/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "profile_compilation_info.h" #include "errno.h" #include <limits.h> #include <vector> #include <stdlib.h> #include <sys/file.h> #include <sys/stat.h> #include <sys/uio.h> #include "base/arena_allocator.h" #include "base/dumpable.h" #include "base/mutex.h" #include "base/scoped_flock.h" #include "base/stl_util.h" #include "base/systrace.h" #include "base/unix_file/fd_file.h" #include "jit/profiling_info.h" #include "os.h" #include "safe_map.h" #include "utils.h" namespace art { const uint8_t ProfileCompilationInfo::kProfileMagic[] = { 'p', 'r', 'o', '\0' }; // Last profile version: fix profman merges. Update profile version to force // regeneration of possibly faulty profiles. const uint8_t ProfileCompilationInfo::kProfileVersion[] = { '0', '0', '5', '\0' }; static constexpr uint16_t kMaxDexFileKeyLength = PATH_MAX; // Debug flag to ignore checksums when testing if a method or a class is present in the profile. // Used to facilitate testing profile guided compilation across a large number of apps // using the same test profile. static constexpr bool kDebugIgnoreChecksum = false; static constexpr uint8_t kIsMissingTypesEncoding = 6; static constexpr uint8_t kIsMegamorphicEncoding = 7; static_assert(sizeof(InlineCache::kIndividualCacheSize) == sizeof(uint8_t), "InlineCache::kIndividualCacheSize does not have the expect type size"); static_assert(InlineCache::kIndividualCacheSize < kIsMegamorphicEncoding, "InlineCache::kIndividualCacheSize is larger than expected"); static_assert(InlineCache::kIndividualCacheSize < kIsMissingTypesEncoding, "InlineCache::kIndividualCacheSize is larger than expected"); ProfileCompilationInfo::ProfileCompilationInfo(ArenaPool* custom_arena_pool) : default_arena_pool_(), arena_(custom_arena_pool), info_(arena_.Adapter(kArenaAllocProfile)), profile_key_map_(std::less<const std::string>(), arena_.Adapter(kArenaAllocProfile)) { } ProfileCompilationInfo::ProfileCompilationInfo() : default_arena_pool_(/*use_malloc*/true, /*low_4gb*/false, "ProfileCompilationInfo"), arena_(&default_arena_pool_), info_(arena_.Adapter(kArenaAllocProfile)), profile_key_map_(std::less<const std::string>(), arena_.Adapter(kArenaAllocProfile)) { } ProfileCompilationInfo::~ProfileCompilationInfo() { VLOG(profiler) << Dumpable<MemStats>(arena_.GetMemStats()); for (DexFileData* data : info_) { delete data; } } void ProfileCompilationInfo::DexPcData::AddClass(uint16_t dex_profile_idx, const dex::TypeIndex& type_idx) { if (is_megamorphic || is_missing_types) { return; } // Perform an explicit lookup for the type instead of directly emplacing the // element. We do this because emplace() allocates the node before doing the // lookup and if it then finds an identical element, it shall deallocate the // node. For Arena allocations, that's essentially a leak. ClassReference ref(dex_profile_idx, type_idx); auto it = classes.find(ref); if (it != classes.end()) { // The type index exists. return; } // Check if the adding the type will cause the cache to become megamorphic. if (classes.size() + 1 >= InlineCache::kIndividualCacheSize) { is_megamorphic = true; classes.clear(); return; } // The type does not exist and the inline cache will not be megamorphic. classes.insert(ref); } // Transform the actual dex location into relative paths. // Note: this is OK because we don't store profiles of different apps into the same file. // Apps with split apks don't cause trouble because each split has a different name and will not // collide with other entries. std::string ProfileCompilationInfo::GetProfileDexFileKey(const std::string& dex_location) { DCHECK(!dex_location.empty()); size_t last_sep_index = dex_location.find_last_of('/'); if (last_sep_index == std::string::npos) { return dex_location; } else { DCHECK(last_sep_index < dex_location.size()); return dex_location.substr(last_sep_index + 1); } } bool ProfileCompilationInfo::AddMethodsAndClasses( const std::vector<ProfileMethodInfo>& methods, const std::set<DexCacheResolvedClasses>& resolved_classes) { for (const ProfileMethodInfo& method : methods) { if (!AddMethod(method)) { return false; } } for (const DexCacheResolvedClasses& dex_cache : resolved_classes) { if (!AddResolvedClasses(dex_cache)) { return false; } } return true; } bool ProfileCompilationInfo::Load(const std::string& filename, bool clear_if_invalid) { ScopedTrace trace(__PRETTY_FUNCTION__); ScopedFlock flock; std::string error; int flags = O_RDWR | O_NOFOLLOW | O_CLOEXEC; // There's no need to fsync profile data right away. We get many chances // to write it again in case something goes wrong. We can rely on a simple // close(), no sync, and let to the kernel decide when to write to disk. if (!flock.Init(filename.c_str(), flags, /*block*/false, /*flush_on_close*/false, &error)) { LOG(WARNING) << "Couldn't lock the profile file " << filename << ": " << error; return false; } int fd = flock.GetFile()->Fd(); ProfileLoadSatus status = LoadInternal(fd, &error); if (status == kProfileLoadSuccess) { return true; } if (clear_if_invalid && ((status == kProfileLoadVersionMismatch) || (status == kProfileLoadBadData))) { LOG(WARNING) << "Clearing bad or obsolete profile data from file " << filename << ": " << error; if (flock.GetFile()->ClearContent()) { return true; } else { PLOG(WARNING) << "Could not clear profile file: " << filename; return false; } } LOG(WARNING) << "Could not load profile data from file " << filename << ": " << error; return false; } bool ProfileCompilationInfo::Save(const std::string& filename, uint64_t* bytes_written) { ScopedTrace trace(__PRETTY_FUNCTION__); ScopedFlock flock; std::string error; int flags = O_WRONLY | O_NOFOLLOW | O_CLOEXEC; // There's no need to fsync profile data right away. We get many chances // to write it again in case something goes wrong. We can rely on a simple // close(), no sync, and let to the kernel decide when to write to disk. if (!flock.Init(filename.c_str(), flags, /*block*/false, /*flush_on_close*/false, &error)) { LOG(WARNING) << "Couldn't lock the profile file " << filename << ": " << error; return false; } int fd = flock.GetFile()->Fd(); // We need to clear the data because we don't support appending to the profiles yet. if (!flock.GetFile()->ClearContent()) { PLOG(WARNING) << "Could not clear profile file: " << filename; return false; } // This doesn't need locking because we are trying to lock the file for exclusive // access and fail immediately if we can't. bool result = Save(fd); if (result) { int64_t size = GetFileSizeBytes(filename); if (size != -1) { VLOG(profiler) << "Successfully saved profile info to " << filename << " Size: " << size; if (bytes_written != nullptr) { *bytes_written = static_cast<uint64_t>(size); } } } else { VLOG(profiler) << "Failed to save profile info to " << filename; } return result; } // Returns true if all the bytes were successfully written to the file descriptor. static bool WriteBuffer(int fd, const uint8_t* buffer, size_t byte_count) { while (byte_count > 0) { int bytes_written = TEMP_FAILURE_RETRY(write(fd, buffer, byte_count)); if (bytes_written == -1) { return false; } byte_count -= bytes_written; // Reduce the number of remaining bytes. buffer += bytes_written; // Move the buffer forward. } return true; } // Add the string bytes to the buffer. static void AddStringToBuffer(std::vector<uint8_t>* buffer, const std::string& value) { buffer->insert(buffer->end(), value.begin(), value.end()); } // Insert each byte, from low to high into the buffer. template <typename T> static void AddUintToBuffer(std::vector<uint8_t>* buffer, T value) { for (size_t i = 0; i < sizeof(T); i++) { buffer->push_back((value >> (i * kBitsPerByte)) & 0xff); } } static constexpr size_t kLineHeaderSize = 2 * sizeof(uint16_t) + // class_set.size + dex_location.size 2 * sizeof(uint32_t); // method_map.size + checksum /** * Serialization format: * magic,version,number_of_dex_files * dex_location1,number_of_classes1,methods_region_size,dex_location_checksum1, \ * method_encoding_11,method_encoding_12...,class_id1,class_id2... * dex_location2,number_of_classes2,methods_region_size,dex_location_checksum2, \ * method_encoding_21,method_encoding_22...,,class_id1,class_id2... * ..... * The method_encoding is: * method_id,number_of_inline_caches,inline_cache1,inline_cache2... * The inline_cache is: * dex_pc,[M|dex_map_size], dex_profile_index,class_id1,class_id2...,dex_profile_index2,... * dex_map_size is the number of dex_indeces that follows. * Classes are grouped per their dex files and the line * `dex_profile_index,class_id1,class_id2...,dex_profile_index2,...` encodes the * mapping from `dex_profile_index` to the set of classes `class_id1,class_id2...` * M stands for megamorphic or missing types and it's encoded as either * the byte kIsMegamorphicEncoding or kIsMissingTypesEncoding. * When present, there will be no class ids following. **/ bool ProfileCompilationInfo::Save(int fd) { ScopedTrace trace(__PRETTY_FUNCTION__); DCHECK_GE(fd, 0); // Cache at most 50KB before writing. static constexpr size_t kMaxSizeToKeepBeforeWriting = 50 * KB; // Use a vector wrapper to avoid keeping track of offsets when we add elements. std::vector<uint8_t> buffer; WriteBuffer(fd, kProfileMagic, sizeof(kProfileMagic)); WriteBuffer(fd, kProfileVersion, sizeof(kProfileVersion)); DCHECK_LE(info_.size(), std::numeric_limits<uint8_t>::max()); AddUintToBuffer(&buffer, static_cast<uint8_t>(info_.size())); // Dex files must be written in the order of their profile index. This // avoids writing the index in the output file and simplifies the parsing logic. for (const DexFileData* dex_data_ptr : info_) { const DexFileData& dex_data = *dex_data_ptr; if (buffer.size() > kMaxSizeToKeepBeforeWriting) { if (!WriteBuffer(fd, buffer.data(), buffer.size())) { return false; } buffer.clear(); } // Note that we allow dex files without any methods or classes, so that // inline caches can refer valid dex files. if (dex_data.profile_key.size() >= kMaxDexFileKeyLength) { LOG(WARNING) << "DexFileKey exceeds allocated limit"; return false; } // Make sure that the buffer has enough capacity to avoid repeated resizings // while we add data. uint32_t methods_region_size = GetMethodsRegionSize(dex_data); size_t required_capacity = buffer.size() + kLineHeaderSize + dex_data.profile_key.size() + sizeof(uint16_t) * dex_data.class_set.size() + methods_region_size; buffer.reserve(required_capacity); DCHECK_LE(dex_data.profile_key.size(), std::numeric_limits<uint16_t>::max()); DCHECK_LE(dex_data.class_set.size(), std::numeric_limits<uint16_t>::max()); AddUintToBuffer(&buffer, static_cast<uint16_t>(dex_data.profile_key.size())); AddUintToBuffer(&buffer, static_cast<uint16_t>(dex_data.class_set.size())); AddUintToBuffer(&buffer, methods_region_size); // uint32_t AddUintToBuffer(&buffer, dex_data.checksum); // uint32_t AddStringToBuffer(&buffer, dex_data.profile_key); for (const auto& method_it : dex_data.method_map) { AddUintToBuffer(&buffer, method_it.first); AddInlineCacheToBuffer(&buffer, method_it.second); } for (const auto& class_id : dex_data.class_set) { AddUintToBuffer(&buffer, class_id.index_); } DCHECK_LE(required_capacity, buffer.size()) << "Failed to add the expected number of bytes in the buffer"; } return WriteBuffer(fd, buffer.data(), buffer.size()); } void ProfileCompilationInfo::AddInlineCacheToBuffer(std::vector<uint8_t>* buffer, const InlineCacheMap& inline_cache_map) { // Add inline cache map size. AddUintToBuffer(buffer, static_cast<uint16_t>(inline_cache_map.size())); if (inline_cache_map.size() == 0) { return; } for (const auto& inline_cache_it : inline_cache_map) { uint16_t dex_pc = inline_cache_it.first; const DexPcData dex_pc_data = inline_cache_it.second; const ClassSet& classes = dex_pc_data.classes; // Add the dex pc. AddUintToBuffer(buffer, dex_pc); // Add the megamorphic/missing_types encoding if needed and continue. // In either cases we don't add any classes to the profiles and so there's // no point to continue. // TODO(calin): in case we miss types there is still value to add the // rest of the classes. They can be added without bumping the profile version. if (dex_pc_data.is_missing_types) { DCHECK(!dex_pc_data.is_megamorphic); // at this point the megamorphic flag should not be set. DCHECK_EQ(classes.size(), 0u); AddUintToBuffer(buffer, kIsMissingTypesEncoding); continue; } else if (dex_pc_data.is_megamorphic) { DCHECK_EQ(classes.size(), 0u); AddUintToBuffer(buffer, kIsMegamorphicEncoding); continue; } DCHECK_LT(classes.size(), InlineCache::kIndividualCacheSize); DCHECK_NE(classes.size(), 0u) << "InlineCache contains a dex_pc with 0 classes"; SafeMap<uint8_t, std::vector<dex::TypeIndex>> dex_to_classes_map; // Group the classes by dex. We expect that most of the classes will come from // the same dex, so this will be more efficient than encoding the dex index // for each class reference. GroupClassesByDex(classes, &dex_to_classes_map); // Add the dex map size. AddUintToBuffer(buffer, static_cast<uint8_t>(dex_to_classes_map.size())); for (const auto& dex_it : dex_to_classes_map) { uint8_t dex_profile_index = dex_it.first; const std::vector<dex::TypeIndex>& dex_classes = dex_it.second; // Add the dex profile index. AddUintToBuffer(buffer, dex_profile_index); // Add the the number of classes for each dex profile index. AddUintToBuffer(buffer, static_cast<uint8_t>(dex_classes.size())); for (size_t i = 0; i < dex_classes.size(); i++) { // Add the type index of the classes. AddUintToBuffer(buffer, dex_classes[i].index_); } } } } uint32_t ProfileCompilationInfo::GetMethodsRegionSize(const DexFileData& dex_data) { // ((uint16_t)method index + (uint16_t)inline cache size) * number of methods uint32_t size = 2 * sizeof(uint16_t) * dex_data.method_map.size(); for (const auto& method_it : dex_data.method_map) { const InlineCacheMap& inline_cache = method_it.second; size += sizeof(uint16_t) * inline_cache.size(); // dex_pc for (const auto& inline_cache_it : inline_cache) { const ClassSet& classes = inline_cache_it.second.classes; SafeMap<uint8_t, std::vector<dex::TypeIndex>> dex_to_classes_map; GroupClassesByDex(classes, &dex_to_classes_map); size += sizeof(uint8_t); // dex_to_classes_map size for (const auto& dex_it : dex_to_classes_map) { size += sizeof(uint8_t); // dex profile index size += sizeof(uint8_t); // number of classes const std::vector<dex::TypeIndex>& dex_classes = dex_it.second; size += sizeof(uint16_t) * dex_classes.size(); // the actual classes } } } return size; } void ProfileCompilationInfo::GroupClassesByDex( const ClassSet& classes, /*out*/SafeMap<uint8_t, std::vector<dex::TypeIndex>>* dex_to_classes_map) { for (const auto& classes_it : classes) { auto dex_it = dex_to_classes_map->FindOrAdd(classes_it.dex_profile_index); dex_it->second.push_back(classes_it.type_index); } } ProfileCompilationInfo::DexFileData* ProfileCompilationInfo::GetOrAddDexFileData( const std::string& profile_key, uint32_t checksum) { const auto& profile_index_it = profile_key_map_.FindOrAdd(profile_key, profile_key_map_.size()); if (profile_key_map_.size() > std::numeric_limits<uint8_t>::max()) { // Allow only 255 dex files to be profiled. This allows us to save bytes // when encoding. The number is well above what we expect for normal applications. if (kIsDebugBuild) { LOG(ERROR) << "Exceeded the maximum number of dex files (255). Something went wrong"; } profile_key_map_.erase(profile_key); return nullptr; } uint8_t profile_index = profile_index_it->second; if (info_.size() <= profile_index) { // This is a new addition. Add it to the info_ array. DexFileData* dex_file_data = new (&arena_) DexFileData( &arena_, profile_key, checksum, profile_index); info_.push_back(dex_file_data); } DexFileData* result = info_[profile_index]; // DCHECK that profile info map key is consistent with the one stored in the dex file data. // This should always be the case since since the cache map is managed by ProfileCompilationInfo. DCHECK_EQ(profile_key, result->profile_key); DCHECK_EQ(profile_index, result->profile_index); // Check that the checksum matches. // This may different if for example the dex file was updated and // we had a record of the old one. if (result->checksum != checksum) { LOG(WARNING) << "Checksum mismatch for dex " << profile_key; return nullptr; } return result; } const ProfileCompilationInfo::DexFileData* ProfileCompilationInfo::FindDexData( const std::string& profile_key) const { const auto& profile_index_it = profile_key_map_.find(profile_key); if (profile_index_it == profile_key_map_.end()) { return nullptr; } uint8_t profile_index = profile_index_it->second; const DexFileData* result = info_[profile_index]; DCHECK_EQ(profile_key, result->profile_key); DCHECK_EQ(profile_index, result->profile_index); return result; } bool ProfileCompilationInfo::AddResolvedClasses(const DexCacheResolvedClasses& classes) { const std::string dex_location = GetProfileDexFileKey(classes.GetDexLocation()); const uint32_t checksum = classes.GetLocationChecksum(); DexFileData* const data = GetOrAddDexFileData(dex_location, checksum); if (data == nullptr) { return false; } data->class_set.insert(classes.GetClasses().begin(), classes.GetClasses().end()); return true; } bool ProfileCompilationInfo::AddMethodIndex(const std::string& dex_location, uint32_t dex_checksum, uint16_t method_index) { return AddMethod(dex_location, dex_checksum, method_index, OfflineProfileMethodInfo(nullptr)); } bool ProfileCompilationInfo::AddMethod(const std::string& dex_location, uint32_t dex_checksum, uint16_t method_index, const OfflineProfileMethodInfo& pmi) { DexFileData* const data = GetOrAddDexFileData(GetProfileDexFileKey(dex_location), dex_checksum); if (data == nullptr) { // checksum mismatch return false; } // Add the method. InlineCacheMap* inline_cache = data->FindOrAddMethod(method_index); if (pmi.inline_caches == nullptr) { // If we don't have inline caches return success right away. return true; } for (const auto& pmi_inline_cache_it : *pmi.inline_caches) { uint16_t pmi_ic_dex_pc = pmi_inline_cache_it.first; const DexPcData& pmi_ic_dex_pc_data = pmi_inline_cache_it.second; DexPcData* dex_pc_data = FindOrAddDexPc(inline_cache, pmi_ic_dex_pc); if (dex_pc_data->is_missing_types || dex_pc_data->is_megamorphic) { // We are already megamorphic or we are missing types; no point in going forward. continue; } if (pmi_ic_dex_pc_data.is_missing_types) { dex_pc_data->SetIsMissingTypes(); continue; } if (pmi_ic_dex_pc_data.is_megamorphic) { dex_pc_data->SetIsMegamorphic(); continue; } for (const ClassReference& class_ref : pmi_ic_dex_pc_data.classes) { const DexReference& dex_ref = pmi.dex_references[class_ref.dex_profile_index]; DexFileData* class_dex_data = GetOrAddDexFileData( GetProfileDexFileKey(dex_ref.dex_location), dex_ref.dex_checksum); if (class_dex_data == nullptr) { // checksum mismatch return false; } dex_pc_data->AddClass(class_dex_data->profile_index, class_ref.type_index); } } return true; } bool ProfileCompilationInfo::AddMethod(const ProfileMethodInfo& pmi) { DexFileData* const data = GetOrAddDexFileData( GetProfileDexFileKey(pmi.dex_file->GetLocation()), pmi.dex_file->GetLocationChecksum()); if (data == nullptr) { // checksum mismatch return false; } InlineCacheMap* inline_cache = data->FindOrAddMethod(pmi.dex_method_index); for (const ProfileMethodInfo::ProfileInlineCache& cache : pmi.inline_caches) { if (cache.is_missing_types) { FindOrAddDexPc(inline_cache, cache.dex_pc)->SetIsMissingTypes(); continue; } for (const ProfileMethodInfo::ProfileClassReference& class_ref : cache.classes) { DexFileData* class_dex_data = GetOrAddDexFileData( GetProfileDexFileKey(class_ref.dex_file->GetLocation()), class_ref.dex_file->GetLocationChecksum()); if (class_dex_data == nullptr) { // checksum mismatch return false; } DexPcData* dex_pc_data = FindOrAddDexPc(inline_cache, cache.dex_pc); if (dex_pc_data->is_missing_types) { // Don't bother adding classes if we are missing types. break; } dex_pc_data->AddClass(class_dex_data->profile_index, class_ref.type_index); } } return true; } bool ProfileCompilationInfo::AddClassIndex(const std::string& dex_location, uint32_t checksum, dex::TypeIndex type_idx) { DexFileData* const data = GetOrAddDexFileData(dex_location, checksum); if (data == nullptr) { return false; } data->class_set.insert(type_idx); return true; } #define READ_UINT(type, buffer, dest, error) \ do { \ if (!(buffer).ReadUintAndAdvance<type>(&(dest))) { \ *(error) = "Could not read "#dest; \ return false; \ } \ } \ while (false) bool ProfileCompilationInfo::ReadInlineCache(SafeBuffer& buffer, uint8_t number_of_dex_files, /*out*/ InlineCacheMap* inline_cache, /*out*/ std::string* error) { uint16_t inline_cache_size; READ_UINT(uint16_t, buffer, inline_cache_size, error); for (; inline_cache_size > 0; inline_cache_size--) { uint16_t dex_pc; uint8_t dex_to_classes_map_size; READ_UINT(uint16_t, buffer, dex_pc, error); READ_UINT(uint8_t, buffer, dex_to_classes_map_size, error); DexPcData* dex_pc_data = FindOrAddDexPc(inline_cache, dex_pc); if (dex_to_classes_map_size == kIsMissingTypesEncoding) { dex_pc_data->SetIsMissingTypes(); continue; } if (dex_to_classes_map_size == kIsMegamorphicEncoding) { dex_pc_data->SetIsMegamorphic(); continue; } for (; dex_to_classes_map_size > 0; dex_to_classes_map_size--) { uint8_t dex_profile_index; uint8_t dex_classes_size; READ_UINT(uint8_t, buffer, dex_profile_index, error); READ_UINT(uint8_t, buffer, dex_classes_size, error); if (dex_profile_index >= number_of_dex_files) { *error = "dex_profile_index out of bounds "; *error += std::to_string(dex_profile_index) + " " + std::to_string(number_of_dex_files); return false; } for (; dex_classes_size > 0; dex_classes_size--) { uint16_t type_index; READ_UINT(uint16_t, buffer, type_index, error); dex_pc_data->AddClass(dex_profile_index, dex::TypeIndex(type_index)); } } } return true; } bool ProfileCompilationInfo::ReadMethods(SafeBuffer& buffer, uint8_t number_of_dex_files, const ProfileLineHeader& line_header, /*out*/std::string* error) { while (buffer.HasMoreData()) { DexFileData* const data = GetOrAddDexFileData(line_header.dex_location, line_header.checksum); uint16_t method_index; READ_UINT(uint16_t, buffer, method_index, error); InlineCacheMap* inline_cache = data->FindOrAddMethod(method_index); if (!ReadInlineCache(buffer, number_of_dex_files, inline_cache, error)) { return false; } } return true; } bool ProfileCompilationInfo::ReadClasses(SafeBuffer& buffer, uint16_t classes_to_read, const ProfileLineHeader& line_header, /*out*/std::string* error) { for (uint16_t i = 0; i < classes_to_read; i++) { uint16_t type_index; READ_UINT(uint16_t, buffer, type_index, error); if (!AddClassIndex(line_header.dex_location, line_header.checksum, dex::TypeIndex(type_index))) { return false; } } return true; } // Tests for EOF by trying to read 1 byte from the descriptor. // Returns: // 0 if the descriptor is at the EOF, // -1 if there was an IO error // 1 if the descriptor has more content to read static int testEOF(int fd) { uint8_t buffer[1]; return TEMP_FAILURE_RETRY(read(fd, buffer, 1)); } // Reads an uint value previously written with AddUintToBuffer. template <typename T> bool ProfileCompilationInfo::SafeBuffer::ReadUintAndAdvance(/*out*/T* value) { static_assert(std::is_unsigned<T>::value, "Type is not unsigned"); if (ptr_current_ + sizeof(T) > ptr_end_) { return false; } *value = 0; for (size_t i = 0; i < sizeof(T); i++) { *value += ptr_current_[i] << (i * kBitsPerByte); } ptr_current_ += sizeof(T); return true; } bool ProfileCompilationInfo::SafeBuffer::CompareAndAdvance(const uint8_t* data, size_t data_size) { if (ptr_current_ + data_size > ptr_end_) { return false; } if (memcmp(ptr_current_, data, data_size) == 0) { ptr_current_ += data_size; return true; } return false; } bool ProfileCompilationInfo::SafeBuffer::HasMoreData() { return ptr_current_ < ptr_end_; } ProfileCompilationInfo::ProfileLoadSatus ProfileCompilationInfo::SafeBuffer::FillFromFd( int fd, const std::string& source, /*out*/std::string* error) { size_t byte_count = ptr_end_ - ptr_current_; uint8_t* buffer = ptr_current_; while (byte_count > 0) { int bytes_read = TEMP_FAILURE_RETRY(read(fd, buffer, byte_count)); if (bytes_read == 0) { *error += "Profile EOF reached prematurely for " + source; return kProfileLoadBadData; } else if (bytes_read < 0) { *error += "Profile IO error for " + source + strerror(errno); return kProfileLoadIOError; } byte_count -= bytes_read; buffer += bytes_read; } return kProfileLoadSuccess; } ProfileCompilationInfo::ProfileLoadSatus ProfileCompilationInfo::ReadProfileHeader( int fd, /*out*/uint8_t* number_of_dex_files, /*out*/std::string* error) { // Read magic and version const size_t kMagicVersionSize = sizeof(kProfileMagic) + sizeof(kProfileVersion) + sizeof(uint8_t); // number of dex files SafeBuffer safe_buffer(kMagicVersionSize); ProfileLoadSatus status = safe_buffer.FillFromFd(fd, "ReadProfileHeader", error); if (status != kProfileLoadSuccess) { return status; } if (!safe_buffer.CompareAndAdvance(kProfileMagic, sizeof(kProfileMagic))) { *error = "Profile missing magic"; return kProfileLoadVersionMismatch; } if (!safe_buffer.CompareAndAdvance(kProfileVersion, sizeof(kProfileVersion))) { *error = "Profile version mismatch"; return kProfileLoadVersionMismatch; } if (!safe_buffer.ReadUintAndAdvance<uint8_t>(number_of_dex_files)) { *error = "Cannot read the number of dex files"; return kProfileLoadBadData; } return kProfileLoadSuccess; } bool ProfileCompilationInfo::ReadProfileLineHeaderElements(SafeBuffer& buffer, /*out*/uint16_t* dex_location_size, /*out*/ProfileLineHeader* line_header, /*out*/std::string* error) { READ_UINT(uint16_t, buffer, *dex_location_size, error); READ_UINT(uint16_t, buffer, line_header->class_set_size, error); READ_UINT(uint32_t, buffer, line_header->method_region_size_bytes, error); READ_UINT(uint32_t, buffer, line_header->checksum, error); return true; } ProfileCompilationInfo::ProfileLoadSatus ProfileCompilationInfo::ReadProfileLineHeader( int fd, /*out*/ProfileLineHeader* line_header, /*out*/std::string* error) { SafeBuffer header_buffer(kLineHeaderSize); ProfileLoadSatus status = header_buffer.FillFromFd(fd, "ReadProfileLineHeader", error); if (status != kProfileLoadSuccess) { return status; } uint16_t dex_location_size; if (!ReadProfileLineHeaderElements(header_buffer, &dex_location_size, line_header, error)) { return kProfileLoadBadData; } if (dex_location_size == 0 || dex_location_size > kMaxDexFileKeyLength) { *error = "DexFileKey has an invalid size: " + std::to_string(static_cast<uint32_t>(dex_location_size)); return kProfileLoadBadData; } SafeBuffer location_buffer(dex_location_size); status = location_buffer.FillFromFd(fd, "ReadProfileHeaderDexLocation", error); if (status != kProfileLoadSuccess) { return status; } line_header->dex_location.assign( reinterpret_cast<char*>(location_buffer.Get()), dex_location_size); return kProfileLoadSuccess; } ProfileCompilationInfo::ProfileLoadSatus ProfileCompilationInfo::ReadProfileLine( int fd, uint8_t number_of_dex_files, const ProfileLineHeader& line_header, /*out*/std::string* error) { if (GetOrAddDexFileData(line_header.dex_location, line_header.checksum) == nullptr) { *error = "Error when reading profile file line header: checksum mismatch for " + line_header.dex_location; return kProfileLoadBadData; } { SafeBuffer buffer(line_header.method_region_size_bytes); ProfileLoadSatus status = buffer.FillFromFd(fd, "ReadProfileLineMethods", error); if (status != kProfileLoadSuccess) { return status; } if (!ReadMethods(buffer, number_of_dex_files, line_header, error)) { return kProfileLoadBadData; } } { SafeBuffer buffer(sizeof(uint16_t) * line_header.class_set_size); ProfileLoadSatus status = buffer.FillFromFd(fd, "ReadProfileLineClasses", error); if (status != kProfileLoadSuccess) { return status; } if (!ReadClasses(buffer, line_header.class_set_size, line_header, error)) { return kProfileLoadBadData; } } return kProfileLoadSuccess; } // TODO(calin): Fix this API. ProfileCompilationInfo::Load should be static and // return a unique pointer to a ProfileCompilationInfo upon success. bool ProfileCompilationInfo::Load(int fd) { std::string error; ProfileLoadSatus status = LoadInternal(fd, &error); if (status == kProfileLoadSuccess) { return true; } else { LOG(WARNING) << "Error when reading profile: " << error; return false; } } // TODO(calin): fail fast if the dex checksums don't match. ProfileCompilationInfo::ProfileLoadSatus ProfileCompilationInfo::LoadInternal( int fd, std::string* error) { ScopedTrace trace(__PRETTY_FUNCTION__); DCHECK_GE(fd, 0); if (!IsEmpty()) { return kProfileLoadWouldOverwiteData; } struct stat stat_buffer; if (fstat(fd, &stat_buffer) != 0) { return kProfileLoadIOError; } // We allow empty profile files. // Profiles may be created by ActivityManager or installd before we manage to // process them in the runtime or profman. if (stat_buffer.st_size == 0) { return kProfileLoadSuccess; } // Read profile header: magic + version + number_of_dex_files. uint8_t number_of_dex_files; ProfileLoadSatus status = ReadProfileHeader(fd, &number_of_dex_files, error); if (status != kProfileLoadSuccess) { return status; } for (uint8_t k = 0; k < number_of_dex_files; k++) { ProfileLineHeader line_header; // First, read the line header to get the amount of data we need to read. status = ReadProfileLineHeader(fd, &line_header, error); if (status != kProfileLoadSuccess) { return status; } // Now read the actual profile line. status = ReadProfileLine(fd, number_of_dex_files, line_header, error); if (status != kProfileLoadSuccess) { return status; } } // Check that we read everything and that profiles don't contain junk data. int result = testEOF(fd); if (result == 0) { return kProfileLoadSuccess; } else if (result < 0) { return kProfileLoadIOError; } else { *error = "Unexpected content in the profile file"; return kProfileLoadBadData; } } bool ProfileCompilationInfo::MergeWith(const ProfileCompilationInfo& other) { // First verify that all checksums match. This will avoid adding garbage to // the current profile info. // Note that the number of elements should be very small, so this should not // be a performance issue. for (const DexFileData* other_dex_data : other.info_) { const DexFileData* dex_data = FindDexData(other_dex_data->profile_key); if ((dex_data != nullptr) && (dex_data->checksum != other_dex_data->checksum)) { LOG(WARNING) << "Checksum mismatch for dex " << other_dex_data->profile_key; return false; } } // All checksums match. Import the data. // The other profile might have a different indexing of dex files. // That is because each dex files gets a 'dex_profile_index' on a first come first served basis. // That means that the order in with the methods are added to the profile matters for the // actual indices. // The reason we cannot rely on the actual multidex index is that a single profile may store // data from multiple splits. This means that a profile may contain a classes2.dex from split-A // and one from split-B. // First, build a mapping from other_dex_profile_index to this_dex_profile_index. // This will make sure that the ClassReferences will point to the correct dex file. SafeMap<uint8_t, uint8_t> dex_profile_index_remap; for (const DexFileData* other_dex_data : other.info_) { const DexFileData* dex_data = GetOrAddDexFileData(other_dex_data->profile_key, other_dex_data->checksum); if (dex_data == nullptr) { return false; // Could happen if we exceed the number of allowed dex files. } dex_profile_index_remap.Put(other_dex_data->profile_index, dex_data->profile_index); } // Merge the actual profile data. for (const DexFileData* other_dex_data : other.info_) { DexFileData* dex_data = const_cast<DexFileData*>(FindDexData(other_dex_data->profile_key)); DCHECK(dex_data != nullptr); // Merge the classes. dex_data->class_set.insert(other_dex_data->class_set.begin(), other_dex_data->class_set.end()); // Merge the methods and the inline caches. for (const auto& other_method_it : other_dex_data->method_map) { uint16_t other_method_index = other_method_it.first; InlineCacheMap* inline_cache = dex_data->FindOrAddMethod(other_method_index); const auto& other_inline_cache = other_method_it.second; for (const auto& other_ic_it : other_inline_cache) { uint16_t other_dex_pc = other_ic_it.first; const ClassSet& other_class_set = other_ic_it.second.classes; DexPcData* dex_pc_data = FindOrAddDexPc(inline_cache, other_dex_pc); if (other_ic_it.second.is_missing_types) { dex_pc_data->SetIsMissingTypes(); } else if (other_ic_it.second.is_megamorphic) { dex_pc_data->SetIsMegamorphic(); } else { for (const auto& class_it : other_class_set) { dex_pc_data->AddClass(dex_profile_index_remap.Get( class_it.dex_profile_index), class_it.type_index); } } } } } return true; } static bool ChecksumMatch(uint32_t dex_file_checksum, uint32_t checksum) { return kDebugIgnoreChecksum || dex_file_checksum == checksum; } static bool ChecksumMatch(const DexFile& dex_file, uint32_t checksum) { return ChecksumMatch(dex_file.GetLocationChecksum(), checksum); } bool ProfileCompilationInfo::ContainsMethod(const MethodReference& method_ref) const { return FindMethod(method_ref.dex_file->GetLocation(), method_ref.dex_file->GetLocationChecksum(), method_ref.dex_method_index) != nullptr; } const ProfileCompilationInfo::InlineCacheMap* ProfileCompilationInfo::FindMethod(const std::string& dex_location, uint32_t dex_checksum, uint16_t dex_method_index) const { const DexFileData* dex_data = FindDexData(GetProfileDexFileKey(dex_location)); if (dex_data != nullptr) { if (!ChecksumMatch(dex_checksum, dex_data->checksum)) { return nullptr; } const MethodMap& methods = dex_data->method_map; const auto method_it = methods.find(dex_method_index); return method_it == methods.end() ? nullptr : &(method_it->second); } return nullptr; } std::unique_ptr<ProfileCompilationInfo::OfflineProfileMethodInfo> ProfileCompilationInfo::GetMethod( const std::string& dex_location, uint32_t dex_checksum, uint16_t dex_method_index) const { const InlineCacheMap* inline_caches = FindMethod(dex_location, dex_checksum, dex_method_index); if (inline_caches == nullptr) { return nullptr; } std::unique_ptr<OfflineProfileMethodInfo> pmi(new OfflineProfileMethodInfo(inline_caches)); pmi->dex_references.resize(info_.size()); for (const DexFileData* dex_data : info_) { pmi->dex_references[dex_data->profile_index].dex_location = dex_data->profile_key; pmi->dex_references[dex_data->profile_index].dex_checksum = dex_data->checksum; } return pmi; } bool ProfileCompilationInfo::ContainsClass(const DexFile& dex_file, dex::TypeIndex type_idx) const { const DexFileData* dex_data = FindDexData(GetProfileDexFileKey(dex_file.GetLocation())); if (dex_data != nullptr) { if (!ChecksumMatch(dex_file, dex_data->checksum)) { return false; } const ArenaSet<dex::TypeIndex>& classes = dex_data->class_set; return classes.find(type_idx) != classes.end(); } return false; } uint32_t ProfileCompilationInfo::GetNumberOfMethods() const { uint32_t total = 0; for (const DexFileData* dex_data : info_) { total += dex_data->method_map.size(); } return total; } uint32_t ProfileCompilationInfo::GetNumberOfResolvedClasses() const { uint32_t total = 0; for (const DexFileData* dex_data : info_) { total += dex_data->class_set.size(); } return total; } // Produce a non-owning vector from a vector. template<typename T> const std::vector<T*>* MakeNonOwningVector(const std::vector<std::unique_ptr<T>>* owning_vector) { auto non_owning_vector = new std::vector<T*>(); for (auto& element : *owning_vector) { non_owning_vector->push_back(element.get()); } return non_owning_vector; } std::string ProfileCompilationInfo::DumpInfo( const std::vector<std::unique_ptr<const DexFile>>* dex_files, bool print_full_dex_location) const { std::unique_ptr<const std::vector<const DexFile*>> non_owning_dex_files( MakeNonOwningVector(dex_files)); return DumpInfo(non_owning_dex_files.get(), print_full_dex_location); } std::string ProfileCompilationInfo::DumpInfo(const std::vector<const DexFile*>* dex_files, bool print_full_dex_location) const { std::ostringstream os; if (info_.empty()) { return "ProfileInfo: empty"; } os << "ProfileInfo:"; const std::string kFirstDexFileKeySubstitute = ":classes.dex"; for (const DexFileData* dex_data : info_) { os << "\n"; if (print_full_dex_location) { os << dex_data->profile_key; } else { // Replace the (empty) multidex suffix of the first key with a substitute for easier reading. std::string multidex_suffix = DexFile::GetMultiDexSuffix(dex_data->profile_key); os << (multidex_suffix.empty() ? kFirstDexFileKeySubstitute : multidex_suffix); } os << " [index=" << static_cast<uint32_t>(dex_data->profile_index) << "]"; const DexFile* dex_file = nullptr; if (dex_files != nullptr) { for (size_t i = 0; i < dex_files->size(); i++) { if (dex_data->profile_key == (*dex_files)[i]->GetLocation()) { dex_file = (*dex_files)[i]; } } } os << "\n\tmethods: "; for (const auto& method_it : dex_data->method_map) { if (dex_file != nullptr) { os << "\n\t\t" << dex_file->PrettyMethod(method_it.first, true); } else { os << method_it.first; } os << "["; for (const auto& inline_cache_it : method_it.second) { os << "{" << std::hex << inline_cache_it.first << std::dec << ":"; if (inline_cache_it.second.is_missing_types) { os << "MT"; } else if (inline_cache_it.second.is_megamorphic) { os << "MM"; } else { for (const ClassReference& class_ref : inline_cache_it.second.classes) { os << "(" << static_cast<uint32_t>(class_ref.dex_profile_index) << "," << class_ref.type_index.index_ << ")"; } } os << "}"; } os << "], "; } os << "\n\tclasses: "; for (const auto class_it : dex_data->class_set) { if (dex_file != nullptr) { os << "\n\t\t" << dex_file->PrettyType(class_it); } else { os << class_it.index_ << ","; } } } return os.str(); } bool ProfileCompilationInfo::GetClassesAndMethods(const DexFile& dex_file, std::set<dex::TypeIndex>* class_set, std::set<uint16_t>* method_set) const { std::set<std::string> ret; std::string profile_key = GetProfileDexFileKey(dex_file.GetLocation()); const DexFileData* dex_data = FindDexData(profile_key); if (dex_data == nullptr || dex_data->checksum != dex_file.GetLocationChecksum()) { return false; } for (const auto& it : dex_data->method_map) { method_set->insert(it.first); } for (const dex::TypeIndex& type_index : dex_data->class_set) { class_set->insert(type_index); } return true; } bool ProfileCompilationInfo::Equals(const ProfileCompilationInfo& other) { // No need to compare profile_key_map_. That's only a cache for fast search. // All the information is already in the info_ vector. if (info_.size() != other.info_.size()) { return false; } for (size_t i = 0; i < info_.size(); i++) { const DexFileData& dex_data = *info_[i]; const DexFileData& other_dex_data = *other.info_[i]; if (!(dex_data == other_dex_data)) { return false; } } return true; } std::set<DexCacheResolvedClasses> ProfileCompilationInfo::GetResolvedClasses( const std::vector<const DexFile*>& dex_files) const { std::unordered_map<std::string, const DexFile* > key_to_dex_file; for (const DexFile* dex_file : dex_files) { key_to_dex_file.emplace(GetProfileDexFileKey(dex_file->GetLocation()), dex_file); } std::set<DexCacheResolvedClasses> ret; for (const DexFileData* dex_data : info_) { const auto it = key_to_dex_file.find(dex_data->profile_key); if (it != key_to_dex_file.end()) { const DexFile* dex_file = it->second; const std::string& dex_location = dex_file->GetLocation(); if (dex_data->checksum != it->second->GetLocationChecksum()) { LOG(ERROR) << "Dex checksum mismatch when getting resolved classes from profile for " << "location " << dex_location << " (checksum=" << dex_file->GetLocationChecksum() << ", profile checksum=" << dex_data->checksum; return std::set<DexCacheResolvedClasses>(); } DexCacheResolvedClasses classes(dex_location, dex_location, dex_data->checksum); classes.AddClasses(dex_data->class_set.begin(), dex_data->class_set.end()); ret.insert(classes); } } return ret; } // Naive implementation to generate a random profile file suitable for testing. bool ProfileCompilationInfo::GenerateTestProfile(int fd, uint16_t number_of_dex_files, uint16_t method_ratio, uint16_t class_ratio, uint32_t random_seed) { const std::string base_dex_location = "base.apk"; ProfileCompilationInfo info; // The limits are defined by the dex specification. uint16_t max_method = std::numeric_limits<uint16_t>::max(); uint16_t max_classes = std::numeric_limits<uint16_t>::max(); uint16_t number_of_methods = max_method * method_ratio / 100; uint16_t number_of_classes = max_classes * class_ratio / 100; std::srand(random_seed); // Make sure we generate more samples with a low index value. // This makes it more likely to hit valid method/class indices in small apps. const uint16_t kFavorFirstN = 10000; const uint16_t kFavorSplit = 2; for (uint16_t i = 0; i < number_of_dex_files; i++) { std::string dex_location = DexFile::GetMultiDexLocation(i, base_dex_location.c_str()); std::string profile_key = GetProfileDexFileKey(dex_location); for (uint16_t m = 0; m < number_of_methods; m++) { uint16_t method_idx = rand() % max_method; if (m < (number_of_methods / kFavorSplit)) { method_idx %= kFavorFirstN; } info.AddMethodIndex(profile_key, 0, method_idx); } for (uint16_t c = 0; c < number_of_classes; c++) { uint16_t type_idx = rand() % max_classes; if (c < (number_of_classes / kFavorSplit)) { type_idx %= kFavorFirstN; } info.AddClassIndex(profile_key, 0, dex::TypeIndex(type_idx)); } } return info.Save(fd); } // Naive implementation to generate a random profile file suitable for testing. bool ProfileCompilationInfo::GenerateTestProfile( int fd, std::vector<std::unique_ptr<const DexFile>>& dex_files, uint32_t random_seed) { std::srand(random_seed); ProfileCompilationInfo info; for (std::unique_ptr<const DexFile>& dex_file : dex_files) { const std::string& location = dex_file->GetLocation(); uint32_t checksum = dex_file->GetLocationChecksum(); for (uint32_t i = 0; i < dex_file->NumClassDefs(); ++i) { // Randomly add a class from the dex file (with 50% chance). if (std::rand() % 2 != 0) { info.AddClassIndex(location, checksum, dex::TypeIndex(dex_file->GetClassDef(i).class_idx_)); } } for (uint32_t i = 0; i < dex_file->NumMethodIds(); ++i) { // Randomly add a method from the dex file (with 50% chance). if (std::rand() % 2 != 0) { info.AddMethodIndex(location, checksum, i); } } } return info.Save(fd); } bool ProfileCompilationInfo::OfflineProfileMethodInfo::operator==( const OfflineProfileMethodInfo& other) const { if (inline_caches->size() != other.inline_caches->size()) { return false; } // We can't use a simple equality test because we need to match the dex files // of the inline caches which might have different profile indexes. for (const auto& inline_cache_it : *inline_caches) { uint16_t dex_pc = inline_cache_it.first; const DexPcData dex_pc_data = inline_cache_it.second; const auto& other_it = other.inline_caches->find(dex_pc); if (other_it == other.inline_caches->end()) { return false; } const DexPcData& other_dex_pc_data = other_it->second; if (dex_pc_data.is_megamorphic != other_dex_pc_data.is_megamorphic || dex_pc_data.is_missing_types != other_dex_pc_data.is_missing_types) { return false; } for (const ClassReference& class_ref : dex_pc_data.classes) { bool found = false; for (const ClassReference& other_class_ref : other_dex_pc_data.classes) { CHECK_LE(class_ref.dex_profile_index, dex_references.size()); CHECK_LE(other_class_ref.dex_profile_index, other.dex_references.size()); const DexReference& dex_ref = dex_references[class_ref.dex_profile_index]; const DexReference& other_dex_ref = other.dex_references[other_class_ref.dex_profile_index]; if (class_ref.type_index == other_class_ref.type_index && dex_ref == other_dex_ref) { found = true; break; } } if (!found) { return false; } } } return true; } bool ProfileCompilationInfo::IsEmpty() const { DCHECK_EQ(info_.empty(), profile_key_map_.empty()); return info_.empty(); } ProfileCompilationInfo::InlineCacheMap* ProfileCompilationInfo::DexFileData::FindOrAddMethod(uint16_t method_index) { return &(method_map.FindOrAdd( method_index, InlineCacheMap(std::less<uint16_t>(), arena_->Adapter(kArenaAllocProfile)))->second); } ProfileCompilationInfo::DexPcData* ProfileCompilationInfo::FindOrAddDexPc(InlineCacheMap* inline_cache, uint32_t dex_pc) { return &(inline_cache->FindOrAdd(dex_pc, DexPcData(&arena_))->second); } } // namespace art