/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_ENTRYPOINTS_ENTRYPOINT_UTILS_INL_H_ #define ART_RUNTIME_ENTRYPOINTS_ENTRYPOINT_UTILS_INL_H_ #include "entrypoint_utils.h" #include "art_field-inl.h" #include "art_method-inl.h" #include "base/enums.h" #include "class_linker-inl.h" #include "common_throws.h" #include "dex_file.h" #include "entrypoints/quick/callee_save_frame.h" #include "handle_scope-inl.h" #include "imt_conflict_table.h" #include "imtable-inl.h" #include "indirect_reference_table.h" #include "invoke_type.h" #include "jni_internal.h" #include "mirror/array.h" #include "mirror/class-inl.h" #include "mirror/object-inl.h" #include "mirror/throwable.h" #include "nth_caller_visitor.h" #include "runtime.h" #include "stack_map.h" #include "thread.h" #include "well_known_classes.h" namespace art { inline ArtMethod* GetResolvedMethod(ArtMethod* outer_method, const MethodInfo& method_info, const InlineInfo& inline_info, const InlineInfoEncoding& encoding, uint8_t inlining_depth) REQUIRES_SHARED(Locks::mutator_lock_) { // This method is being used by artQuickResolutionTrampoline, before it sets up // the passed parameters in a GC friendly way. Therefore we must never be // suspended while executing it. ScopedAssertNoThreadSuspension sants(__FUNCTION__); if (inline_info.EncodesArtMethodAtDepth(encoding, inlining_depth)) { return inline_info.GetArtMethodAtDepth(encoding, inlining_depth); } uint32_t method_index = inline_info.GetMethodIndexAtDepth(encoding, method_info, inlining_depth); if (inline_info.GetDexPcAtDepth(encoding, inlining_depth) == static_cast<uint32_t>(-1)) { // "charAt" special case. It is the only non-leaf method we inline across dex files. ArtMethod* inlined_method = jni::DecodeArtMethod(WellKnownClasses::java_lang_String_charAt); DCHECK_EQ(inlined_method->GetDexMethodIndex(), method_index); return inlined_method; } // Find which method did the call in the inlining hierarchy. ArtMethod* caller = outer_method; if (inlining_depth != 0) { caller = GetResolvedMethod(outer_method, method_info, inline_info, encoding, inlining_depth - 1); } // Lookup the declaring class of the inlined method. const DexFile* dex_file = caller->GetDexFile(); const DexFile::MethodId& method_id = dex_file->GetMethodId(method_index); ArtMethod* inlined_method = caller->GetDexCacheResolvedMethod(method_index, kRuntimePointerSize); if (inlined_method != nullptr && !inlined_method->IsRuntimeMethod()) { return inlined_method; } const char* descriptor = dex_file->StringByTypeIdx(method_id.class_idx_); ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); Thread* self = Thread::Current(); mirror::ClassLoader* class_loader = caller->GetDeclaringClass()->GetClassLoader(); mirror::Class* klass = class_linker->LookupClass(self, descriptor, class_loader); if (klass == nullptr) { LOG(FATAL) << "Could not find an inlined method from an .oat file: " << "the class " << descriptor << " was not found in the class loader of " << caller->PrettyMethod() << ". " << "This must be due to playing wrongly with class loaders"; } // Lookup the method. const char* method_name = dex_file->GetMethodName(method_id); const Signature signature = dex_file->GetMethodSignature(method_id); inlined_method = klass->FindDeclaredDirectMethod(method_name, signature, kRuntimePointerSize); if (inlined_method == nullptr) { inlined_method = klass->FindDeclaredVirtualMethod(method_name, signature, kRuntimePointerSize); if (inlined_method == nullptr) { LOG(FATAL) << "Could not find an inlined method from an .oat file: " << "the class " << descriptor << " does not have " << method_name << signature << " declared. " << "This must be due to duplicate classes or playing wrongly with class loaders"; } } caller->SetDexCacheResolvedMethod(method_index, inlined_method, kRuntimePointerSize); return inlined_method; } ALWAYS_INLINE inline mirror::Class* CheckObjectAlloc(mirror::Class* klass, Thread* self, bool* slow_path) REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Roles::uninterruptible_) { if (UNLIKELY(!klass->IsInstantiable())) { self->ThrowNewException("Ljava/lang/InstantiationError;", klass->PrettyDescriptor().c_str()); *slow_path = true; return nullptr; // Failure } if (UNLIKELY(klass->IsClassClass())) { ThrowIllegalAccessError(nullptr, "Class %s is inaccessible", klass->PrettyDescriptor().c_str()); *slow_path = true; return nullptr; // Failure } if (UNLIKELY(!klass->IsInitialized())) { StackHandleScope<1> hs(self); Handle<mirror::Class> h_klass(hs.NewHandle(klass)); // EnsureInitialized (the class initializer) might cause a GC. // may cause us to suspend meaning that another thread may try to // change the allocator while we are stuck in the entrypoints of // an old allocator. Also, the class initialization may fail. To // handle these cases we mark the slow path boolean as true so // that the caller knows to check the allocator type to see if it // has changed and to null-check the return value in case the // initialization fails. *slow_path = true; if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_klass, true, true)) { DCHECK(self->IsExceptionPending()); return nullptr; // Failure } else { DCHECK(!self->IsExceptionPending()); } return h_klass.Get(); } return klass; } ALWAYS_INLINE inline mirror::Class* CheckClassInitializedForObjectAlloc(mirror::Class* klass, Thread* self, bool* slow_path) REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Roles::uninterruptible_) { if (UNLIKELY(!klass->IsInitialized())) { StackHandleScope<1> hs(self); Handle<mirror::Class> h_class(hs.NewHandle(klass)); // EnsureInitialized (the class initializer) might cause a GC. // may cause us to suspend meaning that another thread may try to // change the allocator while we are stuck in the entrypoints of // an old allocator. Also, the class initialization may fail. To // handle these cases we mark the slow path boolean as true so // that the caller knows to check the allocator type to see if it // has changed and to null-check the return value in case the // initialization fails. *slow_path = true; if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) { DCHECK(self->IsExceptionPending()); return nullptr; // Failure } return h_class.Get(); } return klass; } // Allocate an instance of klass. Throws InstantationError if klass is not instantiable, // or IllegalAccessError if klass is j.l.Class. Performs a clinit check too. template <bool kInstrumented> ALWAYS_INLINE inline mirror::Object* AllocObjectFromCode(mirror::Class* klass, Thread* self, gc::AllocatorType allocator_type) { bool slow_path = false; klass = CheckObjectAlloc(klass, self, &slow_path); if (UNLIKELY(slow_path)) { if (klass == nullptr) { return nullptr; } // CheckObjectAlloc can cause thread suspension which means we may now be instrumented. return klass->Alloc</*kInstrumented*/true>( self, Runtime::Current()->GetHeap()->GetCurrentAllocator()).Ptr(); } DCHECK(klass != nullptr); return klass->Alloc<kInstrumented>(self, allocator_type).Ptr(); } // Given the context of a calling Method and a resolved class, create an instance. template <bool kInstrumented> ALWAYS_INLINE inline mirror::Object* AllocObjectFromCodeResolved(mirror::Class* klass, Thread* self, gc::AllocatorType allocator_type) { DCHECK(klass != nullptr); bool slow_path = false; klass = CheckClassInitializedForObjectAlloc(klass, self, &slow_path); if (UNLIKELY(slow_path)) { if (klass == nullptr) { return nullptr; } gc::Heap* heap = Runtime::Current()->GetHeap(); // Pass in false since the object cannot be finalizable. // CheckClassInitializedForObjectAlloc can cause thread suspension which means we may now be // instrumented. return klass->Alloc</*kInstrumented*/true, false>(self, heap->GetCurrentAllocator()).Ptr(); } // Pass in false since the object cannot be finalizable. return klass->Alloc<kInstrumented, false>(self, allocator_type).Ptr(); } // Given the context of a calling Method and an initialized class, create an instance. template <bool kInstrumented> ALWAYS_INLINE inline mirror::Object* AllocObjectFromCodeInitialized(mirror::Class* klass, Thread* self, gc::AllocatorType allocator_type) { DCHECK(klass != nullptr); // Pass in false since the object cannot be finalizable. return klass->Alloc<kInstrumented, false>(self, allocator_type).Ptr(); } template <bool kAccessCheck> ALWAYS_INLINE inline mirror::Class* CheckArrayAlloc(dex::TypeIndex type_idx, int32_t component_count, ArtMethod* method, bool* slow_path) { if (UNLIKELY(component_count < 0)) { ThrowNegativeArraySizeException(component_count); *slow_path = true; return nullptr; // Failure } mirror::Class* klass = method->GetDexCache()->GetResolvedType(type_idx); if (UNLIKELY(klass == nullptr)) { // Not in dex cache so try to resolve ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); klass = class_linker->ResolveType(type_idx, method); *slow_path = true; if (klass == nullptr) { // Error DCHECK(Thread::Current()->IsExceptionPending()); return nullptr; // Failure } CHECK(klass->IsArrayClass()) << klass->PrettyClass(); } if (kAccessCheck) { mirror::Class* referrer = method->GetDeclaringClass(); if (UNLIKELY(!referrer->CanAccess(klass))) { ThrowIllegalAccessErrorClass(referrer, klass); *slow_path = true; return nullptr; // Failure } } return klass; } // Given the context of a calling Method, use its DexCache to resolve a type to an array Class. If // it cannot be resolved, throw an error. If it can, use it to create an array. // When verification/compiler hasn't been able to verify access, optionally perform an access // check. template <bool kAccessCheck, bool kInstrumented> ALWAYS_INLINE inline mirror::Array* AllocArrayFromCode(dex::TypeIndex type_idx, int32_t component_count, ArtMethod* method, Thread* self, gc::AllocatorType allocator_type) { bool slow_path = false; mirror::Class* klass = CheckArrayAlloc<kAccessCheck>(type_idx, component_count, method, &slow_path); if (UNLIKELY(slow_path)) { if (klass == nullptr) { return nullptr; } gc::Heap* heap = Runtime::Current()->GetHeap(); // CheckArrayAlloc can cause thread suspension which means we may now be instrumented. return mirror::Array::Alloc</*kInstrumented*/true>(self, klass, component_count, klass->GetComponentSizeShift(), heap->GetCurrentAllocator()); } return mirror::Array::Alloc<kInstrumented>(self, klass, component_count, klass->GetComponentSizeShift(), allocator_type); } template <bool kInstrumented> ALWAYS_INLINE inline mirror::Array* AllocArrayFromCodeResolved(mirror::Class* klass, int32_t component_count, Thread* self, gc::AllocatorType allocator_type) { DCHECK(klass != nullptr); if (UNLIKELY(component_count < 0)) { ThrowNegativeArraySizeException(component_count); return nullptr; // Failure } // No need to retry a slow-path allocation as the above code won't cause a GC or thread // suspension. return mirror::Array::Alloc<kInstrumented>(self, klass, component_count, klass->GetComponentSizeShift(), allocator_type); } template<FindFieldType type, bool access_check> inline ArtField* FindFieldFromCode(uint32_t field_idx, ArtMethod* referrer, Thread* self, size_t expected_size) { bool is_primitive; bool is_set; bool is_static; switch (type) { case InstanceObjectRead: is_primitive = false; is_set = false; is_static = false; break; case InstanceObjectWrite: is_primitive = false; is_set = true; is_static = false; break; case InstancePrimitiveRead: is_primitive = true; is_set = false; is_static = false; break; case InstancePrimitiveWrite: is_primitive = true; is_set = true; is_static = false; break; case StaticObjectRead: is_primitive = false; is_set = false; is_static = true; break; case StaticObjectWrite: is_primitive = false; is_set = true; is_static = true; break; case StaticPrimitiveRead: is_primitive = true; is_set = false; is_static = true; break; case StaticPrimitiveWrite: // Keep GCC happy by having a default handler, fall-through. default: is_primitive = true; is_set = true; is_static = true; break; } ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); ArtField* resolved_field; if (access_check) { // Slow path: According to JLS 13.4.8, a linkage error may occur if a compile-time // qualifying type of a field and the resolved run-time qualifying type of a field differed // in their static-ness. // // In particular, don't assume the dex instruction already correctly knows if the // real field is static or not. The resolution must not be aware of this. ArtMethod* method = referrer->GetInterfaceMethodIfProxy(kRuntimePointerSize); StackHandleScope<2> hs(self); Handle<mirror::DexCache> h_dex_cache(hs.NewHandle(method->GetDexCache())); Handle<mirror::ClassLoader> h_class_loader(hs.NewHandle(method->GetClassLoader())); resolved_field = class_linker->ResolveFieldJLS(*method->GetDexFile(), field_idx, h_dex_cache, h_class_loader); } else { // Fast path: Verifier already would've called ResolveFieldJLS and we wouldn't // be executing here if there was a static/non-static mismatch. resolved_field = class_linker->ResolveField(field_idx, referrer, is_static); } if (UNLIKELY(resolved_field == nullptr)) { DCHECK(self->IsExceptionPending()); // Throw exception and unwind. return nullptr; // Failure. } ObjPtr<mirror::Class> fields_class = resolved_field->GetDeclaringClass(); if (access_check) { if (UNLIKELY(resolved_field->IsStatic() != is_static)) { ThrowIncompatibleClassChangeErrorField(resolved_field, is_static, referrer); return nullptr; } mirror::Class* referring_class = referrer->GetDeclaringClass(); if (UNLIKELY(!referring_class->CheckResolvedFieldAccess(fields_class, resolved_field, field_idx))) { DCHECK(self->IsExceptionPending()); // Throw exception and unwind. return nullptr; // Failure. } if (UNLIKELY(is_set && resolved_field->IsFinal() && (fields_class != referring_class))) { ThrowIllegalAccessErrorFinalField(referrer, resolved_field); return nullptr; // Failure. } else { if (UNLIKELY(resolved_field->IsPrimitiveType() != is_primitive || resolved_field->FieldSize() != expected_size)) { self->ThrowNewExceptionF("Ljava/lang/NoSuchFieldError;", "Attempted read of %zd-bit %s on field '%s'", expected_size * (32 / sizeof(int32_t)), is_primitive ? "primitive" : "non-primitive", resolved_field->PrettyField(true).c_str()); return nullptr; // Failure. } } } if (!is_static) { // instance fields must be being accessed on an initialized class return resolved_field; } else { // If the class is initialized we're done. if (LIKELY(fields_class->IsInitialized())) { return resolved_field; } else { StackHandleScope<1> hs(self); if (LIKELY(class_linker->EnsureInitialized(self, hs.NewHandle(fields_class), true, true))) { // Otherwise let's ensure the class is initialized before resolving the field. return resolved_field; } DCHECK(self->IsExceptionPending()); // Throw exception and unwind return nullptr; // Failure. } } } // Explicit template declarations of FindFieldFromCode for all field access types. #define EXPLICIT_FIND_FIELD_FROM_CODE_TEMPLATE_DECL(_type, _access_check) \ template REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE \ ArtField* FindFieldFromCode<_type, _access_check>(uint32_t field_idx, \ ArtMethod* referrer, \ Thread* self, size_t expected_size) \ #define EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(_type) \ EXPLICIT_FIND_FIELD_FROM_CODE_TEMPLATE_DECL(_type, false); \ EXPLICIT_FIND_FIELD_FROM_CODE_TEMPLATE_DECL(_type, true) EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(InstanceObjectRead); EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(InstanceObjectWrite); EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(InstancePrimitiveRead); EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(InstancePrimitiveWrite); EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(StaticObjectRead); EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(StaticObjectWrite); EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(StaticPrimitiveRead); EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(StaticPrimitiveWrite); #undef EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL #undef EXPLICIT_FIND_FIELD_FROM_CODE_TEMPLATE_DECL template<InvokeType type, bool access_check> inline ArtMethod* FindMethodFromCode(uint32_t method_idx, ObjPtr<mirror::Object>* this_object, ArtMethod* referrer, Thread* self) { ClassLinker* const class_linker = Runtime::Current()->GetClassLinker(); ArtMethod* resolved_method = class_linker->GetResolvedMethod(method_idx, referrer); if (resolved_method == nullptr) { StackHandleScope<1> hs(self); ObjPtr<mirror::Object> null_this = nullptr; HandleWrapperObjPtr<mirror::Object> h_this( hs.NewHandleWrapper(type == kStatic ? &null_this : this_object)); constexpr ClassLinker::ResolveMode resolve_mode = access_check ? ClassLinker::kForceICCECheck : ClassLinker::kNoICCECheckForCache; resolved_method = class_linker->ResolveMethod<resolve_mode>(self, method_idx, referrer, type); } // Resolution and access check. if (UNLIKELY(resolved_method == nullptr)) { DCHECK(self->IsExceptionPending()); // Throw exception and unwind. return nullptr; // Failure. } else if (access_check) { mirror::Class* methods_class = resolved_method->GetDeclaringClass(); bool can_access_resolved_method = referrer->GetDeclaringClass()->CheckResolvedMethodAccess<type>(methods_class, resolved_method, method_idx); if (UNLIKELY(!can_access_resolved_method)) { DCHECK(self->IsExceptionPending()); // Throw exception and unwind. return nullptr; // Failure. } // Incompatible class change should have been handled in resolve method. if (UNLIKELY(resolved_method->CheckIncompatibleClassChange(type))) { ThrowIncompatibleClassChangeError(type, resolved_method->GetInvokeType(), resolved_method, referrer); return nullptr; // Failure. } } // Next, null pointer check. if (UNLIKELY(*this_object == nullptr && type != kStatic)) { if (UNLIKELY(resolved_method->GetDeclaringClass()->IsStringClass() && resolved_method->IsConstructor())) { // Hack for String init: // // We assume that the input of String.<init> in verified code is always // an unitialized reference. If it is a null constant, it must have been // optimized out by the compiler. Do not throw NullPointerException. } else { // Maintain interpreter-like semantics where NullPointerException is thrown // after potential NoSuchMethodError from class linker. ThrowNullPointerExceptionForMethodAccess(method_idx, type); return nullptr; // Failure. } } switch (type) { case kStatic: case kDirect: return resolved_method; case kVirtual: { mirror::Class* klass = (*this_object)->GetClass(); uint16_t vtable_index = resolved_method->GetMethodIndex(); if (access_check && (!klass->HasVTable() || vtable_index >= static_cast<uint32_t>(klass->GetVTableLength()))) { // Behavior to agree with that of the verifier. ThrowNoSuchMethodError(type, resolved_method->GetDeclaringClass(), resolved_method->GetName(), resolved_method->GetSignature()); return nullptr; // Failure. } DCHECK(klass->HasVTable()) << klass->PrettyClass(); return klass->GetVTableEntry(vtable_index, class_linker->GetImagePointerSize()); } case kSuper: { // TODO This lookup is quite slow. // NB This is actually quite tricky to do any other way. We cannot use GetDeclaringClass since // that will actually not be what we want in some cases where there are miranda methods or // defaults. What we actually need is a GetContainingClass that says which classes virtuals // this method is coming from. StackHandleScope<2> hs2(self); HandleWrapperObjPtr<mirror::Object> h_this(hs2.NewHandleWrapper(this_object)); Handle<mirror::Class> h_referring_class(hs2.NewHandle(referrer->GetDeclaringClass())); const dex::TypeIndex method_type_idx = referrer->GetDexFile()->GetMethodId(method_idx).class_idx_; mirror::Class* method_reference_class = class_linker->ResolveType(method_type_idx, referrer); if (UNLIKELY(method_reference_class == nullptr)) { // Bad type idx. CHECK(self->IsExceptionPending()); return nullptr; } else if (!method_reference_class->IsInterface()) { // It is not an interface. If the referring class is in the class hierarchy of the // referenced class in the bytecode, we use its super class. Otherwise, we throw // a NoSuchMethodError. mirror::Class* super_class = nullptr; if (method_reference_class->IsAssignableFrom(h_referring_class.Get())) { super_class = h_referring_class->GetSuperClass(); } uint16_t vtable_index = resolved_method->GetMethodIndex(); if (access_check) { // Check existence of super class. if (super_class == nullptr || !super_class->HasVTable() || vtable_index >= static_cast<uint32_t>(super_class->GetVTableLength())) { // Behavior to agree with that of the verifier. ThrowNoSuchMethodError(type, resolved_method->GetDeclaringClass(), resolved_method->GetName(), resolved_method->GetSignature()); return nullptr; // Failure. } } DCHECK(super_class != nullptr); DCHECK(super_class->HasVTable()); return super_class->GetVTableEntry(vtable_index, class_linker->GetImagePointerSize()); } else { // It is an interface. if (access_check) { if (!method_reference_class->IsAssignableFrom(h_this->GetClass())) { ThrowIncompatibleClassChangeErrorClassForInterfaceSuper(resolved_method, method_reference_class, h_this.Get(), referrer); return nullptr; // Failure. } } // TODO We can do better than this for a (compiled) fastpath. ArtMethod* result = method_reference_class->FindVirtualMethodForInterfaceSuper( resolved_method, class_linker->GetImagePointerSize()); // Throw an NSME if nullptr; if (result == nullptr) { ThrowNoSuchMethodError(type, resolved_method->GetDeclaringClass(), resolved_method->GetName(), resolved_method->GetSignature()); } return result; } UNREACHABLE(); } case kInterface: { uint32_t imt_index = ImTable::GetImtIndex(resolved_method); PointerSize pointer_size = class_linker->GetImagePointerSize(); ArtMethod* imt_method = (*this_object)->GetClass()->GetImt(pointer_size)-> Get(imt_index, pointer_size); if (!imt_method->IsRuntimeMethod()) { if (kIsDebugBuild) { mirror::Class* klass = (*this_object)->GetClass(); ArtMethod* method = klass->FindVirtualMethodForInterface( resolved_method, class_linker->GetImagePointerSize()); CHECK_EQ(imt_method, method) << ArtMethod::PrettyMethod(resolved_method) << " / " << imt_method->PrettyMethod() << " / " << ArtMethod::PrettyMethod(method) << " / " << klass->PrettyClass(); } return imt_method; } else { ArtMethod* interface_method = (*this_object)->GetClass()->FindVirtualMethodForInterface( resolved_method, class_linker->GetImagePointerSize()); if (UNLIKELY(interface_method == nullptr)) { ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(resolved_method, *this_object, referrer); return nullptr; // Failure. } return interface_method; } } default: LOG(FATAL) << "Unknown invoke type " << type; return nullptr; // Failure. } } // Explicit template declarations of FindMethodFromCode for all invoke types. #define EXPLICIT_FIND_METHOD_FROM_CODE_TEMPLATE_DECL(_type, _access_check) \ template REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE \ ArtMethod* FindMethodFromCode<_type, _access_check>(uint32_t method_idx, \ ObjPtr<mirror::Object>* this_object, \ ArtMethod* referrer, \ Thread* self) #define EXPLICIT_FIND_METHOD_FROM_CODE_TYPED_TEMPLATE_DECL(_type) \ EXPLICIT_FIND_METHOD_FROM_CODE_TEMPLATE_DECL(_type, false); \ EXPLICIT_FIND_METHOD_FROM_CODE_TEMPLATE_DECL(_type, true) EXPLICIT_FIND_METHOD_FROM_CODE_TYPED_TEMPLATE_DECL(kStatic); EXPLICIT_FIND_METHOD_FROM_CODE_TYPED_TEMPLATE_DECL(kDirect); EXPLICIT_FIND_METHOD_FROM_CODE_TYPED_TEMPLATE_DECL(kVirtual); EXPLICIT_FIND_METHOD_FROM_CODE_TYPED_TEMPLATE_DECL(kSuper); EXPLICIT_FIND_METHOD_FROM_CODE_TYPED_TEMPLATE_DECL(kInterface); #undef EXPLICIT_FIND_METHOD_FROM_CODE_TYPED_TEMPLATE_DECL #undef EXPLICIT_FIND_METHOD_FROM_CODE_TEMPLATE_DECL // Fast path field resolution that can't initialize classes or throw exceptions. inline ArtField* FindFieldFast(uint32_t field_idx, ArtMethod* referrer, FindFieldType type, size_t expected_size) { ScopedAssertNoThreadSuspension ants(__FUNCTION__); ArtField* resolved_field = referrer->GetDexCache()->GetResolvedField(field_idx, kRuntimePointerSize); if (UNLIKELY(resolved_field == nullptr)) { return nullptr; } // Check for incompatible class change. bool is_primitive; bool is_set; bool is_static; switch (type) { case InstanceObjectRead: is_primitive = false; is_set = false; is_static = false; break; case InstanceObjectWrite: is_primitive = false; is_set = true; is_static = false; break; case InstancePrimitiveRead: is_primitive = true; is_set = false; is_static = false; break; case InstancePrimitiveWrite: is_primitive = true; is_set = true; is_static = false; break; case StaticObjectRead: is_primitive = false; is_set = false; is_static = true; break; case StaticObjectWrite: is_primitive = false; is_set = true; is_static = true; break; case StaticPrimitiveRead: is_primitive = true; is_set = false; is_static = true; break; case StaticPrimitiveWrite: is_primitive = true; is_set = true; is_static = true; break; default: LOG(FATAL) << "UNREACHABLE"; UNREACHABLE(); } if (UNLIKELY(resolved_field->IsStatic() != is_static)) { // Incompatible class change. return nullptr; } ObjPtr<mirror::Class> fields_class = resolved_field->GetDeclaringClass(); if (is_static) { // Check class is initialized else fail so that we can contend to initialize the class with // other threads that may be racing to do this. if (UNLIKELY(!fields_class->IsInitialized())) { return nullptr; } } mirror::Class* referring_class = referrer->GetDeclaringClass(); if (UNLIKELY(!referring_class->CanAccess(fields_class) || !referring_class->CanAccessMember(fields_class, resolved_field->GetAccessFlags()) || (is_set && resolved_field->IsFinal() && (fields_class != referring_class)))) { // Illegal access. return nullptr; } if (UNLIKELY(resolved_field->IsPrimitiveType() != is_primitive || resolved_field->FieldSize() != expected_size)) { return nullptr; } return resolved_field; } // Fast path method resolution that can't throw exceptions. inline ArtMethod* FindMethodFast(uint32_t method_idx, ObjPtr<mirror::Object> this_object, ArtMethod* referrer, bool access_check, InvokeType type) { ScopedAssertNoThreadSuspension ants(__FUNCTION__); if (UNLIKELY(this_object == nullptr && type != kStatic)) { return nullptr; } mirror::Class* referring_class = referrer->GetDeclaringClass(); ArtMethod* resolved_method = referrer->GetDexCache()->GetResolvedMethod(method_idx, kRuntimePointerSize); if (UNLIKELY(resolved_method == nullptr)) { return nullptr; } if (access_check) { // Check for incompatible class change errors and access. bool icce = resolved_method->CheckIncompatibleClassChange(type); if (UNLIKELY(icce)) { return nullptr; } mirror::Class* methods_class = resolved_method->GetDeclaringClass(); if (UNLIKELY(!referring_class->CanAccess(methods_class) || !referring_class->CanAccessMember(methods_class, resolved_method->GetAccessFlags()))) { // Potential illegal access, may need to refine the method's class. return nullptr; } } if (type == kInterface) { // Most common form of slow path dispatch. return this_object->GetClass()->FindVirtualMethodForInterface(resolved_method, kRuntimePointerSize); } else if (type == kStatic || type == kDirect) { return resolved_method; } else if (type == kSuper) { // TODO This lookup is rather slow. ObjPtr<mirror::DexCache> dex_cache = referrer->GetDexCache(); dex::TypeIndex method_type_idx = dex_cache->GetDexFile()->GetMethodId(method_idx).class_idx_; ObjPtr<mirror::Class> method_reference_class = ClassLinker::LookupResolvedType( method_type_idx, dex_cache, referrer->GetClassLoader()); if (method_reference_class == nullptr) { // Need to do full type resolution... return nullptr; } else if (!method_reference_class->IsInterface()) { // It is not an interface. If the referring class is in the class hierarchy of the // referenced class in the bytecode, we use its super class. Otherwise, we cannot // resolve the method. if (!method_reference_class->IsAssignableFrom(referring_class)) { return nullptr; } mirror::Class* super_class = referring_class->GetSuperClass(); if (resolved_method->GetMethodIndex() >= super_class->GetVTableLength()) { // The super class does not have the method. return nullptr; } return super_class->GetVTableEntry(resolved_method->GetMethodIndex(), kRuntimePointerSize); } else { return method_reference_class->FindVirtualMethodForInterfaceSuper( resolved_method, kRuntimePointerSize); } } else { DCHECK(type == kVirtual); return this_object->GetClass()->GetVTableEntry( resolved_method->GetMethodIndex(), kRuntimePointerSize); } } inline mirror::Class* ResolveVerifyAndClinit(dex::TypeIndex type_idx, ArtMethod* referrer, Thread* self, bool can_run_clinit, bool verify_access) { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); mirror::Class* klass = class_linker->ResolveType(type_idx, referrer); if (UNLIKELY(klass == nullptr)) { CHECK(self->IsExceptionPending()); return nullptr; // Failure - Indicate to caller to deliver exception } // Perform access check if necessary. mirror::Class* referring_class = referrer->GetDeclaringClass(); if (verify_access && UNLIKELY(!referring_class->CanAccess(klass))) { ThrowIllegalAccessErrorClass(referring_class, klass); return nullptr; // Failure - Indicate to caller to deliver exception } // If we're just implementing const-class, we shouldn't call <clinit>. if (!can_run_clinit) { return klass; } // If we are the <clinit> of this class, just return our storage. // // Do not set the DexCache InitializedStaticStorage, since that implies <clinit> has finished // running. if (klass == referring_class && referrer->IsConstructor() && referrer->IsStatic()) { return klass; } StackHandleScope<1> hs(self); Handle<mirror::Class> h_class(hs.NewHandle(klass)); if (!class_linker->EnsureInitialized(self, h_class, true, true)) { CHECK(self->IsExceptionPending()); return nullptr; // Failure - Indicate to caller to deliver exception } return h_class.Get(); } static inline mirror::String* ResolveString(ClassLinker* class_linker, dex::StringIndex string_idx, ArtMethod* referrer) REQUIRES_SHARED(Locks::mutator_lock_) { Thread::PoisonObjectPointersIfDebug(); ObjPtr<mirror::String> string = referrer->GetDexCache()->GetResolvedString(string_idx); if (UNLIKELY(string == nullptr)) { StackHandleScope<1> hs(Thread::Current()); Handle<mirror::DexCache> dex_cache(hs.NewHandle(referrer->GetDexCache())); const DexFile& dex_file = *dex_cache->GetDexFile(); string = class_linker->ResolveString(dex_file, string_idx, dex_cache); } return string.Ptr(); } inline mirror::String* ResolveStringFromCode(ArtMethod* referrer, dex::StringIndex string_idx) { Thread::PoisonObjectPointersIfDebug(); ObjPtr<mirror::String> string = referrer->GetDexCache()->GetResolvedString(string_idx); if (UNLIKELY(string == nullptr)) { StackHandleScope<1> hs(Thread::Current()); Handle<mirror::DexCache> dex_cache(hs.NewHandle(referrer->GetDexCache())); const DexFile& dex_file = *dex_cache->GetDexFile(); ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); string = class_linker->ResolveString(dex_file, string_idx, dex_cache); } return string.Ptr(); } inline void UnlockJniSynchronizedMethod(jobject locked, Thread* self) { // Save any pending exception over monitor exit call. mirror::Throwable* saved_exception = nullptr; if (UNLIKELY(self->IsExceptionPending())) { saved_exception = self->GetException(); self->ClearException(); } // Decode locked object and unlock, before popping local references. self->DecodeJObject(locked)->MonitorExit(self); if (UNLIKELY(self->IsExceptionPending())) { LOG(FATAL) << "Synchronized JNI code returning with an exception:\n" << saved_exception->Dump() << "\nEncountered second exception during implicit MonitorExit:\n" << self->GetException()->Dump(); } // Restore pending exception. if (saved_exception != nullptr) { self->SetException(saved_exception); } } template <typename INT_TYPE, typename FLOAT_TYPE> inline INT_TYPE art_float_to_integral(FLOAT_TYPE f) { const INT_TYPE kMaxInt = static_cast<INT_TYPE>(std::numeric_limits<INT_TYPE>::max()); const INT_TYPE kMinInt = static_cast<INT_TYPE>(std::numeric_limits<INT_TYPE>::min()); const FLOAT_TYPE kMaxIntAsFloat = static_cast<FLOAT_TYPE>(kMaxInt); const FLOAT_TYPE kMinIntAsFloat = static_cast<FLOAT_TYPE>(kMinInt); if (LIKELY(f > kMinIntAsFloat)) { if (LIKELY(f < kMaxIntAsFloat)) { return static_cast<INT_TYPE>(f); } else { return kMaxInt; } } else { return (f != f) ? 0 : kMinInt; // f != f implies NaN } } } // namespace art #endif // ART_RUNTIME_ENTRYPOINTS_ENTRYPOINT_UTILS_INL_H_