%default {"extract":"asr r1, r3, #8", "result":"r0", "chkzero":"0"} /* * Generic 32-bit "lit8" binary operation. Provide an "instr" line * that specifies an instruction that performs "result = r0 op r1". * This could be an ARM instruction or a function call. (If the result * comes back in a register other than r0, you can override "result".) * * You can override "extract" if the extraction of the literal value * from r3 to r1 is not the default "asr r1, r3, #8". The extraction * can be omitted completely if the shift is embedded in "instr". * * If "chkzero" is set to 1, we perform a divide-by-zero check on * vCC (r1). Useful for integer division and modulus. * * For: add-int/lit8, rsub-int/lit8, mul-int/lit8, div-int/lit8, * rem-int/lit8, and-int/lit8, or-int/lit8, xor-int/lit8, * shl-int/lit8, shr-int/lit8, ushr-int/lit8 */ /* binop/lit8 vAA, vBB, #+CC */ FETCH_S r3, 1 @ r3<- ssssCCBB (sign-extended for CC) mov r9, rINST, lsr #8 @ r9<- AA and r2, r3, #255 @ r2<- BB GET_VREG r0, r2 @ r0<- vBB $extract @ optional; typically r1<- ssssssCC (sign extended) .if $chkzero @cmp r1, #0 @ is second operand zero? beq common_errDivideByZero .endif FETCH_ADVANCE_INST 2 @ advance rPC, load rINST $instr @ $result<- op, r0-r3 changed GET_INST_OPCODE ip @ extract opcode from rINST SET_VREG $result, r9 @ vAA<- $result GOTO_OPCODE ip @ jump to next instruction /* 10-12 instructions */