/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "task_processor.h" #include "base/time_utils.h" #include "scoped_thread_state_change-inl.h" namespace art { namespace gc { TaskProcessor::TaskProcessor() : lock_(new Mutex("Task processor lock", kReferenceProcessorLock)), is_running_(false), running_thread_(nullptr) { // Piggyback off the reference processor lock level. cond_.reset(new ConditionVariable("Task processor condition", *lock_)); } TaskProcessor::~TaskProcessor() { delete lock_; } void TaskProcessor::AddTask(Thread* self, HeapTask* task) { ScopedThreadStateChange tsc(self, kBlocked); MutexLock mu(self, *lock_); tasks_.insert(task); cond_->Signal(self); } HeapTask* TaskProcessor::GetTask(Thread* self) { ScopedThreadStateChange tsc(self, kBlocked); MutexLock mu(self, *lock_); while (true) { if (tasks_.empty()) { if (!is_running_) { return nullptr; } cond_->Wait(self); // Empty queue, wait until we are signalled. } else { // Non empty queue, look at the top element and see if we are ready to run it. const uint64_t current_time = NanoTime(); HeapTask* task = *tasks_.begin(); // If we are shutting down, return the task right away without waiting. Otherwise return the // task if it is late enough. uint64_t target_time = task->GetTargetRunTime(); if (!is_running_ || target_time <= current_time) { tasks_.erase(tasks_.begin()); return task; } DCHECK_GT(target_time, current_time); // Wait untl we hit the target run time. const uint64_t delta_time = target_time - current_time; const uint64_t ms_delta = NsToMs(delta_time); const uint64_t ns_delta = delta_time - MsToNs(ms_delta); cond_->TimedWait(self, static_cast<int64_t>(ms_delta), static_cast<int32_t>(ns_delta)); } } UNREACHABLE(); } void TaskProcessor::UpdateTargetRunTime(Thread* self, HeapTask* task, uint64_t new_target_time) { MutexLock mu(self, *lock_); // Find the task. auto range = tasks_.equal_range(task); for (auto it = range.first; it != range.second; ++it) { if (*it == task) { // Check if the target time was updated, if so re-insert then wait. if (new_target_time != task->GetTargetRunTime()) { tasks_.erase(it); task->SetTargetRunTime(new_target_time); tasks_.insert(task); // If we became the first task then we may need to signal since we changed the task that we // are sleeping on. if (*tasks_.begin() == task) { cond_->Signal(self); } return; } } } } bool TaskProcessor::IsRunning() const { MutexLock mu(Thread::Current(), *lock_); return is_running_; } Thread* TaskProcessor::GetRunningThread() const { MutexLock mu(Thread::Current(), *lock_); return running_thread_; } void TaskProcessor::Stop(Thread* self) { MutexLock mu(self, *lock_); is_running_ = false; running_thread_ = nullptr; cond_->Broadcast(self); } void TaskProcessor::Start(Thread* self) { MutexLock mu(self, *lock_); is_running_ = true; running_thread_ = self; } void TaskProcessor::RunAllTasks(Thread* self) { while (true) { // Wait and get a task, may be interrupted. HeapTask* task = GetTask(self); if (task != nullptr) { task->Run(self); task->Finalize(); } else if (!IsRunning()) { break; } } } } // namespace gc } // namespace art