint64_t input) { CHECK_NE(0, ART_BASE_ADDRESS); // Start with all bits below highest bit in ART_BASE_ADDRESS. constexpr size_t leading_zeros = CLZ(static_cast<uint32_t>(ART_BASE_ADDRESS)); constexpr uintptr_t mask_ones = (1 << (31 - leading_zeros)) - 1; // Lowest (usually 12) bits are not used, as aligned by page size. constexpr uintptr_t mask = mask_ones & ~(kPageSize - 1); // Mask input data. return (input & mask) + LOW_MEM_START; } #endif static uintptr_t GenerateNextMemPos() { #ifdef __BIONIC__ uint64_t random_data; arc4random_buf(&random_data, sizeof(random_data)); return CreateStartPos(random_data); #else // No arc4random on host, see above. return LOW_MEM_START; #endif } // Initialize linear scan to random position. uintptr_t MemMap::next_mem_pos_ = GenerateNextMemPos(); #endif // Return true if the address range is contained in a single memory map by either reading // the gMaps variable or the /proc/self/map entry. bool MemMap::ContainedWithinExistingMap(uint8_t* ptr, size_t size, std::string* error_msg) { uintptr_t begin = reinterpret_cast<uintptr_t>(ptr); uintptr_t end = begin + size; // There is a suspicion that BacktraceMap::Create is occasionally missing maps. TODO: Investigate // further. { std::lock_guard<std::mutex> mu(*mem_maps_lock_); for (auto& pair : *gMaps) { MemMap* const map = pair.second; if (begin >= reinterpret_cast<uintptr_t>(map->Begin()) && end <= reinterpret_cast<uintptr_t>(map->End())) { return true; } } } std::unique_ptr<BacktraceMap> map(BacktraceMap::Create(getpid(), true)); if (map == nullptr) { if (error_msg != nullptr) { *error_msg = StringPrintf("Failed to build process map"); } return false; } ScopedBacktraceMapIteratorLock lock(map.get()); for (BacktraceMap::const_iterator it = map->begin(); it != map->end(); ++it) { if ((begin >= it->start && begin < it->end) // start of new within old && (end > it->start && end <= it->end)) { // end of new within old return true; } } if (error_msg != nullptr) { PrintFileToLog("/proc/self/maps", LogSeverity::ERROR); *error_msg = StringPrintf("Requested region 0x%08" PRIxPTR "-0x%08" PRIxPTR " does not overlap " "any existing map. See process maps in the log.", begin, end); } return false; } // Return true if the address range does not conflict with any /proc/self/maps entry. static bool CheckNonOverlapping(uintptr_t begin, uintptr_t end, std::string* error_msg) { std::unique_ptr<BacktraceMap> map(BacktraceMap::Create(getpid(), true)); if (map.get() == nullptr) { *error_msg = StringPrintf("Failed to build process map"); return false; } ScopedBacktraceMapIteratorLock(map.get()); for (BacktraceMap::const_iterator it = map->begin(); it != map->end(); ++it) { if ((begin >= it->start && begin < it->end) // start of new within old || (end > it->start && end < it->end) // end of new within old || (begin <= it->start && end > it->end)) { // start/end of new includes all of old std::ostringstream map_info; map_info << std::make_pair(it, map->end()); *error_msg = StringPrintf("Requested region 0x%08" PRIxPTR "-0x%08" PRIxPTR " overlaps with " "existing map 0x%08" PRIxPTR "-0x%08" PRIxPTR " (%s)\n%s", begin, end, static_cast<uintptr_t>(it->start), static_cast<uintptr_t>(it->end), it->name.c_str(), map_info.str().c_str()); return false; } } return true; } // CheckMapRequest to validate a non-MAP_FAILED mmap result based on // the expected value, calling munmap if validation fails, giving the // reason in error_msg. // // If the expected_ptr is null, nothing is checked beyond the fact // that the actual_ptr is not MAP_FAILED. However, if expected_ptr is // non-null, we check that pointer is the actual_ptr == expected_ptr, // and if not, report in error_msg what the conflict mapping was if // found, or a generic error in other cases. static bool CheckMapRequest(uint8_t* expected_ptr, void* actual_ptr, size_t byte_count, std::string* error_msg) { // Handled first by caller for more specific error messages. CHECK(actual_ptr != MAP_FAILED); if (expected_ptr == nullptr) { return true; } uintptr_t actual = reinterpret_cast<uintptr_t>(actual_ptr); uintptr_t expected = reinterpret_cast<uintptr_t>(expected_ptr); uintptr_t limit = expected + byte_count; if (expected_ptr == actual_ptr) { return true; } // We asked for an address but didn't get what we wanted, all paths below here should fail. int result = munmap(actual_ptr, byte_count); if (result == -1) { PLOG(WARNING) << StringPrintf("munmap(%p, %zd) failed", actual_ptr, byte_count); } if (error_msg != nullptr) { // We call this here so that we can try and generate a full error // message with the overlapping mapping. There's no guarantee that // that there will be an overlap though, since // - The kernel is not *required* to honor expected_ptr unless MAP_FIXED is // true, even if there is no overlap // - There might have been an overlap at the point of mmap, but the // overlapping region has since been unmapped. std::string error_detail; CheckNonOverlapping(expected, limit, &error_detail); std::ostringstream os; os << StringPrintf("Failed to mmap at expected address, mapped at " "0x%08" PRIxPTR " instead of 0x%08" PRIxPTR, actual, expected); if (!error_detail.empty()) { os << " : " << error_detail; } *error_msg = os.str(); } return false; } #if USE_ART_LOW_4G_ALLOCATOR static inline void* TryMemMapLow4GB(void* ptr, size_t page_aligned_byte_count, int prot, int flags, int fd, off_t offset) { void* actual = mmap(ptr, page_aligned_byte_count, prot, flags, fd, offset); if (actual != MAP_FAILED) { // Since we didn't use MAP_FIXED the kernel may have mapped it somewhere not in the low // 4GB. If this is the case, unmap and retry. if (reinterpret_cast<uintptr_t>(actual) + page_aligned_byte_count >= 4 * GB) { munmap(actual, page_aligned_byte_count); actual = MAP_FAILED; } } return actual; } #endif MemMap* MemMap::MapAnonymous(const char* name, uint8_t* expected_ptr, size_t byte_count, int prot, bool low_4gb, bool reuse, std::string* error_msg, bool use_ashmem) { #ifndef __LP64__ UNUSED(low_4gb); #endif use_ashmem = use_ashmem && !kIsTargetLinux; if (byte_count == 0) { return new MemMap(name, nullptr, 0, nullptr, 0, prot, false); } size_t page_aligned_byte_count = RoundUp(byte_count, kPageSize); int flags = MAP_PRIVATE | MAP_ANONYMOUS; if (reuse) { // reuse means it is okay that it overlaps an existing page mapping. // Only use this if you actually made the page reservation yourself. CHECK(expected_ptr != nullptr); DCHECK(ContainedWithinExistingMap(expected_ptr, byte_count, error_msg)) << *error_msg; flags |= MAP_FIXED; } if (use_ashmem) { if (!kIsTargetBuild) { // When not on Android (either host or assuming a linux target) ashmem is faked using // files in /tmp. Ensure that such files won't fail due to ulimit restrictions. If they // will then use a regular mmap. struct rlimit rlimit_fsize; CHECK_EQ(getrlimit(RLIMIT_FSIZE, &rlimit_fsize), 0); use_ashmem = (rlimit_fsize.rlim_cur == RLIM_INFINITY) || (page_aligned_byte_count < rlimit_fsize.rlim_cur); } } unique_fd fd; if (use_ashmem) { // android_os_Debug.cpp read_mapinfo assumes all ashmem regions associated with the VM are // prefixed "dalvik-". std::string debug_friendly_name("dalvik-"); debug_friendly_name += name; fd.reset(ashmem_create_region(debug_friendly_name.c_str(), page_aligned_byte_count)); if (fd.get() == -1) { // We failed to create the ashmem region. Print a warning, but continue // anyway by creating a true anonymous mmap with an fd of -1. It is // better to use an unlabelled anonymous map than to fail to create a // map at all. PLOG(WARNING) << "ashmem_create_region failed for '" << name << "'"; } else { // We succeeded in creating the ashmem region. Use the created ashmem // region as backing for the mmap. flags &= ~MAP_ANONYMOUS; } } // We need to store and potentially set an error number for pretty printing of errors int saved_errno = 0; void* actual = MapInternal(expected_ptr, page_aligned_byte_count, prot, flags, fd.get(), 0, low_4gb); saved_errno = errno; if (actual == MAP_FAILED) { if (error_msg != nullptr) { if (kIsDebugBuild || VLOG_IS_ON(oat)) { PrintFileToLog("/proc/self/maps", LogSeverity::WARNING); } *error_msg = StringPrintf("Failed anonymous mmap(%p, %zd, 0x%x, 0x%x, %d, 0): %s. " "See process maps in the log.", expected_ptr, page_aligned_byte_count, prot, flags, fd.get(), strerror(saved_errno)); } return nullptr; } if (!CheckMapRequest(expected_ptr, actual, page_aligned_byte_count, error_msg)) { return nullptr; } return new MemMap(name, reinterpret_cast<uint8_t*>(actual), byte_count, actual, page_aligned_byte_count, prot, reuse); } MemMap* MemMap::MapDummy(const char* name, uint8_t* addr, size_t byte_count) { if (byte_count == 0) { return new MemMap(name, nullptr, 0, nullptr, 0, 0, false); } const size_t page_aligned_byte_count = RoundUp(byte_count, kPageSize); return new MemMap(name, addr, byte_count, addr, page_aligned_byte_count, 0, true /* reuse */); } MemMap* MemMap::MapFileAtAddress(uint8_t* expected_ptr, size_t byte_count, int prot, int flags, int fd, off_t start, bool low_4gb, bool reuse, const char* filename, std::string* error_msg) { CHECK_NE(0, prot); CHECK_NE(0, flags & (MAP_SHARED | MAP_PRIVATE)); // Note that we do not allow MAP_FIXED unless reuse == true, i.e we // expect his mapping to be contained within an existing map. if (reuse) { // reuse means it is okay that it overlaps an existing page mapping. // Only use this if you actually made the page reservation yourself. CHECK(expected_ptr != nullptr); DCHECK(error_msg != nullptr); DCHECK(ContainedWithinExistingMap(expected_ptr, byte_count, error_msg)) << ((error_msg != nullptr) ? *error_msg : std::string()); flags |= MAP_FIXED; } else { CHECK_EQ(0, flags & MAP_FIXED); // Don't bother checking for an overlapping region here. We'll // check this if required after the fact inside CheckMapRequest. } if (byte_count == 0) { return new MemMap(filename, nullptr, 0, nullptr, 0, prot, false); } // Adjust 'offset' to be page-aligned as required by mmap. int page_offset = start % kPageSize; off_t page_aligned_offset = start - page_offset; // Adjust 'byte_count' to be page-aligned as we will map this anyway. size_t page_aligned_byte_count = RoundUp(byte_count + page_offset, kPageSize); // The 'expected_ptr' is modified (if specified, ie non-null) to be page aligned to the file but // not necessarily to virtual memory. mmap will page align 'expected' for us. uint8_t* page_aligned_expected = (expected_ptr == nullptr) ? nullptr : (expected_ptr - page_offset); size_t redzone_size = 0; if (RUNNING_ON_MEMORY_TOOL && kMemoryToolAddsRedzones && expected_ptr == nullptr) { redzone_size = kPageSize; page_aligned_byte_count += redzone_size; } uint8_t* actual = reinterpret_cast<uint8_t*>(MapInternal(page_aligned_expected, page_aligned_byte_count, prot, flags, fd, page_aligned_offset, low_4gb)); if (actual == MAP_FAILED) { if (error_msg != nullptr) { auto saved_errno = errno; if (kIsDebugBuild || VLOG_IS_ON(oat)) { PrintFileToLog("/proc/self/maps", LogSeverity::WARNING); } *error_msg = StringPrintf("mmap(%p, %zd, 0x%x, 0x%x, %d, %" PRId64 ") of file '%s' failed: %s. See process maps in the log.", page_aligned_expected, page_aligned_byte_count, prot, flags, fd, static_cast<int64_t>(page_aligned_offset), filename, strerror(saved_errno)); } return nullptr; } if (!CheckMapRequest(expected_ptr, actual, page_aligned_byte_count, error_msg)) { return nullptr; } if (redzone_size != 0) { const uint8_t *real_start = actual + page_offset; const uint8_t *real_end = actual + page_offset + byte_count; const uint8_t *mapping_end = actual + page_aligned_byte_count; MEMORY_TOOL_MAKE_NOACCESS(actual, real_start - actual); MEMORY_TOOL_MAKE_NOACCESS(real_end, mapping_end - real_end); page_aligned_byte_count -= redzone_size; } return new MemMap(filename, actual + page_offset, byte_count, actual, page_aligned_byte_count, prot, reuse, redzone_size); } MemMap::~MemMap() { if (base_begin_ == nullptr && base_size_ == 0) { return; } // Unlike Valgrind, AddressSanitizer requires that all manually poisoned memory is unpoisoned // before it is returned to the system. if (redzone_size_ != 0) { MEMORY_TOOL_MAKE_UNDEFINED( reinterpret_cast<char*>(base_begin_) + base_size_ - redzone_size_, redzone_size_); } if (!reuse_) { MEMORY_TOOL_MAKE_UNDEFINED(base_begin_, base_size_); int result = munmap(base_begin_, base_size_); if (result == -1) { PLOG(FATAL) << "munmap failed"; } } // Remove it from gMaps. std::lock_guard<std::mutex> mu(*mem_maps_lock_); bool found = false; DCHECK(gMaps != nullptr); for (auto it = gMaps->lower_bound(base_begin_), end = gMaps->end(); it != end && it->first == base_begin_; ++it) { if (it->second == this) { found = true; gMaps->erase(it); break; } } CHECK(found) << "MemMap not found"; } MemMap::MemMap(const std::string& name, uint8_t* begin, size_t size, void* base_begin, size_t base_size, int prot, bool reuse, size_t redzone_size) : name_(name), begin_(begin), size_(size), base_begin_(base_begin), base_size_(base_size), prot_(prot), reuse_(reuse), redzone_size_(redzone_size) { if (size_ == 0) { CHECK(begin_ == nullptr); CHECK(base_begin_ == nullptr); CHECK_EQ(base_size_, 0U); } else { CHECK(begin_ != nullptr); CHECK(base_begin_ != nullptr); CHECK_NE(base_size_, 0U); // Add it to gMaps. std::lock_guard<std::mutex> mu(*mem_maps_lock_); DCHECK(gMaps != nullptr); gMaps->insert(std::make_pair(base_begin_, this)); } } MemMap* MemMap::RemapAtEnd(uint8_t* new_end, const char* tail_name, int tail_prot, std::string* error_msg, bool use_ashmem) { use_ashmem = use_ashmem && !kIsTargetLinux; DCHECK_GE(new_end, Begin()); DCHECK_LE(new_end, End()); DCHECK_LE(begin_ + size_, reinterpret_cast<uint8_t*>(base_begin_) + base_size_); DCHECK_ALIGNED(begin_, kPageSize); DCHECK_ALIGNED(base_begin_, kPageSize); DCHECK_ALIGNED(reinterpret_cast<uint8_t*>(base_begin_) + base_size_, kPageSize); DCHECK_ALIGNED(new_end, kPageSize); uint8_t* old_end = begin_ + size_; uint8_t* old_base_end = reinterpret_cast<uint8_t*>(base_begin_) + base_size_; uint8_t* new_base_end = new_end; DCHECK_LE(new_base_end, old_base_end); if (new_base_end == old_base_end) { return new MemMap(tail_name, nullptr, 0, nullptr, 0, tail_prot, false); } size_ = new_end - reinterpret_cast<uint8_t*>(begin_); base_size_ = new_base_end - reinterpret_cast<uint8_t*>(base_begin_); DCHECK_LE(begin_ + size_, reinterpret_cast<uint8_t*>(base_begin_) + base_size_); size_t tail_size = old_end - new_end; uint8_t* tail_base_begin = new_base_end; size_t tail_base_size = old_base_end - new_base_end; DCHECK_EQ(tail_base_begin + tail_base_size, old_base_end); DCHECK_ALIGNED(tail_base_size, kPageSize); unique_fd fd; int flags = MAP_PRIVATE | MAP_ANONYMOUS; if (use_ashmem) { // android_os_Debug.cpp read_mapinfo assumes all ashmem regions associated with the VM are // prefixed "dalvik-". std::string debug_friendly_name("dalvik-"); debug_friendly_name += tail_name; fd.reset(ashmem_create_region(debug_friendly_name.c_str(), tail_base_size)); flags = MAP_PRIVATE | MAP_FIXED; if (fd.get() == -1) { *error_msg = StringPrintf("ashmem_create_region failed for '%s': %s", tail_name, strerror(errno)); return nullptr; } } MEMORY_TOOL_MAKE_UNDEFINED(tail_base_begin, tail_base_size); // Unmap/map the tail region. int result = munmap(tail_base_begin, tail_base_size); if (result == -1) { PrintFileToLog("/proc/self/maps", LogSeverity::WARNING); *error_msg = StringPrintf("munmap(%p, %zd) failed for '%s'. See process maps in the log.", tail_base_begin, tail_base_size, name_.c_str()); return nullptr; } // Don't cause memory allocation between the munmap and the mmap // calls. Otherwise, libc (or something else) might take this memory // region. Note this isn't perfect as there's no way to prevent // other threads to try to take this memory region here. uint8_t* actual = reinterpret_cast<uint8_t*>(mmap(tail_base_begin, tail_base_size, tail_prot, flags, fd.get(), 0)); if (actual == MAP_FAILED) { PrintFileToLog("/proc/self/maps", LogSeverity::WARNING); *error_msg = StringPrintf("anonymous mmap(%p, %zd, 0x%x, 0x%x, %d, 0) failed. See process " "maps in the log.", tail_base_begin, tail_base_size, tail_prot, flags, fd.get()); return nullptr; } return new MemMap(tail_name, actual, tail_size, actual, tail_base_size, tail_prot, false); } void MemMap::MadviseDontNeedAndZero() { if (base_begin_ != nullptr || base_size_ != 0) { if (!kMadviseZeroes) { memset(base_begin_, 0, base_size_); } int result = madvise(base_begin_, base_size_, MADV_DONTNEED); if (result == -1) { PLOG(WARNING) << "madvise failed"; } } } bool MemMap::Sync() { bool result; if (redzone_size_ != 0) { // To avoid valgrind errors, temporarily lift the lower-end noaccess protection before passing // it to msync() as it only accepts page-aligned base address, and exclude the higher-end // noaccess protection from the msync range. b/27552451. uint8_t* base_begin = reinterpret_cast<uint8_t*>(base_begin_); MEMORY_TOOL_MAKE_DEFINED(base_begin, begin_ - base_begin); result = msync(BaseBegin(), End() - base_begin, MS_SYNC) == 0; MEMORY_TOOL_MAKE_NOACCESS(base_begin, begin_ - base_begin); } else { result = msync(BaseBegin(), BaseSize(), MS_SYNC) == 0; } return result; } bool MemMap::Protect(int prot) { if (base_begin_ == nullptr && base_size_ == 0) { prot_ = prot; return true; } if (mprotect(base_begin_, base_size_, prot) == 0) { prot_ = prot; return true; } PLOG(ERROR) << "mprotect(" << reinterpret_cast<void*>(base_begin_) << ", " << base_size_ << ", " << prot << ") failed"; return false; } bool MemMap::CheckNoGaps(MemMap* begin_map, MemMap* end_map) { std::lock_guard<std::mutex> mu(*mem_maps_lock_); CHECK(begin_map != nullptr); CHECK(end_map != nullptr); CHECK(HasMemMap(begin_map)); CHECK(HasMemMap(end_map)); CHECK_LE(begin_map->BaseBegin(), end_map->BaseBegin()); MemMap* map = begin_map; while (map->BaseBegin() != end_map->BaseBegin()) { MemMap* next_map = GetLargestMemMapAt(map->BaseEnd()); if (next_map == nullptr) { // Found a gap. return false; } map = next_map; } return true; } void MemMap::DumpMaps(std::ostream& os, bool terse) { std::lock_guard<std::mutex> mu(*mem_maps_lock_); DumpMapsLocked(os, terse); } void MemMap::DumpMapsLocked(std::ostream& os, bool terse) { const auto& mem_maps = *gMaps; if (!terse) { os << mem_maps; return; } // Terse output example: // [MemMap: 0x409be000+0x20P~0x11dP+0x20P~0x61cP+0x20P prot=0x3 LinearAlloc] // [MemMap: 0x451d6000+0x6bP(3) prot=0x3 large object space allocation] // The details: // "+0x20P" means 0x20 pages taken by a single mapping, // "~0x11dP" means a gap of 0x11d pages, // "+0x6bP(3)" means 3 mappings one after another, together taking 0x6b pages. os << "MemMap:" << std::endl; for (auto it = mem_maps.begin(), maps_end = mem_maps.end(); it != maps_end;) { MemMap* map = it->second; void* base = it->first; CHECK_EQ(base, map->BaseBegin()); os << "[MemMap: " << base; ++it; // Merge consecutive maps with the same protect flags and name. constexpr size_t kMaxGaps = 9; size_t num_gaps = 0; size_t num = 1u; size_t size = map->BaseSize(); CHECK_ALIGNED(size, kPageSize); void* end = map->BaseEnd(); while (it != maps_end && it->second->GetProtect() == map->GetProtect() && it->second->GetName() == map->GetName() && (it->second->BaseBegin() == end || num_gaps < kMaxGaps)) { if (it->second->BaseBegin() != end) { ++num_gaps; os << "+0x" << std::hex << (size / kPageSize) << "P"; if (num != 1u) { os << "(" << std::dec << num << ")"; } size_t gap = reinterpret_cast<uintptr_t>(it->second->BaseBegin()) - reinterpret_cast<uintptr_t>(end); CHECK_ALIGNED(gap, kPageSize); os << "~0x" << std::hex << (gap / kPageSize) << "P"; num = 0u; size = 0u; } CHECK_ALIGNED(it->second->BaseSize(), kPageSize); ++num; size += it->second->BaseSize(); end = it->second->BaseEnd(); ++it; } os << "+0x" << std::hex << (size / kPageSize) << "P"; if (num != 1u) { os << "(" << std::dec << num << ")"; } os << " prot=0x" << std::hex << map->GetProtect() << " " << map->GetName() << "]" << std::endl; } } bool MemMap::HasMemMap(MemMap* map) { void* base_begin = map->BaseBegin(); for (auto it = gMaps->lower_bound(base_begin), end = gMaps->end(); it != end && it->first == base_begin; ++it) { if (it->second == map) { return true; } } return false; } MemMap* MemMap::GetLargestMemMapAt(void* address) { size_t largest_size = 0; MemMap* largest_map = nullptr; DCHECK(gMaps != nullptr); for (auto it = gMaps->lower_bound(address), end = gMaps->end(); it != end && it->first == address; ++it) { MemMap* map = it->second; CHECK(map != nullptr); if (largest_size < map->BaseSize()) { largest_size = map->BaseSize(); largest_map = map; } } return largest_map; } void MemMap::Init() { if (mem_maps_lock_ != nullptr) { // dex2oat calls MemMap::Init twice since its needed before the runtime is created. return; } mem_maps_lock_ = new std::mutex(); // Not for thread safety, but for the annotation that gMaps is GUARDED_BY(mem_maps_lock_). std::lock_guard<std::mutex> mu(*mem_maps_lock_); DCHECK(gMaps == nullptr); gMaps = new Maps; } void MemMap::Shutdown() { if (mem_maps_lock_ == nullptr) { // If MemMap::Shutdown is called more than once, there is no effect. return; } { // Not for thread safety, but for the annotation that gMaps is GUARDED_BY(mem_maps_lock_). std::lock_guard<std::mutex> mu(*mem_maps_lock_); DCHECK(gMaps != nullptr); delete gMaps; gMaps = nullptr; } delete mem_maps_lock_; mem_maps_lock_ = nullptr; } void MemMap::SetSize(size_t new_size) { if (new_size == base_size_) { return; } CHECK_ALIGNED(new_size, kPageSize); CHECK_EQ(base_size_, size_) << "Unsupported"; CHECK_LE(new_size, base_size_); MEMORY_TOOL_MAKE_UNDEFINED( reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(BaseBegin()) + new_size), base_size_ - new_size); CHECK_EQ(munmap(reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(BaseBegin()) + new_size), base_size_ - new_size), 0) << new_size << " " << base_size_; base_size_ = new_size; size_ = new_size; } void* MemMap::MapInternal(void* addr, size_t length, int prot, int flags, int fd, off_t offset, bool low_4gb) { #ifdef __LP64__ // When requesting low_4g memory and having an expectation, the requested range should fit into // 4GB. if (low_4gb && ( // Start out of bounds. (reinterpret_cast<uintptr_t>(addr) >> 32) != 0 || // End out of bounds. For simplicity, this will fail for the last page of memory. ((reinterpret_cast<uintptr_t>(addr) + length) >> 32) != 0)) { LOG(ERROR) << "The requested address space (" << addr << ", " << reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(addr) + length) << ") cannot fit in low_4gb"; return MAP_FAILED; } #else UNUSED(low_4gb); #endif DCHECK_ALIGNED(length, kPageSize); if (low_4gb) { DCHECK_EQ(flags & MAP_FIXED, 0); } // TODO: // A page allocator would be a useful abstraction here, as // 1) It is doubtful that MAP_32BIT on x86_64 is doing the right job for us void* actual = MAP_FAILED; #if USE_ART_LOW_4G_ALLOCATOR // MAP_32BIT only available on x86_64. if (low_4gb && addr == nullptr) { bool first_run = true; std::lock_guard<std::mutex> mu(*mem_maps_lock_); for (uintptr_t ptr = next_mem_pos_; ptr < 4 * GB; ptr += kPageSize) { // Use gMaps as an optimization to skip over large maps. // Find the first map which is address > ptr. auto it = gMaps->upper_bound(reinterpret_cast<void*>(ptr)); if (it != gMaps->begin()) { auto before_it = it; --before_it; // Start at the end of the map before the upper bound. ptr = std::max(ptr, reinterpret_cast<uintptr_t>(before_it->second->BaseEnd())); CHECK_ALIGNED(ptr, kPageSize); } while (it != gMaps->end()) { // How much space do we have until the next map? size_t delta = reinterpret_cast<uintptr_t>(it->first) - ptr; // If the space may be sufficient, break out of the loop. if (delta >= length) { break; } // Otherwise, skip to the end of the map. ptr = reinterpret_cast<uintptr_t>(it->second->BaseEnd()); CHECK_ALIGNED(ptr, kPageSize); ++it; } // Try to see if we get lucky with this address since none of the ART maps overlap. actual = TryMemMapLow4GB(reinterpret_cast<void*>(ptr), length, prot, flags, fd, offset); if (actual != MAP_FAILED) { next_mem_pos_ = reinterpret_cast<uintptr_t>(actual) + length; return actual; } if (4U * GB - ptr < length) { // Not enough memory until 4GB. if (first_run) { // Try another time from the bottom; ptr = LOW_MEM_START - kPageSize; first_run = false; continue; } else { // Second try failed. break; } } uintptr_t tail_ptr; // Check pages are free. bool safe = true; for (tail_ptr = ptr; tail_ptr < ptr + length; tail_ptr += kPageSize) { if (msync(reinterpret_cast<void*>(tail_ptr), kPageSize, 0) == 0) { safe = false; break; } else { DCHECK_EQ(errno, ENOMEM); } } next_mem_pos_ = tail_ptr; // update early, as we break out when we found and mapped a region if (safe == true) { actual = TryMemMapLow4GB(reinterpret_cast<void*>(ptr), length, prot, flags, fd, offset); if (actual != MAP_FAILED) { return actual; } } else { // Skip over last page. ptr = tail_ptr; } } if (actual == MAP_FAILED) { LOG(ERROR) << "Could not find contiguous low-memory space."; errno = ENOMEM; } } else { actual = mmap(addr, length, prot, flags, fd, offset); } #else #if defined(__LP64__) if (low_4gb && addr == nullptr) { flags |= MAP_32BIT; } #endif actual = mmap(addr, length, prot, flags, fd, offset); #endif return actual; } std::ostream& operator<<(std::ostream& os, const MemMap& mem_map) { os << StringPrintf("[MemMap: %p-%p prot=0x%x %s]", mem_map.BaseBegin(), mem_map.BaseEnd(), mem_map.GetProtect(), mem_map.GetName().c_str()); return os; } void MemMap::TryReadable() { if (base_begin_ == nullptr && base_size_ == 0) { return; } CHECK_NE(prot_ & PROT_READ, 0); volatile uint8_t* begin = reinterpret_cast<volatile uint8_t*>(base_begin_); volatile uint8_t* end = begin + base_size_; DCHECK(IsAligned<kPageSize>(begin)); DCHECK(IsAligned<kPageSize>(end)); // Read the first byte of each page. Use volatile to prevent the compiler from optimizing away the // reads. for (volatile uint8_t* ptr = begin; ptr < end; ptr += kPageSize) { // This read could fault if protection wasn't set correctly. uint8_t value = *ptr; UNUSED(value); } } void ZeroAndReleasePages(void* address, size_t length) { if (length == 0) { return; } uint8_t* const mem_begin = reinterpret_cast<uint8_t*>(address); uint8_t* const mem_end = mem_begin + length; uint8_t* const page_begin = AlignUp(mem_begin, kPageSize); uint8_t* const page_end = AlignDown(mem_end, kPageSize); if (!kMadviseZeroes || page_begin >= page_end) { // No possible area to madvise. std::fill(mem_begin, mem_end, 0); } else { // Spans one or more pages. DCHECK_LE(mem_begin, page_begin); DCHECK_LE(page_begin, page_end); DCHECK_LE(page_end, mem_end); std::fill(mem_begin, page_begin, 0); CHECK_NE(madvise(page_begin, page_end - page_begin, MADV_DONTNEED), -1) << "madvise failed"; std::fill(page_end, mem_end, 0); } } void MemMap::AlignBy(size_t size) { CHECK_EQ(begin_, base_begin_) << "Unsupported"; CHECK_EQ(size_, base_size_) << "Unsupported"; CHECK_GT(size, static_cast<size_t>(kPageSize)); CHECK_ALIGNED(size, kPageSize); if (IsAlignedParam(reinterpret_cast<uintptr_t>(base_begin_), size) && IsAlignedParam(base_size_, size)) { // Already aligned. return; } uint8_t* base_begin = reinterpret_cast<uint8_t*>(base_begin_); uint8_t* base_end = base_begin + base_size_; uint8_t* aligned_base_begin = AlignUp(base_begin, size); uint8_t* aligned_base_end = AlignDown(base_end, size); CHECK_LE(base_begin, aligned_base_begin); CHECK_LE(aligned_base_end, base_end); size_t aligned_base_size = aligned_base_end - aligned_base_begin; CHECK_LT(aligned_base_begin, aligned_base_end) << "base_begin = " << reinterpret_cast<void*>(base_begin) << " base_end = " << reinterpret_cast<void*>(base_end); CHECK_GE(aligned_base_size, size); // Unmap the unaligned parts. if (base_begin < aligned_base_begin) { MEMORY_TOOL_MAKE_UNDEFINED(base_begin, aligned_base_begin - base_begin); CHECK_EQ(munmap(base_begin, aligned_base_begin - base_begin), 0) << "base_begin=" << reinterpret_cast<void*>(base_begin) << " aligned_base_begin=" << reinterpret_cast<void*>(aligned_base_begin); } if (aligned_base_end < base_end) { MEMORY_TOOL_MAKE_UNDEFINED(aligned_base_end, base_end - aligned_base_end); CHECK_EQ(munmap(aligned_base_end, base_end - aligned_base_end), 0) << "base_end=" << reinterpret_cast<void*>(base_end) << " aligned_base_end=" << reinterpret_cast<void*>(aligned_base_end); } std::lock_guard<std::mutex> mu(*mem_maps_lock_); base_begin_ = aligned_base_begin; base_size_ = aligned_base_size; begin_ = aligned_base_begin; size_ = aligned_base_size; DCHECK(gMaps != nullptr); if (base_begin < aligned_base_begin) { auto it = gMaps->find(base_begin); CHECK(it != gMaps->end()) << "MemMap not found"; gMaps->erase(it); gMaps->insert(std::make_pair(base_begin_, this)); } } } // namespace art