/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "concurrent_copying.h" #include "art_field-inl.h" #include "base/enums.h" #include "base/histogram-inl.h" #include "base/stl_util.h" #include "base/systrace.h" #include "debugger.h" #include "gc/accounting/atomic_stack.h" #include "gc/accounting/heap_bitmap-inl.h" #include "gc/accounting/mod_union_table-inl.h" #include "gc/accounting/read_barrier_table.h" #include "gc/accounting/space_bitmap-inl.h" #include "gc/gc_pause_listener.h" #include "gc/reference_processor.h" #include "gc/space/image_space.h" #include "gc/space/space-inl.h" #include "gc/verification.h" #include "image-inl.h" #include "intern_table.h" #include "mirror/class-inl.h" #include "mirror/object-inl.h" #include "mirror/object-refvisitor-inl.h" #include "scoped_thread_state_change-inl.h" #include "thread-inl.h" #include "thread_list.h" #include "well_known_classes.h" namespace art { namespace gc { namespace collector { static constexpr size_t kDefaultGcMarkStackSize = 2 * MB; // If kFilterModUnionCards then we attempt to filter cards that don't need to be dirty in the mod // union table. Disabled since it does not seem to help the pause much. static constexpr bool kFilterModUnionCards = kIsDebugBuild; // If kDisallowReadBarrierDuringScan is true then the GC aborts if there are any that occur during // ConcurrentCopying::Scan. May be used to diagnose possibly unnecessary read barriers. // Only enabled for kIsDebugBuild to avoid performance hit. static constexpr bool kDisallowReadBarrierDuringScan = kIsDebugBuild; // Slow path mark stack size, increase this if the stack is getting full and it is causing // performance problems. static constexpr size_t kReadBarrierMarkStackSize = 512 * KB; // Verify that there are no missing card marks. static constexpr bool kVerifyNoMissingCardMarks = kIsDebugBuild; ConcurrentCopying::ConcurrentCopying(Heap* heap, const std::string& name_prefix, bool measure_read_barrier_slow_path) : GarbageCollector(heap, name_prefix + (name_prefix.empty() ? "" : " ") + "concurrent copying"), region_space_(nullptr), gc_barrier_(new Barrier(0)), gc_mark_stack_(accounting::ObjectStack::Create("concurrent copying gc mark stack", kDefaultGcMarkStackSize, kDefaultGcMarkStackSize)), rb_mark_bit_stack_(accounting::ObjectStack::Create("rb copying gc mark stack", kReadBarrierMarkStackSize, kReadBarrierMarkStackSize)), rb_mark_bit_stack_full_(false), mark_stack_lock_("concurrent copying mark stack lock", kMarkSweepMarkStackLock), thread_running_gc_(nullptr), is_marking_(false), is_active_(false), is_asserting_to_space_invariant_(false), region_space_bitmap_(nullptr), heap_mark_bitmap_(nullptr), live_stack_freeze_size_(0), from_space_num_objects_at_first_pause_(0), from_space_num_bytes_at_first_pause_(0), mark_stack_mode_(kMarkStackModeOff), weak_ref_access_enabled_(true), skipped_blocks_lock_("concurrent copying bytes blocks lock", kMarkSweepMarkStackLock), measure_read_barrier_slow_path_(measure_read_barrier_slow_path), mark_from_read_barrier_measurements_(false), rb_slow_path_ns_(0), rb_slow_path_count_(0), rb_slow_path_count_gc_(0), rb_slow_path_histogram_lock_("Read barrier histogram lock"), rb_slow_path_time_histogram_("Mutator time in read barrier slow path", 500, 32), rb_slow_path_count_total_(0), rb_slow_path_count_gc_total_(0), rb_table_(heap_->GetReadBarrierTable()), force_evacuate_all_(false), gc_grays_immune_objects_(false), immune_gray_stack_lock_("concurrent copying immune gray stack lock", kMarkSweepMarkStackLock) { static_assert(space::RegionSpace::kRegionSize == accounting::ReadBarrierTable::kRegionSize, "The region space size and the read barrier table region size must match"); Thread* self = Thread::Current(); { ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); // Cache this so that we won't have to lock heap_bitmap_lock_ in // Mark() which could cause a nested lock on heap_bitmap_lock_ // when GC causes a RB while doing GC or a lock order violation // (class_linker_lock_ and heap_bitmap_lock_). heap_mark_bitmap_ = heap->GetMarkBitmap(); } { MutexLock mu(self, mark_stack_lock_); for (size_t i = 0; i < kMarkStackPoolSize; ++i) { accounting::AtomicStack<mirror::Object>* mark_stack = accounting::AtomicStack<mirror::Object>::Create( "thread local mark stack", kMarkStackSize, kMarkStackSize); pooled_mark_stacks_.push_back(mark_stack); } } } void ConcurrentCopying::MarkHeapReference(mirror::HeapReference<mirror::Object>* field, bool do_atomic_update) { if (UNLIKELY(do_atomic_update)) { // Used to mark the referent in DelayReferenceReferent in transaction mode. mirror::Object* from_ref = field->AsMirrorPtr(); if (from_ref == nullptr) { return; } mirror::Object* to_ref = Mark(from_ref); if (from_ref != to_ref) { do { if (field->AsMirrorPtr() != from_ref) { // Concurrently overwritten by a mutator. break; } } while (!field->CasWeakRelaxed(from_ref, to_ref)); } } else { // Used for preserving soft references, should be OK to not have a CAS here since there should be // no other threads which can trigger read barriers on the same referent during reference // processing. field->Assign(Mark(field->AsMirrorPtr())); } } ConcurrentCopying::~ConcurrentCopying() { STLDeleteElements(&pooled_mark_stacks_); } void ConcurrentCopying::RunPhases() { CHECK(kUseBakerReadBarrier || kUseTableLookupReadBarrier); CHECK(!is_active_); is_active_ = true; Thread* self = Thread::Current(); thread_running_gc_ = self; Locks::mutator_lock_->AssertNotHeld(self); { ReaderMutexLock mu(self, *Locks::mutator_lock_); InitializePhase(); } FlipThreadRoots(); { ReaderMutexLock mu(self, *Locks::mutator_lock_); MarkingPhase(); } // Verify no from space refs. This causes a pause. if (kEnableNoFromSpaceRefsVerification) { TimingLogger::ScopedTiming split("(Paused)VerifyNoFromSpaceReferences", GetTimings()); ScopedPause pause(this, false); CheckEmptyMarkStack(); if (kVerboseMode) { LOG(INFO) << "Verifying no from-space refs"; } VerifyNoFromSpaceReferences(); if (kVerboseMode) { LOG(INFO) << "Done verifying no from-space refs"; } CheckEmptyMarkStack(); } { ReaderMutexLock mu(self, *Locks::mutator_lock_); ReclaimPhase(); } FinishPhase(); CHECK(is_active_); is_active_ = false; thread_running_gc_ = nullptr; } void ConcurrentCopying::BindBitmaps() { Thread* self = Thread::Current(); WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); // Mark all of the spaces we never collect as immune. for (const auto& space : heap_->GetContinuousSpaces()) { if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect || space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect) { CHECK(space->IsZygoteSpace() || space->IsImageSpace()); immune_spaces_.AddSpace(space); } else if (space == region_space_) { // It is OK to clear the bitmap with mutators running since the only place it is read is // VisitObjects which has exclusion with CC. region_space_bitmap_ = region_space_->GetMarkBitmap(); region_space_bitmap_->Clear(); } } } void ConcurrentCopying::InitializePhase() { TimingLogger::ScopedTiming split("InitializePhase", GetTimings()); if (kVerboseMode) { LOG(INFO) << "GC InitializePhase"; LOG(INFO) << "Region-space : " << reinterpret_cast<void*>(region_space_->Begin()) << "-" << reinterpret_cast<void*>(region_space_->Limit()); } CheckEmptyMarkStack(); if (kIsDebugBuild) { MutexLock mu(Thread::Current(), mark_stack_lock_); CHECK(false_gray_stack_.empty()); } rb_mark_bit_stack_full_ = false; mark_from_read_barrier_measurements_ = measure_read_barrier_slow_path_; if (measure_read_barrier_slow_path_) { rb_slow_path_ns_.StoreRelaxed(0); rb_slow_path_count_.StoreRelaxed(0); rb_slow_path_count_gc_.StoreRelaxed(0); } immune_spaces_.Reset(); bytes_moved_.StoreRelaxed(0); objects_moved_.StoreRelaxed(0); GcCause gc_cause = GetCurrentIteration()->GetGcCause(); if (gc_cause == kGcCauseExplicit || gc_cause == kGcCauseForNativeAlloc || gc_cause == kGcCauseCollectorTransition || GetCurrentIteration()->GetClearSoftReferences()) { force_evacuate_all_ = true; } else { force_evacuate_all_ = false; } if (kUseBakerReadBarrier) { updated_all_immune_objects_.StoreRelaxed(false); // GC may gray immune objects in the thread flip. gc_grays_immune_objects_ = true; if (kIsDebugBuild) { MutexLock mu(Thread::Current(), immune_gray_stack_lock_); DCHECK(immune_gray_stack_.empty()); } } BindBitmaps(); if (kVerboseMode) { LOG(INFO) << "force_evacuate_all=" << force_evacuate_all_; LOG(INFO) << "Largest immune region: " << immune_spaces_.GetLargestImmuneRegion().Begin() << "-" << immune_spaces_.GetLargestImmuneRegion().End(); for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) { LOG(INFO) << "Immune space: " << *space; } LOG(INFO) << "GC end of InitializePhase"; } // Mark all of the zygote large objects without graying them. MarkZygoteLargeObjects(); } // Used to switch the thread roots of a thread from from-space refs to to-space refs. class ConcurrentCopying::ThreadFlipVisitor : public Closure, public RootVisitor { public: ThreadFlipVisitor(ConcurrentCopying* concurrent_copying, bool use_tlab) : concurrent_copying_(concurrent_copying), use_tlab_(use_tlab) { } virtual void Run(Thread* thread) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) { // Note: self is not necessarily equal to thread since thread may be suspended. Thread* self = Thread::Current(); CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc) << thread->GetState() << " thread " << thread << " self " << self; thread->SetIsGcMarkingAndUpdateEntrypoints(true); if (use_tlab_ && thread->HasTlab()) { if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) { // This must come before the revoke. size_t thread_local_objects = thread->GetThreadLocalObjectsAllocated(); concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread); reinterpret_cast<Atomic<size_t>*>(&concurrent_copying_->from_space_num_objects_at_first_pause_)-> FetchAndAddSequentiallyConsistent(thread_local_objects); } else { concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread); } } if (kUseThreadLocalAllocationStack) { thread->RevokeThreadLocalAllocationStack(); } ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); // We can use the non-CAS VisitRoots functions below because we update thread-local GC roots // only. thread->VisitRoots(this); concurrent_copying_->GetBarrier().Pass(self); } void VisitRoots(mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED) REQUIRES_SHARED(Locks::mutator_lock_) { for (size_t i = 0; i < count; ++i) { mirror::Object** root = roots[i]; mirror::Object* ref = *root; if (ref != nullptr) { mirror::Object* to_ref = concurrent_copying_->Mark(ref); if (to_ref != ref) { *root = to_ref; } } } } void VisitRoots(mirror::CompressedReference<mirror::Object>** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED) REQUIRES_SHARED(Locks::mutator_lock_) { for (size_t i = 0; i < count; ++i) { mirror::CompressedReference<mirror::Object>* const root = roots[i]; if (!root->IsNull()) { mirror::Object* ref = root->AsMirrorPtr(); mirror::Object* to_ref = concurrent_copying_->Mark(ref); if (to_ref != ref) { root->Assign(to_ref); } } } } private: ConcurrentCopying* const concurrent_copying_; const bool use_tlab_; }; // Called back from Runtime::FlipThreadRoots() during a pause. class ConcurrentCopying::FlipCallback : public Closure { public: explicit FlipCallback(ConcurrentCopying* concurrent_copying) : concurrent_copying_(concurrent_copying) { } virtual void Run(Thread* thread) OVERRIDE REQUIRES(Locks::mutator_lock_) { ConcurrentCopying* cc = concurrent_copying_; TimingLogger::ScopedTiming split("(Paused)FlipCallback", cc->GetTimings()); // Note: self is not necessarily equal to thread since thread may be suspended. Thread* self = Thread::Current(); if (kVerifyNoMissingCardMarks) { cc->VerifyNoMissingCardMarks(); } CHECK(thread == self); Locks::mutator_lock_->AssertExclusiveHeld(self); cc->region_space_->SetFromSpace(cc->rb_table_, cc->force_evacuate_all_); cc->SwapStacks(); if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) { cc->RecordLiveStackFreezeSize(self); cc->from_space_num_objects_at_first_pause_ = cc->region_space_->GetObjectsAllocated(); cc->from_space_num_bytes_at_first_pause_ = cc->region_space_->GetBytesAllocated(); } cc->is_marking_ = true; cc->mark_stack_mode_.StoreRelaxed(ConcurrentCopying::kMarkStackModeThreadLocal); if (kIsDebugBuild) { cc->region_space_->AssertAllRegionLiveBytesZeroOrCleared(); } if (UNLIKELY(Runtime::Current()->IsActiveTransaction())) { CHECK(Runtime::Current()->IsAotCompiler()); TimingLogger::ScopedTiming split2("(Paused)VisitTransactionRoots", cc->GetTimings()); Runtime::Current()->VisitTransactionRoots(cc); } if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) { cc->GrayAllDirtyImmuneObjects(); if (kIsDebugBuild) { // Check that all non-gray immune objects only refernce immune objects. cc->VerifyGrayImmuneObjects(); } } cc->java_lang_Object_ = down_cast<mirror::Class*>(cc->Mark( WellKnownClasses::ToClass(WellKnownClasses::java_lang_Object).Ptr())); } private: ConcurrentCopying* const concurrent_copying_; }; class ConcurrentCopying::VerifyGrayImmuneObjectsVisitor { public: explicit VerifyGrayImmuneObjectsVisitor(ConcurrentCopying* collector) : collector_(collector) {} void operator()(ObjPtr<mirror::Object> obj, MemberOffset offset, bool /* is_static */) const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES_SHARED(Locks::heap_bitmap_lock_) { CheckReference(obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset), obj, offset); } void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE { CHECK(klass->IsTypeOfReferenceClass()); CheckReference(ref->GetReferent<kWithoutReadBarrier>(), ref, mirror::Reference::ReferentOffset()); } void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_) { if (!root->IsNull()) { VisitRoot(root); } } void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_) { CheckReference(root->AsMirrorPtr(), nullptr, MemberOffset(0)); } private: ConcurrentCopying* const collector_; void CheckReference(ObjPtr<mirror::Object> ref, ObjPtr<mirror::Object> holder, MemberOffset offset) const REQUIRES_SHARED(Locks::mutator_lock_) { if (ref != nullptr) { if (!collector_->immune_spaces_.ContainsObject(ref.Ptr())) { // Not immune, must be a zygote large object. CHECK(Runtime::Current()->GetHeap()->GetLargeObjectsSpace()->IsZygoteLargeObject( Thread::Current(), ref.Ptr())) << "Non gray object references non immune, non zygote large object "<< ref << " " << mirror::Object::PrettyTypeOf(ref) << " in holder " << holder << " " << mirror::Object::PrettyTypeOf(holder) << " offset=" << offset.Uint32Value(); } else { // Make sure the large object class is immune since we will never scan the large object. CHECK(collector_->immune_spaces_.ContainsObject( ref->GetClass<kVerifyNone, kWithoutReadBarrier>())); } } } }; void ConcurrentCopying::VerifyGrayImmuneObjects() { TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings()); for (auto& space : immune_spaces_.GetSpaces()) { DCHECK(space->IsImageSpace() || space->IsZygoteSpace()); accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap(); VerifyGrayImmuneObjectsVisitor visitor(this); live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()), reinterpret_cast<uintptr_t>(space->Limit()), [&visitor](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) { // If an object is not gray, it should only have references to things in the immune spaces. if (obj->GetReadBarrierState() != ReadBarrier::GrayState()) { obj->VisitReferences</*kVisitNativeRoots*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(visitor, visitor); } }); } } class ConcurrentCopying::VerifyNoMissingCardMarkVisitor { public: VerifyNoMissingCardMarkVisitor(ConcurrentCopying* cc, ObjPtr<mirror::Object> holder) : cc_(cc), holder_(holder) {} void operator()(ObjPtr<mirror::Object> obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE { if (offset.Uint32Value() != mirror::Object::ClassOffset().Uint32Value()) { CheckReference(obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>( offset), offset.Uint32Value()); } } void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE { CHECK(klass->IsTypeOfReferenceClass()); this->operator()(ref, mirror::Reference::ReferentOffset(), false); } void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const REQUIRES_SHARED(Locks::mutator_lock_) { if (!root->IsNull()) { VisitRoot(root); } } void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const REQUIRES_SHARED(Locks::mutator_lock_) { CheckReference(root->AsMirrorPtr()); } void CheckReference(mirror::Object* ref, int32_t offset = -1) const REQUIRES_SHARED(Locks::mutator_lock_) { CHECK(ref == nullptr || !cc_->region_space_->IsInNewlyAllocatedRegion(ref)) << holder_->PrettyTypeOf() << "(" << holder_.Ptr() << ") references object " << ref->PrettyTypeOf() << "(" << ref << ") in newly allocated region at offset=" << offset; } private: ConcurrentCopying* const cc_; ObjPtr<mirror::Object> const holder_; }; void ConcurrentCopying::VerifyNoMissingCardMarkCallback(mirror::Object* obj, void* arg) { auto* collector = reinterpret_cast<ConcurrentCopying*>(arg); // Objects not on dirty cards should never have references to newly allocated regions. if (!collector->heap_->GetCardTable()->IsDirty(obj)) { VerifyNoMissingCardMarkVisitor visitor(collector, /*holder*/ obj); obj->VisitReferences</*kVisitNativeRoots*/true, kVerifyNone, kWithoutReadBarrier>( visitor, visitor); } } void ConcurrentCopying::VerifyNoMissingCardMarks() { TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings()); region_space_->Walk(&VerifyNoMissingCardMarkCallback, this); { ReaderMutexLock rmu(Thread::Current(), *Locks::heap_bitmap_lock_); heap_->GetLiveBitmap()->Walk(&VerifyNoMissingCardMarkCallback, this); } } // Switch threads that from from-space to to-space refs. Forward/mark the thread roots. void ConcurrentCopying::FlipThreadRoots() { TimingLogger::ScopedTiming split("FlipThreadRoots", GetTimings()); if (kVerboseMode) { LOG(INFO) << "time=" << region_space_->Time(); region_space_->DumpNonFreeRegions(LOG_STREAM(INFO)); } Thread* self = Thread::Current(); Locks::mutator_lock_->AssertNotHeld(self); gc_barrier_->Init(self, 0); ThreadFlipVisitor thread_flip_visitor(this, heap_->use_tlab_); FlipCallback flip_callback(this); // This is the point where Concurrent-Copying will pause all threads. We report a pause here, if // necessary. This is slightly over-reporting, as this includes the time to actually suspend // threads. { GcPauseListener* pause_listener = GetHeap()->GetGcPauseListener(); if (pause_listener != nullptr) { pause_listener->StartPause(); } } size_t barrier_count = Runtime::Current()->FlipThreadRoots( &thread_flip_visitor, &flip_callback, this); { GcPauseListener* pause_listener = GetHeap()->GetGcPauseListener(); if (pause_listener != nullptr) { pause_listener->EndPause(); } } { ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun); gc_barrier_->Increment(self, barrier_count); } is_asserting_to_space_invariant_ = true; QuasiAtomic::ThreadFenceForConstructor(); if (kVerboseMode) { LOG(INFO) << "time=" << region_space_->Time(); region_space_->DumpNonFreeRegions(LOG_STREAM(INFO)); LOG(INFO) << "GC end of FlipThreadRoots"; } } class ConcurrentCopying::GrayImmuneObjectVisitor { public: explicit GrayImmuneObjectVisitor() {} ALWAYS_INLINE void operator()(mirror::Object* obj) const REQUIRES_SHARED(Locks::mutator_lock_) { if (kUseBakerReadBarrier) { if (kIsDebugBuild) { Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current()); } obj->SetReadBarrierState(ReadBarrier::GrayState()); } } static void Callback(mirror::Object* obj, void* arg) REQUIRES_SHARED(Locks::mutator_lock_) { reinterpret_cast<GrayImmuneObjectVisitor*>(arg)->operator()(obj); } }; void ConcurrentCopying::GrayAllDirtyImmuneObjects() { TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings()); gc::Heap* const heap = Runtime::Current()->GetHeap(); accounting::CardTable* const card_table = heap->GetCardTable(); WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) { DCHECK(space->IsImageSpace() || space->IsZygoteSpace()); GrayImmuneObjectVisitor visitor; accounting::ModUnionTable* table = heap->FindModUnionTableFromSpace(space); // Mark all the objects on dirty cards since these may point to objects in other space. // Once these are marked, the GC will eventually clear them later. // Table is non null for boot image and zygote spaces. It is only null for application image // spaces. if (table != nullptr) { // TODO: Consider adding precleaning outside the pause. table->ProcessCards(); table->VisitObjects(GrayImmuneObjectVisitor::Callback, &visitor); // Since the cards are recorded in the mod-union table and this is paused, we can clear // the cards for the space (to madvise). TimingLogger::ScopedTiming split2("(Paused)ClearCards", GetTimings()); card_table->ClearCardRange(space->Begin(), AlignDown(space->End(), accounting::CardTable::kCardSize)); } else { // TODO: Consider having a mark bitmap for app image spaces and avoid scanning during the // pause because app image spaces are all dirty pages anyways. card_table->Scan<false>(space->GetMarkBitmap(), space->Begin(), space->End(), visitor); } } // Since all of the objects that may point to other spaces are marked, we can avoid all the read // barriers in the immune spaces. updated_all_immune_objects_.StoreRelaxed(true); } void ConcurrentCopying::SwapStacks() { heap_->SwapStacks(); } void ConcurrentCopying::RecordLiveStackFreezeSize(Thread* self) { WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); live_stack_freeze_size_ = heap_->GetLiveStack()->Size(); } // Used to visit objects in the immune spaces. inline void ConcurrentCopying::ScanImmuneObject(mirror::Object* obj) { DCHECK(obj != nullptr); DCHECK(immune_spaces_.ContainsObject(obj)); // Update the fields without graying it or pushing it onto the mark stack. Scan(obj); } class ConcurrentCopying::ImmuneSpaceScanObjVisitor { public: explicit ImmuneSpaceScanObjVisitor(ConcurrentCopying* cc) : collector_(cc) {} ALWAYS_INLINE void operator()(mirror::Object* obj) const REQUIRES_SHARED(Locks::mutator_lock_) { if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) { if (obj->GetReadBarrierState() == ReadBarrier::GrayState()) { collector_->ScanImmuneObject(obj); // Done scanning the object, go back to white. bool success = obj->AtomicSetReadBarrierState(ReadBarrier::GrayState(), ReadBarrier::WhiteState()); CHECK(success); } } else { collector_->ScanImmuneObject(obj); } } static void Callback(mirror::Object* obj, void* arg) REQUIRES_SHARED(Locks::mutator_lock_) { reinterpret_cast<ImmuneSpaceScanObjVisitor*>(arg)->operator()(obj); } private: ConcurrentCopying* const collector_; }; // Concurrently mark roots that are guarded by read barriers and process the mark stack. void ConcurrentCopying::MarkingPhase() { TimingLogger::ScopedTiming split("MarkingPhase", GetTimings()); if (kVerboseMode) { LOG(INFO) << "GC MarkingPhase"; } Thread* self = Thread::Current(); if (kIsDebugBuild) { MutexLock mu(self, *Locks::thread_list_lock_); CHECK(weak_ref_access_enabled_); } // Scan immune spaces. // Update all the fields in the immune spaces first without graying the objects so that we // minimize dirty pages in the immune spaces. Note mutators can concurrently access and gray some // of the objects. if (kUseBakerReadBarrier) { gc_grays_immune_objects_ = false; } { TimingLogger::ScopedTiming split2("ScanImmuneSpaces", GetTimings()); for (auto& space : immune_spaces_.GetSpaces()) { DCHECK(space->IsImageSpace() || space->IsZygoteSpace()); accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap(); accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space); ImmuneSpaceScanObjVisitor visitor(this); if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects && table != nullptr) { table->VisitObjects(ImmuneSpaceScanObjVisitor::Callback, &visitor); } else { live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()), reinterpret_cast<uintptr_t>(space->Limit()), visitor); } } } if (kUseBakerReadBarrier) { // This release fence makes the field updates in the above loop visible before allowing mutator // getting access to immune objects without graying it first. updated_all_immune_objects_.StoreRelease(true); // Now whiten immune objects concurrently accessed and grayed by mutators. We can't do this in // the above loop because we would incorrectly disable the read barrier by whitening an object // which may point to an unscanned, white object, breaking the to-space invariant. // // Make sure no mutators are in the middle of marking an immune object before whitening immune // objects. IssueEmptyCheckpoint(); MutexLock mu(Thread::Current(), immune_gray_stack_lock_); if (kVerboseMode) { LOG(INFO) << "immune gray stack size=" << immune_gray_stack_.size(); } for (mirror::Object* obj : immune_gray_stack_) { DCHECK(obj->GetReadBarrierState() == ReadBarrier::GrayState()); bool success = obj->AtomicSetReadBarrierState(ReadBarrier::GrayState(), ReadBarrier::WhiteState()); DCHECK(success); } immune_gray_stack_.clear(); } { TimingLogger::ScopedTiming split2("VisitConcurrentRoots", GetTimings()); Runtime::Current()->VisitConcurrentRoots(this, kVisitRootFlagAllRoots); } { // TODO: don't visit the transaction roots if it's not active. TimingLogger::ScopedTiming split5("VisitNonThreadRoots", GetTimings()); Runtime::Current()->VisitNonThreadRoots(this); } { TimingLogger::ScopedTiming split7("ProcessMarkStack", GetTimings()); // We transition through three mark stack modes (thread-local, shared, GC-exclusive). The // primary reasons are the fact that we need to use a checkpoint to process thread-local mark // stacks, but after we disable weak refs accesses, we can't use a checkpoint due to a deadlock // issue because running threads potentially blocking at WaitHoldingLocks, and that once we // reach the point where we process weak references, we can avoid using a lock when accessing // the GC mark stack, which makes mark stack processing more efficient. // Process the mark stack once in the thread local stack mode. This marks most of the live // objects, aside from weak ref accesses with read barriers (Reference::GetReferent() and system // weaks) that may happen concurrently while we processing the mark stack and newly mark/gray // objects and push refs on the mark stack. ProcessMarkStack(); // Switch to the shared mark stack mode. That is, revoke and process thread-local mark stacks // for the last time before transitioning to the shared mark stack mode, which would process new // refs that may have been concurrently pushed onto the mark stack during the ProcessMarkStack() // call above. At the same time, disable weak ref accesses using a per-thread flag. It's // important to do these together in a single checkpoint so that we can ensure that mutators // won't newly gray objects and push new refs onto the mark stack due to weak ref accesses and // mutators safely transition to the shared mark stack mode (without leaving unprocessed refs on // the thread-local mark stacks), without a race. This is why we use a thread-local weak ref // access flag Thread::tls32_.weak_ref_access_enabled_ instead of the global ones. SwitchToSharedMarkStackMode(); CHECK(!self->GetWeakRefAccessEnabled()); // Now that weak refs accesses are disabled, once we exhaust the shared mark stack again here // (which may be non-empty if there were refs found on thread-local mark stacks during the above // SwitchToSharedMarkStackMode() call), we won't have new refs to process, that is, mutators // (via read barriers) have no way to produce any more refs to process. Marking converges once // before we process weak refs below. ProcessMarkStack(); CheckEmptyMarkStack(); // Switch to the GC exclusive mark stack mode so that we can process the mark stack without a // lock from this point on. SwitchToGcExclusiveMarkStackMode(); CheckEmptyMarkStack(); if (kVerboseMode) { LOG(INFO) << "ProcessReferences"; } // Process weak references. This may produce new refs to process and have them processed via // ProcessMarkStack (in the GC exclusive mark stack mode). ProcessReferences(self); CheckEmptyMarkStack(); if (kVerboseMode) { LOG(INFO) << "SweepSystemWeaks"; } SweepSystemWeaks(self); if (kVerboseMode) { LOG(INFO) << "SweepSystemWeaks done"; } // Process the mark stack here one last time because the above SweepSystemWeaks() call may have // marked some objects (strings alive) as hash_set::Erase() can call the hash function for // arbitrary elements in the weak intern table in InternTable::Table::SweepWeaks(). ProcessMarkStack(); CheckEmptyMarkStack(); // Re-enable weak ref accesses. ReenableWeakRefAccess(self); // Free data for class loaders that we unloaded. Runtime::Current()->GetClassLinker()->CleanupClassLoaders(); // Marking is done. Disable marking. DisableMarking(); if (kUseBakerReadBarrier) { ProcessFalseGrayStack(); } CheckEmptyMarkStack(); } if (kIsDebugBuild) { MutexLock mu(self, *Locks::thread_list_lock_); CHECK(weak_ref_access_enabled_); } if (kVerboseMode) { LOG(INFO) << "GC end of MarkingPhase"; } } void ConcurrentCopying::ReenableWeakRefAccess(Thread* self) { if (kVerboseMode) { LOG(INFO) << "ReenableWeakRefAccess"; } // Iterate all threads (don't need to or can't use a checkpoint) and re-enable weak ref access. { MutexLock mu(self, *Locks::thread_list_lock_); weak_ref_access_enabled_ = true; // This is for new threads. std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList(); for (Thread* thread : thread_list) { thread->SetWeakRefAccessEnabled(true); } } // Unblock blocking threads. GetHeap()->GetReferenceProcessor()->BroadcastForSlowPath(self); Runtime::Current()->BroadcastForNewSystemWeaks(); } class ConcurrentCopying::DisableMarkingCheckpoint : public Closure { public: explicit DisableMarkingCheckpoint(ConcurrentCopying* concurrent_copying) : concurrent_copying_(concurrent_copying) { } void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS { // Note: self is not necessarily equal to thread since thread may be suspended. Thread* self = Thread::Current(); DCHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc) << thread->GetState() << " thread " << thread << " self " << self; // Disable the thread-local is_gc_marking flag. // Note a thread that has just started right before this checkpoint may have already this flag // set to false, which is ok. thread->SetIsGcMarkingAndUpdateEntrypoints(false); // If thread is a running mutator, then act on behalf of the garbage collector. // See the code in ThreadList::RunCheckpoint. concurrent_copying_->GetBarrier().Pass(self); } private: ConcurrentCopying* const concurrent_copying_; }; class ConcurrentCopying::DisableMarkingCallback : public Closure { public: explicit DisableMarkingCallback(ConcurrentCopying* concurrent_copying) : concurrent_copying_(concurrent_copying) { } void Run(Thread* self ATTRIBUTE_UNUSED) OVERRIDE REQUIRES(Locks::thread_list_lock_) { // This needs to run under the thread_list_lock_ critical section in ThreadList::RunCheckpoint() // to avoid a race with ThreadList::Register(). CHECK(concurrent_copying_->is_marking_); concurrent_copying_->is_marking_ = false; } private: ConcurrentCopying* const concurrent_copying_; }; void ConcurrentCopying::IssueDisableMarkingCheckpoint() { Thread* self = Thread::Current(); DisableMarkingCheckpoint check_point(this); ThreadList* thread_list = Runtime::Current()->GetThreadList(); gc_barrier_->Init(self, 0); DisableMarkingCallback dmc(this); size_t barrier_count = thread_list->RunCheckpoint(&check_point, &dmc); // If there are no threads to wait which implies that all the checkpoint functions are finished, // then no need to release the mutator lock. if (barrier_count == 0) { return; } // Release locks then wait for all mutator threads to pass the barrier. Locks::mutator_lock_->SharedUnlock(self); { ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun); gc_barrier_->Increment(self, barrier_count); } Locks::mutator_lock_->SharedLock(self); } void ConcurrentCopying::DisableMarking() { // Use a checkpoint to turn off the global is_marking and the thread-local is_gc_marking flags and // to ensure no threads are still in the middle of a read barrier which may have a from-space ref // cached in a local variable. IssueDisableMarkingCheckpoint(); if (kUseTableLookupReadBarrier) { heap_->rb_table_->ClearAll(); DCHECK(heap_->rb_table_->IsAllCleared()); } is_mark_stack_push_disallowed_.StoreSequentiallyConsistent(1); mark_stack_mode_.StoreSequentiallyConsistent(kMarkStackModeOff); } void ConcurrentCopying::PushOntoFalseGrayStack(mirror::Object* ref) { CHECK(kUseBakerReadBarrier); DCHECK(ref != nullptr); MutexLock mu(Thread::Current(), mark_stack_lock_); false_gray_stack_.push_back(ref); } void ConcurrentCopying::ProcessFalseGrayStack() { CHECK(kUseBakerReadBarrier); // Change the objects on the false gray stack from gray to white. MutexLock mu(Thread::Current(), mark_stack_lock_); for (mirror::Object* obj : false_gray_stack_) { DCHECK(IsMarked(obj)); // The object could be white here if a thread got preempted after a success at the // AtomicSetReadBarrierState in Mark(), GC started marking through it (but not finished so // still gray), and the thread ran to register it onto the false gray stack. if (obj->GetReadBarrierState() == ReadBarrier::GrayState()) { bool success = obj->AtomicSetReadBarrierState(ReadBarrier::GrayState(), ReadBarrier::WhiteState()); DCHECK(success); } } false_gray_stack_.clear(); } void ConcurrentCopying::IssueEmptyCheckpoint() { Thread* self = Thread::Current(); ThreadList* thread_list = Runtime::Current()->GetThreadList(); // Release locks then wait for all mutator threads to pass the barrier. Locks::mutator_lock_->SharedUnlock(self); thread_list->RunEmptyCheckpoint(); Locks::mutator_lock_->SharedLock(self); } void ConcurrentCopying::ExpandGcMarkStack() { DCHECK(gc_mark_stack_->IsFull()); const size_t new_size = gc_mark_stack_->Capacity() * 2; std::vector<StackReference<mirror::Object>> temp(gc_mark_stack_->Begin(), gc_mark_stack_->End()); gc_mark_stack_->Resize(new_size); for (auto& ref : temp) { gc_mark_stack_->PushBack(ref.AsMirrorPtr()); } DCHECK(!gc_mark_stack_->IsFull()); } void ConcurrentCopying::PushOntoMarkStack(mirror::Object* to_ref) { CHECK_EQ(is_mark_stack_push_disallowed_.LoadRelaxed(), 0) << " " << to_ref << " " << mirror::Object::PrettyTypeOf(to_ref); Thread* self = Thread::Current(); // TODO: pass self as an argument from call sites? CHECK(thread_running_gc_ != nullptr); MarkStackMode mark_stack_mode = mark_stack_mode_.LoadRelaxed(); if (LIKELY(mark_stack_mode == kMarkStackModeThreadLocal)) { if (LIKELY(self == thread_running_gc_)) { // If GC-running thread, use the GC mark stack instead of a thread-local mark stack. CHECK(self->GetThreadLocalMarkStack() == nullptr); if (UNLIKELY(gc_mark_stack_->IsFull())) { ExpandGcMarkStack(); } gc_mark_stack_->PushBack(to_ref); } else { // Otherwise, use a thread-local mark stack. accounting::AtomicStack<mirror::Object>* tl_mark_stack = self->GetThreadLocalMarkStack(); if (UNLIKELY(tl_mark_stack == nullptr || tl_mark_stack->IsFull())) { MutexLock mu(self, mark_stack_lock_); // Get a new thread local mark stack. accounting::AtomicStack<mirror::Object>* new_tl_mark_stack; if (!pooled_mark_stacks_.empty()) { // Use a pooled mark stack. new_tl_mark_stack = pooled_mark_stacks_.back(); pooled_mark_stacks_.pop_back(); } else { // None pooled. Create a new one. new_tl_mark_stack = accounting::AtomicStack<mirror::Object>::Create( "thread local mark stack", 4 * KB, 4 * KB); } DCHECK(new_tl_mark_stack != nullptr); DCHECK(new_tl_mark_stack->IsEmpty()); new_tl_mark_stack->PushBack(to_ref); self->SetThreadLocalMarkStack(new_tl_mark_stack); if (tl_mark_stack != nullptr) { // Store the old full stack into a vector. revoked_mark_stacks_.push_back(tl_mark_stack); } } else { tl_mark_stack->PushBack(to_ref); } } } else if (mark_stack_mode == kMarkStackModeShared) { // Access the shared GC mark stack with a lock. MutexLock mu(self, mark_stack_lock_); if (UNLIKELY(gc_mark_stack_->IsFull())) { ExpandGcMarkStack(); } gc_mark_stack_->PushBack(to_ref); } else { CHECK_EQ(static_cast<uint32_t>(mark_stack_mode), static_cast<uint32_t>(kMarkStackModeGcExclusive)) << "ref=" << to_ref << " self->gc_marking=" << self->GetIsGcMarking() << " cc->is_marking=" << is_marking_; CHECK(self == thread_running_gc_) << "Only GC-running thread should access the mark stack " << "in the GC exclusive mark stack mode"; // Access the GC mark stack without a lock. if (UNLIKELY(gc_mark_stack_->IsFull())) { ExpandGcMarkStack(); } gc_mark_stack_->PushBack(to_ref); } } accounting::ObjectStack* ConcurrentCopying::GetAllocationStack() { return heap_->allocation_stack_.get(); } accounting::ObjectStack* ConcurrentCopying::GetLiveStack() { return heap_->live_stack_.get(); } // The following visitors are used to verify that there's no references to the from-space left after // marking. class ConcurrentCopying::VerifyNoFromSpaceRefsVisitor : public SingleRootVisitor { public: explicit VerifyNoFromSpaceRefsVisitor(ConcurrentCopying* collector) : collector_(collector) {} void operator()(mirror::Object* ref, MemberOffset offset = MemberOffset(0), mirror::Object* holder = nullptr) const REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE { if (ref == nullptr) { // OK. return; } collector_->AssertToSpaceInvariant(holder, offset, ref); if (kUseBakerReadBarrier) { CHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::WhiteState()) << "Ref " << ref << " " << ref->PrettyTypeOf() << " has non-white rb_state "; } } void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(root != nullptr); operator()(root); } private: ConcurrentCopying* const collector_; }; class ConcurrentCopying::VerifyNoFromSpaceRefsFieldVisitor { public: explicit VerifyNoFromSpaceRefsFieldVisitor(ConcurrentCopying* collector) : collector_(collector) {} void operator()(ObjPtr<mirror::Object> obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE { mirror::Object* ref = obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset); VerifyNoFromSpaceRefsVisitor visitor(collector_); visitor(ref, offset, obj.Ptr()); } void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE { CHECK(klass->IsTypeOfReferenceClass()); this->operator()(ref, mirror::Reference::ReferentOffset(), false); } void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const REQUIRES_SHARED(Locks::mutator_lock_) { if (!root->IsNull()) { VisitRoot(root); } } void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const REQUIRES_SHARED(Locks::mutator_lock_) { VerifyNoFromSpaceRefsVisitor visitor(collector_); visitor(root->AsMirrorPtr()); } private: ConcurrentCopying* const collector_; }; class ConcurrentCopying::VerifyNoFromSpaceRefsObjectVisitor { public: explicit VerifyNoFromSpaceRefsObjectVisitor(ConcurrentCopying* collector) : collector_(collector) {} void operator()(mirror::Object* obj) const REQUIRES_SHARED(Locks::mutator_lock_) { ObjectCallback(obj, collector_); } static void ObjectCallback(mirror::Object* obj, void *arg) REQUIRES_SHARED(Locks::mutator_lock_) { CHECK(obj != nullptr); ConcurrentCopying* collector = reinterpret_cast<ConcurrentCopying*>(arg); space::RegionSpace* region_space = collector->RegionSpace(); CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space"; VerifyNoFromSpaceRefsFieldVisitor visitor(collector); obj->VisitReferences</*kVisitNativeRoots*/true, kDefaultVerifyFlags, kWithoutReadBarrier>( visitor, visitor); if (kUseBakerReadBarrier) { CHECK_EQ(obj->GetReadBarrierState(), ReadBarrier::WhiteState()) << "obj=" << obj << " non-white rb_state " << obj->GetReadBarrierState(); } } private: ConcurrentCopying* const collector_; }; // Verify there's no from-space references left after the marking phase. void ConcurrentCopying::VerifyNoFromSpaceReferences() { Thread* self = Thread::Current(); DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self)); // Verify all threads have is_gc_marking to be false { MutexLock mu(self, *Locks::thread_list_lock_); std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList(); for (Thread* thread : thread_list) { CHECK(!thread->GetIsGcMarking()); } } VerifyNoFromSpaceRefsObjectVisitor visitor(this); // Roots. { ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); VerifyNoFromSpaceRefsVisitor ref_visitor(this); Runtime::Current()->VisitRoots(&ref_visitor); } // The to-space. region_space_->WalkToSpace(VerifyNoFromSpaceRefsObjectVisitor::ObjectCallback, this); // Non-moving spaces. { WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); heap_->GetMarkBitmap()->Visit(visitor); } // The alloc stack. { VerifyNoFromSpaceRefsVisitor ref_visitor(this); for (auto* it = heap_->allocation_stack_->Begin(), *end = heap_->allocation_stack_->End(); it < end; ++it) { mirror::Object* const obj = it->AsMirrorPtr(); if (obj != nullptr && obj->GetClass() != nullptr) { // TODO: need to call this only if obj is alive? ref_visitor(obj); visitor(obj); } } } // TODO: LOS. But only refs in LOS are classes. } // The following visitors are used to assert the to-space invariant. class ConcurrentCopying::AssertToSpaceInvariantRefsVisitor { public: explicit AssertToSpaceInvariantRefsVisitor(ConcurrentCopying* collector) : collector_(collector) {} void operator()(mirror::Object* ref) const REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE { if (ref == nullptr) { // OK. return; } collector_->AssertToSpaceInvariant(nullptr, MemberOffset(0), ref); } private: ConcurrentCopying* const collector_; }; class ConcurrentCopying::AssertToSpaceInvariantFieldVisitor { public: explicit AssertToSpaceInvariantFieldVisitor(ConcurrentCopying* collector) : collector_(collector) {} void operator()(ObjPtr<mirror::Object> obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE { mirror::Object* ref = obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset); AssertToSpaceInvariantRefsVisitor visitor(collector_); visitor(ref); } void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref ATTRIBUTE_UNUSED) const REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE { CHECK(klass->IsTypeOfReferenceClass()); } void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const REQUIRES_SHARED(Locks::mutator_lock_) { if (!root->IsNull()) { VisitRoot(root); } } void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const REQUIRES_SHARED(Locks::mutator_lock_) { AssertToSpaceInvariantRefsVisitor visitor(collector_); visitor(root->AsMirrorPtr()); } private: ConcurrentCopying* const collector_; }; class ConcurrentCopying::AssertToSpaceInvariantObjectVisitor { public: explicit AssertToSpaceInvariantObjectVisitor(ConcurrentCopying* collector) : collector_(collector) {} void operator()(mirror::Object* obj) const REQUIRES_SHARED(Locks::mutator_lock_) { ObjectCallback(obj, collector_); } static void ObjectCallback(mirror::Object* obj, void *arg) REQUIRES_SHARED(Locks::mutator_lock_) { CHECK(obj != nullptr); ConcurrentCopying* collector = reinterpret_cast<ConcurrentCopying*>(arg); space::RegionSpace* region_space = collector->RegionSpace(); CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space"; collector->AssertToSpaceInvariant(nullptr, MemberOffset(0), obj); AssertToSpaceInvariantFieldVisitor visitor(collector); obj->VisitReferences</*kVisitNativeRoots*/true, kDefaultVerifyFlags, kWithoutReadBarrier>( visitor, visitor); } private: ConcurrentCopying* const collector_; }; class ConcurrentCopying::RevokeThreadLocalMarkStackCheckpoint : public Closure { public: RevokeThreadLocalMarkStackCheckpoint(ConcurrentCopying* concurrent_copying, bool disable_weak_ref_access) : concurrent_copying_(concurrent_copying), disable_weak_ref_access_(disable_weak_ref_access) { } virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS { // Note: self is not necessarily equal to thread since thread may be suspended. Thread* self = Thread::Current(); CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc) << thread->GetState() << " thread " << thread << " self " << self; // Revoke thread local mark stacks. accounting::AtomicStack<mirror::Object>* tl_mark_stack = thread->GetThreadLocalMarkStack(); if (tl_mark_stack != nullptr) { MutexLock mu(self, concurrent_copying_->mark_stack_lock_); concurrent_copying_->revoked_mark_stacks_.push_back(tl_mark_stack); thread->SetThreadLocalMarkStack(nullptr); } // Disable weak ref access. if (disable_weak_ref_access_) { thread->SetWeakRefAccessEnabled(false); } // If thread is a running mutator, then act on behalf of the garbage collector. // See the code in ThreadList::RunCheckpoint. concurrent_copying_->GetBarrier().Pass(self); } private: ConcurrentCopying* const concurrent_copying_; const bool disable_weak_ref_access_; }; void ConcurrentCopying::RevokeThreadLocalMarkStacks(bool disable_weak_ref_access, Closure* checkpoint_callback) { Thread* self = Thread::Current(); RevokeThreadLocalMarkStackCheckpoint check_point(this, disable_weak_ref_access); ThreadList* thread_list = Runtime::Current()->GetThreadList(); gc_barrier_->Init(self, 0); size_t barrier_count = thread_list->RunCheckpoint(&check_point, checkpoint_callback); // If there are no threads to wait which implys that all the checkpoint functions are finished, // then no need to release the mutator lock. if (barrier_count == 0) { return; } Locks::mutator_lock_->SharedUnlock(self); { ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun); gc_barrier_->Increment(self, barrier_count); } Locks::mutator_lock_->SharedLock(self); } void ConcurrentCopying::RevokeThreadLocalMarkStack(Thread* thread) { Thread* self = Thread::Current(); CHECK_EQ(self, thread); accounting::AtomicStack<mirror::Object>* tl_mark_stack = thread->GetThreadLocalMarkStack(); if (tl_mark_stack != nullptr) { CHECK(is_marking_); MutexLock mu(self, mark_stack_lock_); revoked_mark_stacks_.push_back(tl_mark_stack); thread->SetThreadLocalMarkStack(nullptr); } } void ConcurrentCopying::ProcessMarkStack() { if (kVerboseMode) { LOG(INFO) << "ProcessMarkStack. "; } bool empty_prev = false; while (true) { bool empty = ProcessMarkStackOnce(); if (empty_prev && empty) { // Saw empty mark stack for a second time, done. break; } empty_prev = empty; } } bool ConcurrentCopying::ProcessMarkStackOnce() { Thread* self = Thread::Current(); CHECK(thread_running_gc_ != nullptr); CHECK(self == thread_running_gc_); CHECK(self->GetThreadLocalMarkStack() == nullptr); size_t count = 0; MarkStackMode mark_stack_mode = mark_stack_mode_.LoadRelaxed(); if (mark_stack_mode == kMarkStackModeThreadLocal) { // Process the thread-local mark stacks and the GC mark stack. count += ProcessThreadLocalMarkStacks(false, nullptr); while (!gc_mark_stack_->IsEmpty()) { mirror::Object* to_ref = gc_mark_stack_->PopBack(); ProcessMarkStackRef(to_ref); ++count; } gc_mark_stack_->Reset(); } else if (mark_stack_mode == kMarkStackModeShared) { // Do an empty checkpoint to avoid a race with a mutator preempted in the middle of a read // barrier but before pushing onto the mark stack. b/32508093. Note the weak ref access is // disabled at this point. IssueEmptyCheckpoint(); // Process the shared GC mark stack with a lock. { MutexLock mu(self, mark_stack_lock_); CHECK(revoked_mark_stacks_.empty()); } while (true) { std::vector<mirror::Object*> refs; { // Copy refs with lock. Note the number of refs should be small. MutexLock mu(self, mark_stack_lock_); if (gc_mark_stack_->IsEmpty()) { break; } for (StackReference<mirror::Object>* p = gc_mark_stack_->Begin(); p != gc_mark_stack_->End(); ++p) { refs.push_back(p->AsMirrorPtr()); } gc_mark_stack_->Reset(); } for (mirror::Object* ref : refs) { ProcessMarkStackRef(ref); ++count; } } } else { CHECK_EQ(static_cast<uint32_t>(mark_stack_mode), static_cast<uint32_t>(kMarkStackModeGcExclusive)); { MutexLock mu(self, mark_stack_lock_); CHECK(revoked_mark_stacks_.empty()); } // Process the GC mark stack in the exclusive mode. No need to take the lock. while (!gc_mark_stack_->IsEmpty()) { mirror::Object* to_ref = gc_mark_stack_->PopBack(); ProcessMarkStackRef(to_ref); ++count; } gc_mark_stack_->Reset(); } // Return true if the stack was empty. return count == 0; } size_t ConcurrentCopying::ProcessThreadLocalMarkStacks(bool disable_weak_ref_access, Closure* checkpoint_callback) { // Run a checkpoint to collect all thread local mark stacks and iterate over them all. RevokeThreadLocalMarkStacks(disable_weak_ref_access, checkpoint_callback); size_t count = 0; std::vector<accounting::AtomicStack<mirror::Object>*> mark_stacks; { MutexLock mu(Thread::Current(), mark_stack_lock_); // Make a copy of the mark stack vector. mark_stacks = revoked_mark_stacks_; revoked_mark_stacks_.clear(); } for (accounting::AtomicStack<mirror::Object>* mark_stack : mark_stacks) { for (StackReference<mirror::Object>* p = mark_stack->Begin(); p != mark_stack->End(); ++p) { mirror::Object* to_ref = p->AsMirrorPtr(); ProcessMarkStackRef(to_ref); ++count; } { MutexLock mu(Thread::Current(), mark_stack_lock_); if (pooled_mark_stacks_.size() >= kMarkStackPoolSize) { // The pool has enough. Delete it. delete mark_stack; } else { // Otherwise, put it into the pool for later reuse. mark_stack->Reset(); pooled_mark_stacks_.push_back(mark_stack); } } } return count; } inline void ConcurrentCopying::ProcessMarkStackRef(mirror::Object* to_ref) { DCHECK(!region_space_->IsInFromSpace(to_ref)); if (kUseBakerReadBarrier) { DCHECK(to_ref->GetReadBarrierState() == ReadBarrier::GrayState()) << " " << to_ref << " " << to_ref->GetReadBarrierState() << " is_marked=" << IsMarked(to_ref); } bool add_to_live_bytes = false; if (region_space_->IsInUnevacFromSpace(to_ref)) { // Mark the bitmap only in the GC thread here so that we don't need a CAS. if (!kUseBakerReadBarrier || !region_space_bitmap_->Set(to_ref)) { // It may be already marked if we accidentally pushed the same object twice due to the racy // bitmap read in MarkUnevacFromSpaceRegion. Scan(to_ref); // Only add to the live bytes if the object was not already marked. add_to_live_bytes = true; } } else { Scan(to_ref); } if (kUseBakerReadBarrier) { DCHECK(to_ref->GetReadBarrierState() == ReadBarrier::GrayState()) << " " << to_ref << " " << to_ref->GetReadBarrierState() << " is_marked=" << IsMarked(to_ref); } #ifdef USE_BAKER_OR_BROOKS_READ_BARRIER mirror::Object* referent = nullptr; if (UNLIKELY((to_ref->GetClass<kVerifyNone, kWithoutReadBarrier>()->IsTypeOfReferenceClass() && (referent = to_ref->AsReference()->GetReferent<kWithoutReadBarrier>()) != nullptr && !IsInToSpace(referent)))) { // Leave this reference gray in the queue so that GetReferent() will trigger a read barrier. We // will change it to white later in ReferenceQueue::DequeuePendingReference(). DCHECK(to_ref->AsReference()->GetPendingNext() != nullptr) << "Left unenqueued ref gray " << to_ref; } else { // We may occasionally leave a reference white in the queue if its referent happens to be // concurrently marked after the Scan() call above has enqueued the Reference, in which case the // above IsInToSpace() evaluates to true and we change the color from gray to white here in this // else block. if (kUseBakerReadBarrier) { bool success = to_ref->AtomicSetReadBarrierState</*kCasRelease*/true>( ReadBarrier::GrayState(), ReadBarrier::WhiteState()); DCHECK(success) << "Must succeed as we won the race."; } } #else DCHECK(!kUseBakerReadBarrier); #endif if (add_to_live_bytes) { // Add to the live bytes per unevacuated from space. Note this code is always run by the // GC-running thread (no synchronization required). DCHECK(region_space_bitmap_->Test(to_ref)); size_t obj_size = to_ref->SizeOf<kDefaultVerifyFlags>(); size_t alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment); region_space_->AddLiveBytes(to_ref, alloc_size); } if (ReadBarrier::kEnableToSpaceInvariantChecks) { AssertToSpaceInvariantObjectVisitor visitor(this); visitor(to_ref); } } class ConcurrentCopying::DisableWeakRefAccessCallback : public Closure { public: explicit DisableWeakRefAccessCallback(ConcurrentCopying* concurrent_copying) : concurrent_copying_(concurrent_copying) { } void Run(Thread* self ATTRIBUTE_UNUSED) OVERRIDE REQUIRES(Locks::thread_list_lock_) { // This needs to run under the thread_list_lock_ critical section in ThreadList::RunCheckpoint() // to avoid a deadlock b/31500969. CHECK(concurrent_copying_->weak_ref_access_enabled_); concurrent_copying_->weak_ref_access_enabled_ = false; } private: ConcurrentCopying* const concurrent_copying_; }; void ConcurrentCopying::SwitchToSharedMarkStackMode() { Thread* self = Thread::Current(); CHECK(thread_running_gc_ != nullptr); CHECK_EQ(self, thread_running_gc_); CHECK(self->GetThreadLocalMarkStack() == nullptr); MarkStackMode before_mark_stack_mode = mark_stack_mode_.LoadRelaxed(); CHECK_EQ(static_cast<uint32_t>(before_mark_stack_mode), static_cast<uint32_t>(kMarkStackModeThreadLocal)); mark_stack_mode_.StoreRelaxed(kMarkStackModeShared); DisableWeakRefAccessCallback dwrac(this); // Process the thread local mark stacks one last time after switching to the shared mark stack // mode and disable weak ref accesses. ProcessThreadLocalMarkStacks(true, &dwrac); if (kVerboseMode) { LOG(INFO) << "Switched to shared mark stack mode and disabled weak ref access"; } } void ConcurrentCopying::SwitchToGcExclusiveMarkStackMode() { Thread* self = Thread::Current(); CHECK(thread_running_gc_ != nullptr); CHECK_EQ(self, thread_running_gc_); CHECK(self->GetThreadLocalMarkStack() == nullptr); MarkStackMode before_mark_stack_mode = mark_stack_mode_.LoadRelaxed(); CHECK_EQ(static_cast<uint32_t>(before_mark_stack_mode), static_cast<uint32_t>(kMarkStackModeShared)); mark_stack_mode_.StoreRelaxed(kMarkStackModeGcExclusive); QuasiAtomic::ThreadFenceForConstructor(); if (kVerboseMode) { LOG(INFO) << "Switched to GC exclusive mark stack mode"; } } void ConcurrentCopying::CheckEmptyMarkStack() { Thread* self = Thread::Current(); CHECK(thread_running_gc_ != nullptr); CHECK_EQ(self, thread_running_gc_); CHECK(self->GetThreadLocalMarkStack() == nullptr); MarkStackMode mark_stack_mode = mark_stack_mode_.LoadRelaxed(); if (mark_stack_mode == kMarkStackModeThreadLocal) { // Thread-local mark stack mode. RevokeThreadLocalMarkStacks(false, nullptr); MutexLock mu(Thread::Current(), mark_stack_lock_); if (!revoked_mark_stacks_.empty()) { for (accounting::AtomicStack<mirror::Object>* mark_stack : revoked_mark_stacks_) { while (!mark_stack->IsEmpty()) { mirror::Object* obj = mark_stack->PopBack(); if (kUseBakerReadBarrier) { uint32_t rb_state = obj->GetReadBarrierState(); LOG(INFO) << "On mark queue : " << obj << " " << obj->PrettyTypeOf() << " rb_state=" << rb_state << " is_marked=" << IsMarked(obj); } else { LOG(INFO) << "On mark queue : " << obj << " " << obj->PrettyTypeOf() << " is_marked=" << IsMarked(obj); } } } LOG(FATAL) << "mark stack is not empty"; } } else { // Shared, GC-exclusive, or off. MutexLock mu(Thread::Current(), mark_stack_lock_); CHECK(gc_mark_stack_->IsEmpty()); CHECK(revoked_mark_stacks_.empty()); } } void ConcurrentCopying::SweepSystemWeaks(Thread* self) { TimingLogger::ScopedTiming split("SweepSystemWeaks", GetTimings()); ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); Runtime::Current()->SweepSystemWeaks(this); } void ConcurrentCopying::Sweep(bool swap_bitmaps) { { TimingLogger::ScopedTiming t("MarkStackAsLive", GetTimings()); accounting::ObjectStack* live_stack = heap_->GetLiveStack(); if (kEnableFromSpaceAccountingCheck) { CHECK_GE(live_stack_freeze_size_, live_stack->Size()); } heap_->MarkAllocStackAsLive(live_stack); live_stack->Reset(); } CheckEmptyMarkStack(); TimingLogger::ScopedTiming split("Sweep", GetTimings()); for (const auto& space : GetHeap()->GetContinuousSpaces()) { if (space->IsContinuousMemMapAllocSpace()) { space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace(); if (space == region_space_ || immune_spaces_.ContainsSpace(space)) { continue; } TimingLogger::ScopedTiming split2( alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepAllocSpace", GetTimings()); RecordFree(alloc_space->Sweep(swap_bitmaps)); } } SweepLargeObjects(swap_bitmaps); } void ConcurrentCopying::MarkZygoteLargeObjects() { TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings()); Thread* const self = Thread::Current(); WriterMutexLock rmu(self, *Locks::heap_bitmap_lock_); space::LargeObjectSpace* const los = heap_->GetLargeObjectsSpace(); if (los != nullptr) { // Pick the current live bitmap (mark bitmap if swapped). accounting::LargeObjectBitmap* const live_bitmap = los->GetLiveBitmap(); accounting::LargeObjectBitmap* const mark_bitmap = los->GetMarkBitmap(); // Walk through all of the objects and explicitly mark the zygote ones so they don't get swept. std::pair<uint8_t*, uint8_t*> range = los->GetBeginEndAtomic(); live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(range.first), reinterpret_cast<uintptr_t>(range.second), [mark_bitmap, los, self](mirror::Object* obj) REQUIRES(Locks::heap_bitmap_lock_) REQUIRES_SHARED(Locks::mutator_lock_) { if (los->IsZygoteLargeObject(self, obj)) { mark_bitmap->Set(obj); } }); } } void ConcurrentCopying::SweepLargeObjects(bool swap_bitmaps) { TimingLogger::ScopedTiming split("SweepLargeObjects", GetTimings()); if (heap_->GetLargeObjectsSpace() != nullptr) { RecordFreeLOS(heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps)); } } void ConcurrentCopying::ReclaimPhase() { TimingLogger::ScopedTiming split("ReclaimPhase", GetTimings()); if (kVerboseMode) { LOG(INFO) << "GC ReclaimPhase"; } Thread* self = Thread::Current(); { // Double-check that the mark stack is empty. // Note: need to set this after VerifyNoFromSpaceRef(). is_asserting_to_space_invariant_ = false; QuasiAtomic::ThreadFenceForConstructor(); if (kVerboseMode) { LOG(INFO) << "Issue an empty check point. "; } IssueEmptyCheckpoint(); // Disable the check. is_mark_stack_push_disallowed_.StoreSequentiallyConsistent(0); if (kUseBakerReadBarrier) { updated_all_immune_objects_.StoreSequentiallyConsistent(false); } CheckEmptyMarkStack(); } { // Record freed objects. TimingLogger::ScopedTiming split2("RecordFree", GetTimings()); // Don't include thread-locals that are in the to-space. const uint64_t from_bytes = region_space_->GetBytesAllocatedInFromSpace(); const uint64_t from_objects = region_space_->GetObjectsAllocatedInFromSpace(); const uint64_t unevac_from_bytes = region_space_->GetBytesAllocatedInUnevacFromSpace(); const uint64_t unevac_from_objects = region_space_->GetObjectsAllocatedInUnevacFromSpace(); uint64_t to_bytes = bytes_moved_.LoadSequentiallyConsistent(); cumulative_bytes_moved_.FetchAndAddRelaxed(to_bytes); uint64_t to_objects = objects_moved_.LoadSequentiallyConsistent(); cumulative_objects_moved_.FetchAndAddRelaxed(to_objects); if (kEnableFromSpaceAccountingCheck) { CHECK_EQ(from_space_num_objects_at_first_pause_, from_objects + unevac_from_objects); CHECK_EQ(from_space_num_bytes_at_first_pause_, from_bytes + unevac_from_bytes); } CHECK_LE(to_objects, from_objects); CHECK_LE(to_bytes, from_bytes); // cleared_bytes and cleared_objects may be greater than the from space equivalents since // ClearFromSpace may clear empty unevac regions. uint64_t cleared_bytes; uint64_t cleared_objects; { TimingLogger::ScopedTiming split4("ClearFromSpace", GetTimings()); region_space_->ClearFromSpace(&cleared_bytes, &cleared_objects); CHECK_GE(cleared_bytes, from_bytes); CHECK_GE(cleared_objects, from_objects); } int64_t freed_bytes = cleared_bytes - to_bytes; int64_t freed_objects = cleared_objects - to_objects; if (kVerboseMode) { LOG(INFO) << "RecordFree:" << " from_bytes=" << from_bytes << " from_objects=" << from_objects << " unevac_from_bytes=" << unevac_from_bytes << " unevac_from_objects=" << unevac_from_objects << " to_bytes=" << to_bytes << " to_objects=" << to_objects << " freed_bytes=" << freed_bytes << " freed_objects=" << freed_objects << " from_space size=" << region_space_->FromSpaceSize() << " unevac_from_space size=" << region_space_->UnevacFromSpaceSize() << " to_space size=" << region_space_->ToSpaceSize(); LOG(INFO) << "(before) num_bytes_allocated=" << heap_->num_bytes_allocated_.LoadSequentiallyConsistent(); } RecordFree(ObjectBytePair(freed_objects, freed_bytes)); if (kVerboseMode) { LOG(INFO) << "(after) num_bytes_allocated=" << heap_->num_bytes_allocated_.LoadSequentiallyConsistent(); } } { WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); Sweep(false); SwapBitmaps(); heap_->UnBindBitmaps(); // The bitmap was cleared at the start of the GC, there is nothing we need to do here. DCHECK(region_space_bitmap_ != nullptr); region_space_bitmap_ = nullptr; } CheckEmptyMarkStack(); if (kVerboseMode) { LOG(INFO) << "GC end of ReclaimPhase"; } } // Assert the to-space invariant. void ConcurrentCopying::AssertToSpaceInvariant(mirror::Object* obj, MemberOffset offset, mirror::Object* ref) { CHECK_EQ(heap_->collector_type_, kCollectorTypeCC); if (is_asserting_to_space_invariant_) { using RegionType = space::RegionSpace::RegionType; space::RegionSpace::RegionType type = region_space_->GetRegionType(ref); if (type == RegionType::kRegionTypeToSpace) { // OK. return; } else if (type == RegionType::kRegionTypeUnevacFromSpace) { CHECK(IsMarkedInUnevacFromSpace(ref)) << ref; } else if (UNLIKELY(type == RegionType::kRegionTypeFromSpace)) { // Not OK. Do extra logging. if (obj != nullptr) { LogFromSpaceRefHolder(obj, offset); } ref->GetLockWord(false).Dump(LOG_STREAM(FATAL_WITHOUT_ABORT)); CHECK(false) << "Found from-space ref " << ref << " " << ref->PrettyTypeOf(); } else { AssertToSpaceInvariantInNonMovingSpace(obj, ref); } } } class RootPrinter { public: RootPrinter() { } template <class MirrorType> ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<MirrorType>* root) REQUIRES_SHARED(Locks::mutator_lock_) { if (!root->IsNull()) { VisitRoot(root); } } template <class MirrorType> void VisitRoot(mirror::Object** root) REQUIRES_SHARED(Locks::mutator_lock_) { LOG(FATAL_WITHOUT_ABORT) << "root=" << root << " ref=" << *root; } template <class MirrorType> void VisitRoot(mirror::CompressedReference<MirrorType>* root) REQUIRES_SHARED(Locks::mutator_lock_) { LOG(FATAL_WITHOUT_ABORT) << "root=" << root << " ref=" << root->AsMirrorPtr(); } }; void ConcurrentCopying::AssertToSpaceInvariant(GcRootSource* gc_root_source, mirror::Object* ref) { CHECK(heap_->collector_type_ == kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_); if (is_asserting_to_space_invariant_) { if (region_space_->IsInToSpace(ref)) { // OK. return; } else if (region_space_->IsInUnevacFromSpace(ref)) { CHECK(IsMarkedInUnevacFromSpace(ref)) << ref; } else if (region_space_->IsInFromSpace(ref)) { // Not OK. Do extra logging. if (gc_root_source == nullptr) { // No info. } else if (gc_root_source->HasArtField()) { ArtField* field = gc_root_source->GetArtField(); LOG(FATAL_WITHOUT_ABORT) << "gc root in field " << field << " " << ArtField::PrettyField(field); RootPrinter root_printer; field->VisitRoots(root_printer); } else if (gc_root_source->HasArtMethod()) { ArtMethod* method = gc_root_source->GetArtMethod(); LOG(FATAL_WITHOUT_ABORT) << "gc root in method " << method << " " << ArtMethod::PrettyMethod(method); RootPrinter root_printer; method->VisitRoots(root_printer, kRuntimePointerSize); } ref->GetLockWord(false).Dump(LOG_STREAM(FATAL_WITHOUT_ABORT)); region_space_->DumpNonFreeRegions(LOG_STREAM(FATAL_WITHOUT_ABORT)); PrintFileToLog("/proc/self/maps", LogSeverity::FATAL_WITHOUT_ABORT); MemMap::DumpMaps(LOG_STREAM(FATAL_WITHOUT_ABORT), true); CHECK(false) << "Found from-space ref " << ref << " " << ref->PrettyTypeOf(); } else { AssertToSpaceInvariantInNonMovingSpace(nullptr, ref); } } } void ConcurrentCopying::LogFromSpaceRefHolder(mirror::Object* obj, MemberOffset offset) { if (kUseBakerReadBarrier) { LOG(INFO) << "holder=" << obj << " " << obj->PrettyTypeOf() << " holder rb_state=" << obj->GetReadBarrierState(); } else { LOG(INFO) << "holder=" << obj << " " << obj->PrettyTypeOf(); } if (region_space_->IsInFromSpace(obj)) { LOG(INFO) << "holder is in the from-space."; } else if (region_space_->IsInToSpace(obj)) { LOG(INFO) << "holder is in the to-space."; } else if (region_space_->IsInUnevacFromSpace(obj)) { LOG(INFO) << "holder is in the unevac from-space."; if (IsMarkedInUnevacFromSpace(obj)) { LOG(INFO) << "holder is marked in the region space bitmap."; } else { LOG(INFO) << "holder is not marked in the region space bitmap."; } } else { // In a non-moving space. if (immune_spaces_.ContainsObject(obj)) { LOG(INFO) << "holder is in an immune image or the zygote space."; } else { LOG(INFO) << "holder is in a non-immune, non-moving (or main) space."; accounting::ContinuousSpaceBitmap* mark_bitmap = heap_mark_bitmap_->GetContinuousSpaceBitmap(obj); accounting::LargeObjectBitmap* los_bitmap = heap_mark_bitmap_->GetLargeObjectBitmap(obj); CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range"; bool is_los = mark_bitmap == nullptr; if (!is_los && mark_bitmap->Test(obj)) { LOG(INFO) << "holder is marked in the mark bit map."; } else if (is_los && los_bitmap->Test(obj)) { LOG(INFO) << "holder is marked in the los bit map."; } else { // If ref is on the allocation stack, then it is considered // mark/alive (but not necessarily on the live stack.) if (IsOnAllocStack(obj)) { LOG(INFO) << "holder is on the alloc stack."; } else { LOG(INFO) << "holder is not marked or on the alloc stack."; } } } } LOG(INFO) << "offset=" << offset.SizeValue(); } void ConcurrentCopying::AssertToSpaceInvariantInNonMovingSpace(mirror::Object* obj, mirror::Object* ref) { // In a non-moving spaces. Check that the ref is marked. if (immune_spaces_.ContainsObject(ref)) { if (kUseBakerReadBarrier) { // Immune object may not be gray if called from the GC. if (Thread::Current() == thread_running_gc_ && !gc_grays_immune_objects_) { return; } bool updated_all_immune_objects = updated_all_immune_objects_.LoadSequentiallyConsistent(); CHECK(updated_all_immune_objects || ref->GetReadBarrierState() == ReadBarrier::GrayState()) << "Unmarked immune space ref. obj=" << obj << " rb_state=" << (obj != nullptr ? obj->GetReadBarrierState() : 0U) << " ref=" << ref << " ref rb_state=" << ref->GetReadBarrierState() << " updated_all_immune_objects=" << updated_all_immune_objects; } } else { accounting::ContinuousSpaceBitmap* mark_bitmap = heap_mark_bitmap_->GetContinuousSpaceBitmap(ref); accounting::LargeObjectBitmap* los_bitmap = heap_mark_bitmap_->GetLargeObjectBitmap(ref); bool is_los = mark_bitmap == nullptr; if ((!is_los && mark_bitmap->Test(ref)) || (is_los && los_bitmap->Test(ref))) { // OK. } else { // If ref is on the allocation stack, then it may not be // marked live, but considered marked/alive (but not // necessarily on the live stack). CHECK(IsOnAllocStack(ref)) << "Unmarked ref that's not on the allocation stack. " << "obj=" << obj << " ref=" << ref; } } } // Used to scan ref fields of an object. class ConcurrentCopying::RefFieldsVisitor { public: explicit RefFieldsVisitor(ConcurrentCopying* collector) : collector_(collector) {} void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES_SHARED(Locks::heap_bitmap_lock_) { collector_->Process(obj, offset); } void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE { CHECK(klass->IsTypeOfReferenceClass()); collector_->DelayReferenceReferent(klass, ref); } void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_) { if (!root->IsNull()) { VisitRoot(root); } } void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_) { collector_->MarkRoot</*kGrayImmuneObject*/false>(root); } private: ConcurrentCopying* const collector_; }; // Scan ref fields of an object. inline void ConcurrentCopying::Scan(mirror::Object* to_ref) { if (kDisallowReadBarrierDuringScan && !Runtime::Current()->IsActiveTransaction()) { // Avoid all read barriers during visit references to help performance. // Don't do this in transaction mode because we may read the old value of an field which may // trigger read barriers. Thread::Current()->ModifyDebugDisallowReadBarrier(1); } DCHECK(!region_space_->IsInFromSpace(to_ref)); DCHECK_EQ(Thread::Current(), thread_running_gc_); RefFieldsVisitor visitor(this); // Disable the read barrier for a performance reason. to_ref->VisitReferences</*kVisitNativeRoots*/true, kDefaultVerifyFlags, kWithoutReadBarrier>( visitor, visitor); if (kDisallowReadBarrierDuringScan && !Runtime::Current()->IsActiveTransaction()) { Thread::Current()->ModifyDebugDisallowReadBarrier(-1); } } // Process a field. inline void ConcurrentCopying::Process(mirror::Object* obj, MemberOffset offset) { DCHECK_EQ(Thread::Current(), thread_running_gc_); mirror::Object* ref = obj->GetFieldObject< mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset); mirror::Object* to_ref = Mark</*kGrayImmuneObject*/false, /*kFromGCThread*/true>( ref, /*holder*/ obj, offset); if (to_ref == ref) { return; } // This may fail if the mutator writes to the field at the same time. But it's ok. mirror::Object* expected_ref = ref; mirror::Object* new_ref = to_ref; do { if (expected_ref != obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset)) { // It was updated by the mutator. break; } // Use release cas to make sure threads reading the reference see contents of copied objects. } while (!obj->CasFieldWeakReleaseObjectWithoutWriteBarrier<false, false, kVerifyNone>( offset, expected_ref, new_ref)); } // Process some roots. inline void ConcurrentCopying::VisitRoots( mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED) { for (size_t i = 0; i < count; ++i) { mirror::Object** root = roots[i]; mirror::Object* ref = *root; mirror::Object* to_ref = Mark(ref); if (to_ref == ref) { continue; } Atomic<mirror::Object*>* addr = reinterpret_cast<Atomic<mirror::Object*>*>(root); mirror::Object* expected_ref = ref; mirror::Object* new_ref = to_ref; do { if (expected_ref != addr->LoadRelaxed()) { // It was updated by the mutator. break; } } while (!addr->CompareExchangeWeakRelaxed(expected_ref, new_ref)); } } template<bool kGrayImmuneObject> inline void ConcurrentCopying::MarkRoot(mirror::CompressedReference<mirror::Object>* root) { DCHECK(!root->IsNull()); mirror::Object* const ref = root->AsMirrorPtr(); mirror::Object* to_ref = Mark<kGrayImmuneObject>(ref); if (to_ref != ref) { auto* addr = reinterpret_cast<Atomic<mirror::CompressedReference<mirror::Object>>*>(root); auto expected_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(ref); auto new_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(to_ref); // If the cas fails, then it was updated by the mutator. do { if (ref != addr->LoadRelaxed().AsMirrorPtr()) { // It was updated by the mutator. break; } } while (!addr->CompareExchangeWeakRelaxed(expected_ref, new_ref)); } } inline void ConcurrentCopying::VisitRoots( mirror::CompressedReference<mirror::Object>** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED) { for (size_t i = 0; i < count; ++i) { mirror::CompressedReference<mirror::Object>* const root = roots[i]; if (!root->IsNull()) { // kGrayImmuneObject is true because this is used for the thread flip. MarkRoot</*kGrayImmuneObject*/true>(root); } } } // Temporary set gc_grays_immune_objects_ to true in a scope if the current thread is GC. class ConcurrentCopying::ScopedGcGraysImmuneObjects { public: explicit ScopedGcGraysImmuneObjects(ConcurrentCopying* collector) : collector_(collector), enabled_(false) { if (kUseBakerReadBarrier && collector_->thread_running_gc_ == Thread::Current() && !collector_->gc_grays_immune_objects_) { collector_->gc_grays_immune_objects_ = true; enabled_ = true; } } ~ScopedGcGraysImmuneObjects() { if (kUseBakerReadBarrier && collector_->thread_running_gc_ == Thread::Current() && enabled_) { DCHECK(collector_->gc_grays_immune_objects_); collector_->gc_grays_immune_objects_ = false; } } private: ConcurrentCopying* const collector_; bool enabled_; }; // Fill the given memory block with a dummy object. Used to fill in a // copy of objects that was lost in race. void ConcurrentCopying::FillWithDummyObject(mirror::Object* dummy_obj, size_t byte_size) { // GC doesn't gray immune objects while scanning immune objects. But we need to trigger the read // barriers here because we need the updated reference to the int array class, etc. Temporary set // gc_grays_immune_objects_ to true so that we won't cause a DCHECK failure in MarkImmuneSpace(). ScopedGcGraysImmuneObjects scoped_gc_gray_immune_objects(this); CHECK_ALIGNED(byte_size, kObjectAlignment); memset(dummy_obj, 0, byte_size); // Avoid going through read barrier for since kDisallowReadBarrierDuringScan may be enabled. // Explicitly mark to make sure to get an object in the to-space. mirror::Class* int_array_class = down_cast<mirror::Class*>( Mark(mirror::IntArray::GetArrayClass<kWithoutReadBarrier>())); CHECK(int_array_class != nullptr); AssertToSpaceInvariant(nullptr, MemberOffset(0), int_array_class); size_t component_size = int_array_class->GetComponentSize<kWithoutReadBarrier>(); CHECK_EQ(component_size, sizeof(int32_t)); size_t data_offset = mirror::Array::DataOffset(component_size).SizeValue(); if (data_offset > byte_size) { // An int array is too big. Use java.lang.Object. AssertToSpaceInvariant(nullptr, MemberOffset(0), java_lang_Object_); CHECK_EQ(byte_size, (java_lang_Object_->GetObjectSize<kVerifyNone, kWithoutReadBarrier>())); dummy_obj->SetClass(java_lang_Object_); CHECK_EQ(byte_size, (dummy_obj->SizeOf<kVerifyNone>())); } else { // Use an int array. dummy_obj->SetClass(int_array_class); CHECK((dummy_obj->IsArrayInstance<kVerifyNone, kWithoutReadBarrier>())); int32_t length = (byte_size - data_offset) / component_size; mirror::Array* dummy_arr = dummy_obj->AsArray<kVerifyNone, kWithoutReadBarrier>(); dummy_arr->SetLength(length); CHECK_EQ(dummy_arr->GetLength(), length) << "byte_size=" << byte_size << " length=" << length << " component_size=" << component_size << " data_offset=" << data_offset; CHECK_EQ(byte_size, (dummy_obj->SizeOf<kVerifyNone>())) << "byte_size=" << byte_size << " length=" << length << " component_size=" << component_size << " data_offset=" << data_offset; } } // Reuse the memory blocks that were copy of objects that were lost in race. mirror::Object* ConcurrentCopying::AllocateInSkippedBlock(size_t alloc_size) { // Try to reuse the blocks that were unused due to CAS failures. CHECK_ALIGNED(alloc_size, space::RegionSpace::kAlignment); Thread* self = Thread::Current(); size_t min_object_size = RoundUp(sizeof(mirror::Object), space::RegionSpace::kAlignment); size_t byte_size; uint8_t* addr; { MutexLock mu(self, skipped_blocks_lock_); auto it = skipped_blocks_map_.lower_bound(alloc_size); if (it == skipped_blocks_map_.end()) { // Not found. return nullptr; } byte_size = it->first; CHECK_GE(byte_size, alloc_size); if (byte_size > alloc_size && byte_size - alloc_size < min_object_size) { // If remainder would be too small for a dummy object, retry with a larger request size. it = skipped_blocks_map_.lower_bound(alloc_size + min_object_size); if (it == skipped_blocks_map_.end()) { // Not found. return nullptr; } CHECK_ALIGNED(it->first - alloc_size, space::RegionSpace::kAlignment); CHECK_GE(it->first - alloc_size, min_object_size) << "byte_size=" << byte_size << " it->first=" << it->first << " alloc_size=" << alloc_size; } // Found a block. CHECK(it != skipped_blocks_map_.end()); byte_size = it->first; addr = it->second; CHECK_GE(byte_size, alloc_size); CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr))); CHECK_ALIGNED(byte_size, space::RegionSpace::kAlignment); if (kVerboseMode) { LOG(INFO) << "Reusing skipped bytes : " << reinterpret_cast<void*>(addr) << ", " << byte_size; } skipped_blocks_map_.erase(it); } memset(addr, 0, byte_size); if (byte_size > alloc_size) { // Return the remainder to the map. CHECK_ALIGNED(byte_size - alloc_size, space::RegionSpace::kAlignment); CHECK_GE(byte_size - alloc_size, min_object_size); // FillWithDummyObject may mark an object, avoid holding skipped_blocks_lock_ to prevent lock // violation and possible deadlock. The deadlock case is a recursive case: // FillWithDummyObject -> IntArray::GetArrayClass -> Mark -> Copy -> AllocateInSkippedBlock. FillWithDummyObject(reinterpret_cast<mirror::Object*>(addr + alloc_size), byte_size - alloc_size); CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr + alloc_size))); { MutexLock mu(self, skipped_blocks_lock_); skipped_blocks_map_.insert(std::make_pair(byte_size - alloc_size, addr + alloc_size)); } } return reinterpret_cast<mirror::Object*>(addr); } mirror::Object* ConcurrentCopying::Copy(mirror::Object* from_ref, mirror::Object* holder, MemberOffset offset) { DCHECK(region_space_->IsInFromSpace(from_ref)); // If the class pointer is null, the object is invalid. This could occur for a dangling pointer // from a previous GC that is either inside or outside the allocated region. mirror::Class* klass = from_ref->GetClass<kVerifyNone, kWithoutReadBarrier>(); if (UNLIKELY(klass == nullptr)) { heap_->GetVerification()->LogHeapCorruption(holder, offset, from_ref, /* fatal */ true); } // There must not be a read barrier to avoid nested RB that might violate the to-space invariant. // Note that from_ref is a from space ref so the SizeOf() call will access the from-space meta // objects, but it's ok and necessary. size_t obj_size = from_ref->SizeOf<kDefaultVerifyFlags>(); size_t region_space_alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment); size_t region_space_bytes_allocated = 0U; size_t non_moving_space_bytes_allocated = 0U; size_t bytes_allocated = 0U; size_t dummy; mirror::Object* to_ref = region_space_->AllocNonvirtual<true>( region_space_alloc_size, ®ion_space_bytes_allocated, nullptr, &dummy); bytes_allocated = region_space_bytes_allocated; if (to_ref != nullptr) { DCHECK_EQ(region_space_alloc_size, region_space_bytes_allocated); } bool fall_back_to_non_moving = false; if (UNLIKELY(to_ref == nullptr)) { // Failed to allocate in the region space. Try the skipped blocks. to_ref = AllocateInSkippedBlock(region_space_alloc_size); if (to_ref != nullptr) { // Succeeded to allocate in a skipped block. if (heap_->use_tlab_) { // This is necessary for the tlab case as it's not accounted in the space. region_space_->RecordAlloc(to_ref); } bytes_allocated = region_space_alloc_size; } else { // Fall back to the non-moving space. fall_back_to_non_moving = true; if (kVerboseMode) { LOG(INFO) << "Out of memory in the to-space. Fall back to non-moving. skipped_bytes=" << to_space_bytes_skipped_.LoadSequentiallyConsistent() << " skipped_objects=" << to_space_objects_skipped_.LoadSequentiallyConsistent(); } fall_back_to_non_moving = true; to_ref = heap_->non_moving_space_->Alloc(Thread::Current(), obj_size, &non_moving_space_bytes_allocated, nullptr, &dummy); if (UNLIKELY(to_ref == nullptr)) { LOG(FATAL_WITHOUT_ABORT) << "Fall-back non-moving space allocation failed for a " << obj_size << " byte object in region type " << region_space_->GetRegionType(from_ref); LOG(FATAL) << "Object address=" << from_ref << " type=" << from_ref->PrettyTypeOf(); } bytes_allocated = non_moving_space_bytes_allocated; // Mark it in the mark bitmap. accounting::ContinuousSpaceBitmap* mark_bitmap = heap_mark_bitmap_->GetContinuousSpaceBitmap(to_ref); CHECK(mark_bitmap != nullptr); CHECK(!mark_bitmap->AtomicTestAndSet(to_ref)); } } DCHECK(to_ref != nullptr); // Copy the object excluding the lock word since that is handled in the loop. to_ref->SetClass(klass); const size_t kObjectHeaderSize = sizeof(mirror::Object); DCHECK_GE(obj_size, kObjectHeaderSize); static_assert(kObjectHeaderSize == sizeof(mirror::HeapReference<mirror::Class>) + sizeof(LockWord), "Object header size does not match"); // Memcpy can tear for words since it may do byte copy. It is only safe to do this since the // object in the from space is immutable other than the lock word. b/31423258 memcpy(reinterpret_cast<uint8_t*>(to_ref) + kObjectHeaderSize, reinterpret_cast<const uint8_t*>(from_ref) + kObjectHeaderSize, obj_size - kObjectHeaderSize); // Attempt to install the forward pointer. This is in a loop as the // lock word atomic write can fail. while (true) { LockWord old_lock_word = from_ref->GetLockWord(false); if (old_lock_word.GetState() == LockWord::kForwardingAddress) { // Lost the race. Another thread (either GC or mutator) stored // the forwarding pointer first. Make the lost copy (to_ref) // look like a valid but dead (dummy) object and keep it for // future reuse. FillWithDummyObject(to_ref, bytes_allocated); if (!fall_back_to_non_moving) { DCHECK(region_space_->IsInToSpace(to_ref)); if (bytes_allocated > space::RegionSpace::kRegionSize) { // Free the large alloc. region_space_->FreeLarge(to_ref, bytes_allocated); } else { // Record the lost copy for later reuse. heap_->num_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes_allocated); to_space_bytes_skipped_.FetchAndAddSequentiallyConsistent(bytes_allocated); to_space_objects_skipped_.FetchAndAddSequentiallyConsistent(1); MutexLock mu(Thread::Current(), skipped_blocks_lock_); skipped_blocks_map_.insert(std::make_pair(bytes_allocated, reinterpret_cast<uint8_t*>(to_ref))); } } else { DCHECK(heap_->non_moving_space_->HasAddress(to_ref)); DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated); // Free the non-moving-space chunk. accounting::ContinuousSpaceBitmap* mark_bitmap = heap_mark_bitmap_->GetContinuousSpaceBitmap(to_ref); CHECK(mark_bitmap != nullptr); CHECK(mark_bitmap->Clear(to_ref)); heap_->non_moving_space_->Free(Thread::Current(), to_ref); } // Get the winner's forward ptr. mirror::Object* lost_fwd_ptr = to_ref; to_ref = reinterpret_cast<mirror::Object*>(old_lock_word.ForwardingAddress()); CHECK(to_ref != nullptr); CHECK_NE(to_ref, lost_fwd_ptr); CHECK(region_space_->IsInToSpace(to_ref) || heap_->non_moving_space_->HasAddress(to_ref)) << "to_ref=" << to_ref << " " << heap_->DumpSpaces(); CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress); return to_ref; } // Copy the old lock word over since we did not copy it yet. to_ref->SetLockWord(old_lock_word, false); // Set the gray ptr. if (kUseBakerReadBarrier) { to_ref->SetReadBarrierState(ReadBarrier::GrayState()); } // Do a fence to prevent the field CAS in ConcurrentCopying::Process from possibly reordering // before the object copy. QuasiAtomic::ThreadFenceRelease(); LockWord new_lock_word = LockWord::FromForwardingAddress(reinterpret_cast<size_t>(to_ref)); // Try to atomically write the fwd ptr. bool success = from_ref->CasLockWordWeakRelaxed(old_lock_word, new_lock_word); if (LIKELY(success)) { // The CAS succeeded. objects_moved_.FetchAndAddRelaxed(1); bytes_moved_.FetchAndAddRelaxed(region_space_alloc_size); if (LIKELY(!fall_back_to_non_moving)) { DCHECK(region_space_->IsInToSpace(to_ref)); } else { DCHECK(heap_->non_moving_space_->HasAddress(to_ref)); DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated); } if (kUseBakerReadBarrier) { DCHECK(to_ref->GetReadBarrierState() == ReadBarrier::GrayState()); } DCHECK(GetFwdPtr(from_ref) == to_ref); CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress); PushOntoMarkStack(to_ref); return to_ref; } else { // The CAS failed. It may have lost the race or may have failed // due to monitor/hashcode ops. Either way, retry. } } } mirror::Object* ConcurrentCopying::IsMarked(mirror::Object* from_ref) { DCHECK(from_ref != nullptr); space::RegionSpace::RegionType rtype = region_space_->GetRegionType(from_ref); if (rtype == space::RegionSpace::RegionType::kRegionTypeToSpace) { // It's already marked. return from_ref; } mirror::Object* to_ref; if (rtype == space::RegionSpace::RegionType::kRegionTypeFromSpace) { to_ref = GetFwdPtr(from_ref); DCHECK(to_ref == nullptr || region_space_->IsInToSpace(to_ref) || heap_->non_moving_space_->HasAddress(to_ref)) << "from_ref=" << from_ref << " to_ref=" << to_ref; } else if (rtype == space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace) { if (IsMarkedInUnevacFromSpace(from_ref)) { to_ref = from_ref; } else { to_ref = nullptr; } } else { // from_ref is in a non-moving space. if (immune_spaces_.ContainsObject(from_ref)) { // An immune object is alive. to_ref = from_ref; } else { // Non-immune non-moving space. Use the mark bitmap. accounting::ContinuousSpaceBitmap* mark_bitmap = heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref); accounting::LargeObjectBitmap* los_bitmap = heap_mark_bitmap_->GetLargeObjectBitmap(from_ref); CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range"; bool is_los = mark_bitmap == nullptr; if (!is_los && mark_bitmap->Test(from_ref)) { // Already marked. to_ref = from_ref; } else if (is_los && los_bitmap->Test(from_ref)) { // Already marked in LOS. to_ref = from_ref; } else { // Not marked. if (IsOnAllocStack(from_ref)) { // If on the allocation stack, it's considered marked. to_ref = from_ref; } else { // Not marked. to_ref = nullptr; } } } } return to_ref; } bool ConcurrentCopying::IsOnAllocStack(mirror::Object* ref) { QuasiAtomic::ThreadFenceAcquire(); accounting::ObjectStack* alloc_stack = GetAllocationStack(); return alloc_stack->Contains(ref); } mirror::Object* ConcurrentCopying::MarkNonMoving(mirror::Object* ref, mirror::Object* holder, MemberOffset offset) { // ref is in a non-moving space (from_ref == to_ref). DCHECK(!region_space_->HasAddress(ref)) << ref; DCHECK(!immune_spaces_.ContainsObject(ref)); // Use the mark bitmap. accounting::ContinuousSpaceBitmap* mark_bitmap = heap_mark_bitmap_->GetContinuousSpaceBitmap(ref); accounting::LargeObjectBitmap* los_bitmap = heap_mark_bitmap_->GetLargeObjectBitmap(ref); bool is_los = mark_bitmap == nullptr; if (!is_los && mark_bitmap->Test(ref)) { // Already marked. if (kUseBakerReadBarrier) { DCHECK(ref->GetReadBarrierState() == ReadBarrier::GrayState() || ref->GetReadBarrierState() == ReadBarrier::WhiteState()); } } else if (is_los && los_bitmap->Test(ref)) { // Already marked in LOS. if (kUseBakerReadBarrier) { DCHECK(ref->GetReadBarrierState() == ReadBarrier::GrayState() || ref->GetReadBarrierState() == ReadBarrier::WhiteState()); } } else { // Not marked. if (IsOnAllocStack(ref)) { // If it's on the allocation stack, it's considered marked. Keep it white. // Objects on the allocation stack need not be marked. if (!is_los) { DCHECK(!mark_bitmap->Test(ref)); } else { DCHECK(!los_bitmap->Test(ref)); } if (kUseBakerReadBarrier) { DCHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::WhiteState()); } } else { // For the baker-style RB, we need to handle 'false-gray' cases. See the // kRegionTypeUnevacFromSpace-case comment in Mark(). if (kUseBakerReadBarrier) { // Test the bitmap first to reduce the chance of false gray cases. if ((!is_los && mark_bitmap->Test(ref)) || (is_los && los_bitmap->Test(ref))) { return ref; } } if (is_los && !IsAligned<kPageSize>(ref)) { // Ref is a large object that is not aligned, it must be heap corruption. Dump data before // AtomicSetReadBarrierState since it will fault if the address is not valid. heap_->GetVerification()->LogHeapCorruption(holder, offset, ref, /* fatal */ true); } // Not marked or on the allocation stack. Try to mark it. // This may or may not succeed, which is ok. bool cas_success = false; if (kUseBakerReadBarrier) { cas_success = ref->AtomicSetReadBarrierState(ReadBarrier::WhiteState(), ReadBarrier::GrayState()); } if (!is_los && mark_bitmap->AtomicTestAndSet(ref)) { // Already marked. if (kUseBakerReadBarrier && cas_success && ref->GetReadBarrierState() == ReadBarrier::GrayState()) { PushOntoFalseGrayStack(ref); } } else if (is_los && los_bitmap->AtomicTestAndSet(ref)) { // Already marked in LOS. if (kUseBakerReadBarrier && cas_success && ref->GetReadBarrierState() == ReadBarrier::GrayState()) { PushOntoFalseGrayStack(ref); } } else { // Newly marked. if (kUseBakerReadBarrier) { DCHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::GrayState()); } PushOntoMarkStack(ref); } } } return ref; } void ConcurrentCopying::FinishPhase() { Thread* const self = Thread::Current(); { MutexLock mu(self, mark_stack_lock_); CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize); } // kVerifyNoMissingCardMarks relies on the region space cards not being cleared to avoid false // positives. if (!kVerifyNoMissingCardMarks) { TimingLogger::ScopedTiming split("ClearRegionSpaceCards", GetTimings()); // We do not currently use the region space cards at all, madvise them away to save ram. heap_->GetCardTable()->ClearCardRange(region_space_->Begin(), region_space_->Limit()); } { MutexLock mu(self, skipped_blocks_lock_); skipped_blocks_map_.clear(); } { ReaderMutexLock mu(self, *Locks::mutator_lock_); { WriterMutexLock mu2(self, *Locks::heap_bitmap_lock_); heap_->ClearMarkedObjects(); } if (kUseBakerReadBarrier && kFilterModUnionCards) { TimingLogger::ScopedTiming split("FilterModUnionCards", GetTimings()); ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_); for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) { DCHECK(space->IsImageSpace() || space->IsZygoteSpace()); accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space); // Filter out cards that don't need to be set. if (table != nullptr) { table->FilterCards(); } } } if (kUseBakerReadBarrier) { TimingLogger::ScopedTiming split("EmptyRBMarkBitStack", GetTimings()); DCHECK(rb_mark_bit_stack_ != nullptr); const auto* limit = rb_mark_bit_stack_->End(); for (StackReference<mirror::Object>* it = rb_mark_bit_stack_->Begin(); it != limit; ++it) { CHECK(it->AsMirrorPtr()->AtomicSetMarkBit(1, 0)); } rb_mark_bit_stack_->Reset(); } } if (measure_read_barrier_slow_path_) { MutexLock mu(self, rb_slow_path_histogram_lock_); rb_slow_path_time_histogram_.AdjustAndAddValue(rb_slow_path_ns_.LoadRelaxed()); rb_slow_path_count_total_ += rb_slow_path_count_.LoadRelaxed(); rb_slow_path_count_gc_total_ += rb_slow_path_count_gc_.LoadRelaxed(); } } bool ConcurrentCopying::IsNullOrMarkedHeapReference(mirror::HeapReference<mirror::Object>* field, bool do_atomic_update) { mirror::Object* from_ref = field->AsMirrorPtr(); if (from_ref == nullptr) { return true; } mirror::Object* to_ref = IsMarked(from_ref); if (to_ref == nullptr) { return false; } if (from_ref != to_ref) { if (do_atomic_update) { do { if (field->AsMirrorPtr() != from_ref) { // Concurrently overwritten by a mutator. break; } } while (!field->CasWeakRelaxed(from_ref, to_ref)); } else { QuasiAtomic::ThreadFenceRelease(); field->Assign(to_ref); QuasiAtomic::ThreadFenceSequentiallyConsistent(); } } return true; } mirror::Object* ConcurrentCopying::MarkObject(mirror::Object* from_ref) { return Mark(from_ref); } void ConcurrentCopying::DelayReferenceReferent(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> reference) { heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, reference, this); } void ConcurrentCopying::ProcessReferences(Thread* self) { TimingLogger::ScopedTiming split("ProcessReferences", GetTimings()); // We don't really need to lock the heap bitmap lock as we use CAS to mark in bitmaps. WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); GetHeap()->GetReferenceProcessor()->ProcessReferences( true /*concurrent*/, GetTimings(), GetCurrentIteration()->GetClearSoftReferences(), this); } void ConcurrentCopying::RevokeAllThreadLocalBuffers() { TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); region_space_->RevokeAllThreadLocalBuffers(); } mirror::Object* ConcurrentCopying::MarkFromReadBarrierWithMeasurements(mirror::Object* from_ref) { if (Thread::Current() != thread_running_gc_) { rb_slow_path_count_.FetchAndAddRelaxed(1u); } else { rb_slow_path_count_gc_.FetchAndAddRelaxed(1u); } ScopedTrace tr(__FUNCTION__); const uint64_t start_time = measure_read_barrier_slow_path_ ? NanoTime() : 0u; mirror::Object* ret = Mark(from_ref); if (measure_read_barrier_slow_path_) { rb_slow_path_ns_.FetchAndAddRelaxed(NanoTime() - start_time); } return ret; } void ConcurrentCopying::DumpPerformanceInfo(std::ostream& os) { GarbageCollector::DumpPerformanceInfo(os); MutexLock mu(Thread::Current(), rb_slow_path_histogram_lock_); if (rb_slow_path_time_histogram_.SampleSize() > 0) { Histogram<uint64_t>::CumulativeData cumulative_data; rb_slow_path_time_histogram_.CreateHistogram(&cumulative_data); rb_slow_path_time_histogram_.PrintConfidenceIntervals(os, 0.99, cumulative_data); } if (rb_slow_path_count_total_ > 0) { os << "Slow path count " << rb_slow_path_count_total_ << "\n"; } if (rb_slow_path_count_gc_total_ > 0) { os << "GC slow path count " << rb_slow_path_count_gc_total_ << "\n"; } os << "Cumulative bytes moved " << cumulative_bytes_moved_.LoadRelaxed() << "\n"; os << "Cumulative objects moved " << cumulative_objects_moved_.LoadRelaxed() << "\n"; } } // namespace collector } // namespace gc } // namespace art