/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dex_file.h" #include <fcntl.h> #include <limits.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/file.h> #include <sys/mman.h> // For the PROT_* and MAP_* constants. #include <sys/stat.h> #include <zlib.h> #include <memory> #include <sstream> #include <type_traits> #include "android-base/stringprintf.h" #include "base/enums.h" #include "base/file_magic.h" #include "base/logging.h" #include "base/systrace.h" #include "base/unix_file/fd_file.h" #include "dex_file-inl.h" #include "dex_file_verifier.h" #include "jvalue.h" #include "leb128.h" #include "os.h" #include "utf-inl.h" #include "utils.h" #include "zip_archive.h" namespace art { using android::base::StringPrintf; static_assert(sizeof(dex::StringIndex) == sizeof(uint32_t), "StringIndex size is wrong"); static_assert(std::is_trivially_copyable<dex::StringIndex>::value, "StringIndex not trivial"); static_assert(sizeof(dex::TypeIndex) == sizeof(uint16_t), "TypeIndex size is wrong"); static_assert(std::is_trivially_copyable<dex::TypeIndex>::value, "TypeIndex not trivial"); static constexpr OatDexFile* kNoOatDexFile = nullptr; const char* DexFile::kClassesDex = "classes.dex"; const uint8_t DexFile::kDexMagic[] = { 'd', 'e', 'x', '\n' }; const uint8_t DexFile::kDexMagicVersions[DexFile::kNumDexVersions][DexFile::kDexVersionLen] = { {'0', '3', '5', '\0'}, // Dex version 036 skipped because of an old dalvik bug on some versions of android where dex // files with that version number would erroneously be accepted and run. {'0', '3', '7', '\0'}, // Dex version 038: Android "O" and beyond. {'0', '3', '8', '\0'} }; uint32_t DexFile::CalculateChecksum() const { const uint32_t non_sum = OFFSETOF_MEMBER(DexFile::Header, signature_); const uint8_t* non_sum_ptr = Begin() + non_sum; return adler32(adler32(0L, Z_NULL, 0), non_sum_ptr, Size() - non_sum); } struct DexFile::AnnotationValue { JValue value_; uint8_t type_; }; bool DexFile::GetMultiDexChecksums(const char* filename, std::vector<uint32_t>* checksums, std::string* error_msg) { CHECK(checksums != nullptr); uint32_t magic; File fd = OpenAndReadMagic(filename, &magic, error_msg); if (fd.Fd() == -1) { DCHECK(!error_msg->empty()); return false; } if (IsZipMagic(magic)) { std::unique_ptr<ZipArchive> zip_archive( ZipArchive::OpenFromFd(fd.Release(), filename, error_msg)); if (zip_archive.get() == nullptr) { *error_msg = StringPrintf("Failed to open zip archive '%s' (error msg: %s)", filename, error_msg->c_str()); return false; } uint32_t i = 0; std::string zip_entry_name = GetMultiDexClassesDexName(i++); std::unique_ptr<ZipEntry> zip_entry(zip_archive->Find(zip_entry_name.c_str(), error_msg)); if (zip_entry.get() == nullptr) { *error_msg = StringPrintf("Zip archive '%s' doesn't contain %s (error msg: %s)", filename, zip_entry_name.c_str(), error_msg->c_str()); return false; } do { checksums->push_back(zip_entry->GetCrc32()); zip_entry_name = DexFile::GetMultiDexClassesDexName(i++); zip_entry.reset(zip_archive->Find(zip_entry_name.c_str(), error_msg)); } while (zip_entry.get() != nullptr); return true; } if (IsDexMagic(magic)) { std::unique_ptr<const DexFile> dex_file( DexFile::OpenFile(fd.Release(), filename, false, false, error_msg)); if (dex_file.get() == nullptr) { return false; } checksums->push_back(dex_file->GetHeader().checksum_); return true; } *error_msg = StringPrintf("Expected valid zip or dex file: '%s'", filename); return false; } int DexFile::GetPermissions() const { if (mem_map_.get() == nullptr) { return 0; } else { return mem_map_->GetProtect(); } } bool DexFile::IsReadOnly() const { return GetPermissions() == PROT_READ; } bool DexFile::EnableWrite() const { CHECK(IsReadOnly()); if (mem_map_.get() == nullptr) { return false; } else { return mem_map_->Protect(PROT_READ | PROT_WRITE); } } bool DexFile::DisableWrite() const { CHECK(!IsReadOnly()); if (mem_map_.get() == nullptr) { return false; } else { return mem_map_->Protect(PROT_READ); } } std::unique_ptr<const DexFile> DexFile::Open(const uint8_t* base, size_t size, const std::string& location, uint32_t location_checksum, const OatDexFile* oat_dex_file, bool verify, bool verify_checksum, std::string* error_msg) { ScopedTrace trace(std::string("Open dex file from RAM ") + location); return OpenCommon(base, size, location, location_checksum, oat_dex_file, verify, verify_checksum, error_msg); } std::unique_ptr<const DexFile> DexFile::Open(const std::string& location, uint32_t location_checksum, std::unique_ptr<MemMap> map, bool verify, bool verify_checksum, std::string* error_msg) { ScopedTrace trace(std::string("Open dex file from mapped-memory ") + location); CHECK(map.get() != nullptr); if (map->Size() < sizeof(DexFile::Header)) { *error_msg = StringPrintf( "DexFile: failed to open dex file '%s' that is too short to have a header", location.c_str()); return nullptr; } std::unique_ptr<DexFile> dex_file = OpenCommon(map->Begin(), map->Size(), location, location_checksum, kNoOatDexFile, verify, verify_checksum, error_msg); if (dex_file != nullptr) { dex_file->mem_map_.reset(map.release()); } return dex_file; } bool DexFile::Open(const char* filename, const std::string& location, bool verify_checksum, std::string* error_msg, std::vector<std::unique_ptr<const DexFile>>* dex_files) { ScopedTrace trace(std::string("Open dex file ") + std::string(location)); DCHECK(dex_files != nullptr) << "DexFile::Open: out-param is nullptr"; uint32_t magic; File fd = OpenAndReadMagic(filename, &magic, error_msg); if (fd.Fd() == -1) { DCHECK(!error_msg->empty()); return false; } if (IsZipMagic(magic)) { return DexFile::OpenZip(fd.Release(), location, verify_checksum, error_msg, dex_files); } if (IsDexMagic(magic)) { std::unique_ptr<const DexFile> dex_file(DexFile::OpenFile(fd.Release(), location, /* verify */ true, verify_checksum, error_msg)); if (dex_file.get() != nullptr) { dex_files->push_back(std::move(dex_file)); return true; } else { return false; } } *error_msg = StringPrintf("Expected valid zip or dex file: '%s'", filename); return false; } std::unique_ptr<const DexFile> DexFile::OpenDex(int fd, const std::string& location, bool verify_checksum, std::string* error_msg) { ScopedTrace trace("Open dex file " + std::string(location)); return OpenFile(fd, location, true /* verify */, verify_checksum, error_msg); } bool DexFile::OpenZip(int fd, const std::string& location, bool verify_checksum, std::string* error_msg, std::vector<std::unique_ptr<const DexFile>>* dex_files) { ScopedTrace trace("Dex file open Zip " + std::string(location)); DCHECK(dex_files != nullptr) << "DexFile::OpenZip: out-param is nullptr"; std::unique_ptr<ZipArchive> zip_archive(ZipArchive::OpenFromFd(fd, location.c_str(), error_msg)); if (zip_archive.get() == nullptr) { DCHECK(!error_msg->empty()); return false; } return DexFile::OpenAllDexFilesFromZip(*zip_archive, location, verify_checksum, error_msg, dex_files); } std::unique_ptr<const DexFile> DexFile::OpenFile(int fd, const std::string& location, bool verify, bool verify_checksum, std::string* error_msg) { ScopedTrace trace(std::string("Open dex file ") + std::string(location)); CHECK(!location.empty()); std::unique_ptr<MemMap> map; { File delayed_close(fd, /* check_usage */ false); struct stat sbuf; memset(&sbuf, 0, sizeof(sbuf)); if (fstat(fd, &sbuf) == -1) { *error_msg = StringPrintf("DexFile: fstat '%s' failed: %s", location.c_str(), strerror(errno)); return nullptr; } if (S_ISDIR(sbuf.st_mode)) { *error_msg = StringPrintf("Attempt to mmap directory '%s'", location.c_str()); return nullptr; } size_t length = sbuf.st_size; map.reset(MemMap::MapFile(length, PROT_READ, MAP_PRIVATE, fd, 0, /*low_4gb*/false, location.c_str(), error_msg)); if (map == nullptr) { DCHECK(!error_msg->empty()); return nullptr; } } if (map->Size() < sizeof(DexFile::Header)) { *error_msg = StringPrintf( "DexFile: failed to open dex file '%s' that is too short to have a header", location.c_str()); return nullptr; } const Header* dex_header = reinterpret_cast<const Header*>(map->Begin()); std::unique_ptr<DexFile> dex_file = OpenCommon(map->Begin(), map->Size(), location, dex_header->checksum_, kNoOatDexFile, verify, verify_checksum, error_msg); if (dex_file != nullptr) { dex_file->mem_map_.reset(map.release()); } return dex_file; } std::unique_ptr<const DexFile> DexFile::OpenOneDexFileFromZip(const ZipArchive& zip_archive, const char* entry_name, const std::string& location, bool verify_checksum, std::string* error_msg, ZipOpenErrorCode* error_code) { ScopedTrace trace("Dex file open from Zip Archive " + std::string(location)); CHECK(!location.empty()); std::unique_ptr<ZipEntry> zip_entry(zip_archive.Find(entry_name, error_msg)); if (zip_entry == nullptr) { *error_code = ZipOpenErrorCode::kEntryNotFound; return nullptr; } if (zip_entry->GetUncompressedLength() == 0) { *error_msg = StringPrintf("Dex file '%s' has zero length", location.c_str()); *error_code = ZipOpenErrorCode::kDexFileError; return nullptr; } std::unique_ptr<MemMap> map; if (zip_entry->IsUncompressed()) { if (!zip_entry->IsAlignedTo(alignof(Header))) { // Do not mmap unaligned ZIP entries because // doing so would fail dex verification which requires 4 byte alignment. LOG(WARNING) << "Can't mmap dex file " << location << "!" << entry_name << " directly; " << "please zipalign to " << alignof(Header) << " bytes. " << "Falling back to extracting file."; } else { // Map uncompressed files within zip as file-backed to avoid a dirty copy. map.reset(zip_entry->MapDirectlyFromFile(location.c_str(), /*out*/error_msg)); if (map == nullptr) { LOG(WARNING) << "Can't mmap dex file " << location << "!" << entry_name << " directly; " << "is your ZIP file corrupted? Falling back to extraction."; // Try again with Extraction which still has a chance of recovery. } } } if (map == nullptr) { // Default path for compressed ZIP entries, // and fallback for stored ZIP entries. map.reset(zip_entry->ExtractToMemMap(location.c_str(), entry_name, error_msg)); } if (map == nullptr) { *error_msg = StringPrintf("Failed to extract '%s' from '%s': %s", entry_name, location.c_str(), error_msg->c_str()); *error_code = ZipOpenErrorCode::kExtractToMemoryError; return nullptr; } VerifyResult verify_result; std::unique_ptr<DexFile> dex_file = OpenCommon(map->Begin(), map->Size(), location, zip_entry->GetCrc32(), kNoOatDexFile, /* verify */ true, verify_checksum, error_msg, &verify_result); if (dex_file == nullptr) { if (verify_result == VerifyResult::kVerifyNotAttempted) { *error_code = ZipOpenErrorCode::kDexFileError; } else { *error_code = ZipOpenErrorCode::kVerifyError; } return nullptr; } dex_file->mem_map_.reset(map.release()); if (!dex_file->DisableWrite()) { *error_msg = StringPrintf("Failed to make dex file '%s' read only", location.c_str()); *error_code = ZipOpenErrorCode::kMakeReadOnlyError; return nullptr; } CHECK(dex_file->IsReadOnly()) << location; if (verify_result != VerifyResult::kVerifySucceeded) { *error_code = ZipOpenErrorCode::kVerifyError; return nullptr; } *error_code = ZipOpenErrorCode::kNoError; return dex_file; } // Technically we do not have a limitation with respect to the number of dex files that can be in a // multidex APK. However, it's bad practice, as each dex file requires its own tables for symbols // (types, classes, methods, ...) and dex caches. So warn the user that we open a zip with what // seems an excessive number. static constexpr size_t kWarnOnManyDexFilesThreshold = 100; bool DexFile::OpenAllDexFilesFromZip(const ZipArchive& zip_archive, const std::string& location, bool verify_checksum, std::string* error_msg, std::vector<std::unique_ptr<const DexFile>>* dex_files) { ScopedTrace trace("Dex file open from Zip " + std::string(location)); DCHECK(dex_files != nullptr) << "DexFile::OpenFromZip: out-param is nullptr"; ZipOpenErrorCode error_code; std::unique_ptr<const DexFile> dex_file(OpenOneDexFileFromZip(zip_archive, kClassesDex, location, verify_checksum, error_msg, &error_code)); if (dex_file.get() == nullptr) { return false; } else { // Had at least classes.dex. dex_files->push_back(std::move(dex_file)); // Now try some more. // We could try to avoid std::string allocations by working on a char array directly. As we // do not expect a lot of iterations, this seems too involved and brittle. for (size_t i = 1; ; ++i) { std::string name = GetMultiDexClassesDexName(i); std::string fake_location = GetMultiDexLocation(i, location.c_str()); std::unique_ptr<const DexFile> next_dex_file(OpenOneDexFileFromZip(zip_archive, name.c_str(), fake_location, verify_checksum, error_msg, &error_code)); if (next_dex_file.get() == nullptr) { if (error_code != ZipOpenErrorCode::kEntryNotFound) { LOG(WARNING) << "Zip open failed: " << *error_msg; } break; } else { dex_files->push_back(std::move(next_dex_file)); } if (i == kWarnOnManyDexFilesThreshold) { LOG(WARNING) << location << " has in excess of " << kWarnOnManyDexFilesThreshold << " dex files. Please consider coalescing and shrinking the number to " " avoid runtime overhead."; } if (i == std::numeric_limits<size_t>::max()) { LOG(ERROR) << "Overflow in number of dex files!"; break; } } return true; } } std::unique_ptr<DexFile> DexFile::OpenCommon(const uint8_t* base, size_t size, const std::string& location, uint32_t location_checksum, const OatDexFile* oat_dex_file, bool verify, bool verify_checksum, std::string* error_msg, VerifyResult* verify_result) { if (verify_result != nullptr) { *verify_result = VerifyResult::kVerifyNotAttempted; } std::unique_ptr<DexFile> dex_file(new DexFile(base, size, location, location_checksum, oat_dex_file)); if (dex_file == nullptr) { *error_msg = StringPrintf("Failed to open dex file '%s' from memory: %s", location.c_str(), error_msg->c_str()); return nullptr; } if (!dex_file->Init(error_msg)) { dex_file.reset(); return nullptr; } if (verify && !DexFileVerifier::Verify(dex_file.get(), dex_file->Begin(), dex_file->Size(), location.c_str(), verify_checksum, error_msg)) { if (verify_result != nullptr) { *verify_result = VerifyResult::kVerifyFailed; } return nullptr; } if (verify_result != nullptr) { *verify_result = VerifyResult::kVerifySucceeded; } return dex_file; } DexFile::DexFile(const uint8_t* base, size_t size, const std::string& location, uint32_t location_checksum, const OatDexFile* oat_dex_file) : begin_(base), size_(size), location_(location), location_checksum_(location_checksum), header_(reinterpret_cast<const Header*>(base)), string_ids_(reinterpret_cast<const StringId*>(base + header_->string_ids_off_)), type_ids_(reinterpret_cast<const TypeId*>(base + header_->type_ids_off_)), field_ids_(reinterpret_cast<const FieldId*>(base + header_->field_ids_off_)), method_ids_(reinterpret_cast<const MethodId*>(base + header_->method_ids_off_)), proto_ids_(reinterpret_cast<const ProtoId*>(base + header_->proto_ids_off_)), class_defs_(reinterpret_cast<const ClassDef*>(base + header_->class_defs_off_)), method_handles_(nullptr), num_method_handles_(0), call_site_ids_(nullptr), num_call_site_ids_(0), oat_dex_file_(oat_dex_file) { CHECK(begin_ != nullptr) << GetLocation(); CHECK_GT(size_, 0U) << GetLocation(); // Check base (=header) alignment. // Must be 4-byte aligned to avoid undefined behavior when accessing // any of the sections via a pointer. CHECK_ALIGNED(begin_, alignof(Header)); InitializeSectionsFromMapList(); } DexFile::~DexFile() { // We don't call DeleteGlobalRef on dex_object_ because we're only called by DestroyJavaVM, and // that's only called after DetachCurrentThread, which means there's no JNIEnv. We could // re-attach, but cleaning up these global references is not obviously useful. It's not as if // the global reference table is otherwise empty! } bool DexFile::Init(std::string* error_msg) { if (!CheckMagicAndVersion(error_msg)) { return false; } return true; } bool DexFile::CheckMagicAndVersion(std::string* error_msg) const { if (!IsMagicValid(header_->magic_)) { std::ostringstream oss; oss << "Unrecognized magic number in " << GetLocation() << ":" << " " << header_->magic_[0] << " " << header_->magic_[1] << " " << header_->magic_[2] << " " << header_->magic_[3]; *error_msg = oss.str(); return false; } if (!IsVersionValid(header_->magic_)) { std::ostringstream oss; oss << "Unrecognized version number in " << GetLocation() << ":" << " " << header_->magic_[4] << " " << header_->magic_[5] << " " << header_->magic_[6] << " " << header_->magic_[7]; *error_msg = oss.str(); return false; } return true; } void DexFile::InitializeSectionsFromMapList() { const MapList* map_list = reinterpret_cast<const MapList*>(begin_ + header_->map_off_); if (header_->map_off_ == 0 || header_->map_off_ > size_) { // Bad offset. The dex file verifier runs after this method and will reject the file. return; } const size_t count = map_list->size_; size_t map_limit = header_->map_off_ + count * sizeof(MapItem); if (header_->map_off_ >= map_limit || map_limit > size_) { // Overflow or out out of bounds. The dex file verifier runs after // this method and will reject the file as it is malformed. return; } for (size_t i = 0; i < count; ++i) { const MapItem& map_item = map_list->list_[i]; if (map_item.type_ == kDexTypeMethodHandleItem) { method_handles_ = reinterpret_cast<const MethodHandleItem*>(begin_ + map_item.offset_); num_method_handles_ = map_item.size_; } else if (map_item.type_ == kDexTypeCallSiteIdItem) { call_site_ids_ = reinterpret_cast<const CallSiteIdItem*>(begin_ + map_item.offset_); num_call_site_ids_ = map_item.size_; } } } bool DexFile::IsMagicValid(const uint8_t* magic) { return (memcmp(magic, kDexMagic, sizeof(kDexMagic)) == 0); } bool DexFile::IsVersionValid(const uint8_t* magic) { const uint8_t* version = &magic[sizeof(kDexMagic)]; for (uint32_t i = 0; i < kNumDexVersions; i++) { if (memcmp(version, kDexMagicVersions[i], kDexVersionLen) == 0) { return true; } } return false; } uint32_t DexFile::Header::GetVersion() const { const char* version = reinterpret_cast<const char*>(&magic_[sizeof(kDexMagic)]); return atoi(version); } const DexFile::ClassDef* DexFile::FindClassDef(dex::TypeIndex type_idx) const { size_t num_class_defs = NumClassDefs(); // Fast path for rare no class defs case. if (num_class_defs == 0) { return nullptr; } for (size_t i = 0; i < num_class_defs; ++i) { const ClassDef& class_def = GetClassDef(i); if (class_def.class_idx_ == type_idx) { return &class_def; } } return nullptr; } uint32_t DexFile::FindCodeItemOffset(const DexFile::ClassDef& class_def, uint32_t method_idx) const { const uint8_t* class_data = GetClassData(class_def); CHECK(class_data != nullptr); ClassDataItemIterator it(*this, class_data); // Skip fields while (it.HasNextStaticField()) { it.Next(); } while (it.HasNextInstanceField()) { it.Next(); } while (it.HasNextDirectMethod()) { if (it.GetMemberIndex() == method_idx) { return it.GetMethodCodeItemOffset(); } it.Next(); } while (it.HasNextVirtualMethod()) { if (it.GetMemberIndex() == method_idx) { return it.GetMethodCodeItemOffset(); } it.Next(); } LOG(FATAL) << "Unable to find method " << method_idx; UNREACHABLE(); } const DexFile::FieldId* DexFile::FindFieldId(const DexFile::TypeId& declaring_klass, const DexFile::StringId& name, const DexFile::TypeId& type) const { // Binary search MethodIds knowing that they are sorted by class_idx, name_idx then proto_idx const dex::TypeIndex class_idx = GetIndexForTypeId(declaring_klass); const dex::StringIndex name_idx = GetIndexForStringId(name); const dex::TypeIndex type_idx = GetIndexForTypeId(type); int32_t lo = 0; int32_t hi = NumFieldIds() - 1; while (hi >= lo) { int32_t mid = (hi + lo) / 2; const DexFile::FieldId& field = GetFieldId(mid); if (class_idx > field.class_idx_) { lo = mid + 1; } else if (class_idx < field.class_idx_) { hi = mid - 1; } else { if (name_idx > field.name_idx_) { lo = mid + 1; } else if (name_idx < field.name_idx_) { hi = mid - 1; } else { if (type_idx > field.type_idx_) { lo = mid + 1; } else if (type_idx < field.type_idx_) { hi = mid - 1; } else { return &field; } } } } return nullptr; } const DexFile::MethodId* DexFile::FindMethodId(const DexFile::TypeId& declaring_klass, const DexFile::StringId& name, const DexFile::ProtoId& signature) const { // Binary search MethodIds knowing that they are sorted by class_idx, name_idx then proto_idx const dex::TypeIndex class_idx = GetIndexForTypeId(declaring_klass); const dex::StringIndex name_idx = GetIndexForStringId(name); const uint16_t proto_idx = GetIndexForProtoId(signature); int32_t lo = 0; int32_t hi = NumMethodIds() - 1; while (hi >= lo) { int32_t mid = (hi + lo) / 2; const DexFile::MethodId& method = GetMethodId(mid); if (class_idx > method.class_idx_) { lo = mid + 1; } else if (class_idx < method.class_idx_) { hi = mid - 1; } else { if (name_idx > method.name_idx_) { lo = mid + 1; } else if (name_idx < method.name_idx_) { hi = mid - 1; } else { if (proto_idx > method.proto_idx_) { lo = mid + 1; } else if (proto_idx < method.proto_idx_) { hi = mid - 1; } else { return &method; } } } } return nullptr; } const DexFile::StringId* DexFile::FindStringId(const char* string) const { int32_t lo = 0; int32_t hi = NumStringIds() - 1; while (hi >= lo) { int32_t mid = (hi + lo) / 2; const DexFile::StringId& str_id = GetStringId(dex::StringIndex(mid)); const char* str = GetStringData(str_id); int compare = CompareModifiedUtf8ToModifiedUtf8AsUtf16CodePointValues(string, str); if (compare > 0) { lo = mid + 1; } else if (compare < 0) { hi = mid - 1; } else { return &str_id; } } return nullptr; } const DexFile::TypeId* DexFile::FindTypeId(const char* string) const { int32_t lo = 0; int32_t hi = NumTypeIds() - 1; while (hi >= lo) { int32_t mid = (hi + lo) / 2; const TypeId& type_id = GetTypeId(dex::TypeIndex(mid)); const DexFile::StringId& str_id = GetStringId(type_id.descriptor_idx_); const char* str = GetStringData(str_id); int compare = CompareModifiedUtf8ToModifiedUtf8AsUtf16CodePointValues(string, str); if (compare > 0) { lo = mid + 1; } else if (compare < 0) { hi = mid - 1; } else { return &type_id; } } return nullptr; } const DexFile::StringId* DexFile::FindStringId(const uint16_t* string, size_t length) const { int32_t lo = 0; int32_t hi = NumStringIds() - 1; while (hi >= lo) { int32_t mid = (hi + lo) / 2; const DexFile::StringId& str_id = GetStringId(dex::StringIndex(mid)); const char* str = GetStringData(str_id); int compare = CompareModifiedUtf8ToUtf16AsCodePointValues(str, string, length); if (compare > 0) { lo = mid + 1; } else if (compare < 0) { hi = mid - 1; } else { return &str_id; } } return nullptr; } const DexFile::TypeId* DexFile::FindTypeId(dex::StringIndex string_idx) const { int32_t lo = 0; int32_t hi = NumTypeIds() - 1; while (hi >= lo) { int32_t mid = (hi + lo) / 2; const TypeId& type_id = GetTypeId(dex::TypeIndex(mid)); if (string_idx > type_id.descriptor_idx_) { lo = mid + 1; } else if (string_idx < type_id.descriptor_idx_) { hi = mid - 1; } else { return &type_id; } } return nullptr; } const DexFile::ProtoId* DexFile::FindProtoId(dex::TypeIndex return_type_idx, const dex::TypeIndex* signature_type_idxs, uint32_t signature_length) const { int32_t lo = 0; int32_t hi = NumProtoIds() - 1; while (hi >= lo) { int32_t mid = (hi + lo) / 2; const DexFile::ProtoId& proto = GetProtoId(mid); int compare = return_type_idx.index_ - proto.return_type_idx_.index_; if (compare == 0) { DexFileParameterIterator it(*this, proto); size_t i = 0; while (it.HasNext() && i < signature_length && compare == 0) { compare = signature_type_idxs[i].index_ - it.GetTypeIdx().index_; it.Next(); i++; } if (compare == 0) { if (it.HasNext()) { compare = -1; } else if (i < signature_length) { compare = 1; } } } if (compare > 0) { lo = mid + 1; } else if (compare < 0) { hi = mid - 1; } else { return &proto; } } return nullptr; } // Given a signature place the type ids into the given vector bool DexFile::CreateTypeList(const StringPiece& signature, dex::TypeIndex* return_type_idx, std::vector<dex::TypeIndex>* param_type_idxs) const { if (signature[0] != '(') { return false; } size_t offset = 1; size_t end = signature.size(); bool process_return = false; while (offset < end) { size_t start_offset = offset; char c = signature[offset]; offset++; if (c == ')') { process_return = true; continue; } while (c == '[') { // process array prefix if (offset >= end) { // expect some descriptor following [ return false; } c = signature[offset]; offset++; } if (c == 'L') { // process type descriptors do { if (offset >= end) { // unexpected early termination of descriptor return false; } c = signature[offset]; offset++; } while (c != ';'); } // TODO: avoid creating a std::string just to get a 0-terminated char array std::string descriptor(signature.data() + start_offset, offset - start_offset); const DexFile::TypeId* type_id = FindTypeId(descriptor.c_str()); if (type_id == nullptr) { return false; } dex::TypeIndex type_idx = GetIndexForTypeId(*type_id); if (!process_return) { param_type_idxs->push_back(type_idx); } else { *return_type_idx = type_idx; return offset == end; // return true if the signature had reached a sensible end } } return false; // failed to correctly parse return type } const Signature DexFile::CreateSignature(const StringPiece& signature) const { dex::TypeIndex return_type_idx; std::vector<dex::TypeIndex> param_type_indices; bool success = CreateTypeList(signature, &return_type_idx, ¶m_type_indices); if (!success) { return Signature::NoSignature(); } const ProtoId* proto_id = FindProtoId(return_type_idx, param_type_indices); if (proto_id == nullptr) { return Signature::NoSignature(); } return Signature(this, *proto_id); } int32_t DexFile::FindTryItem(const CodeItem &code_item, uint32_t address) { // Note: Signed type is important for max and min. int32_t min = 0; int32_t max = code_item.tries_size_ - 1; while (min <= max) { int32_t mid = min + ((max - min) / 2); const art::DexFile::TryItem* ti = GetTryItems(code_item, mid); uint32_t start = ti->start_addr_; uint32_t end = start + ti->insn_count_; if (address < start) { max = mid - 1; } else if (address >= end) { min = mid + 1; } else { // We have a winner! return mid; } } // No match. return -1; } int32_t DexFile::FindCatchHandlerOffset(const CodeItem &code_item, uint32_t address) { int32_t try_item = FindTryItem(code_item, address); if (try_item == -1) { return -1; } else { return DexFile::GetTryItems(code_item, try_item)->handler_off_; } } bool DexFile::DecodeDebugLocalInfo(const CodeItem* code_item, bool is_static, uint32_t method_idx, DexDebugNewLocalCb local_cb, void* context) const { DCHECK(local_cb != nullptr); if (code_item == nullptr) { return false; } const uint8_t* stream = GetDebugInfoStream(code_item); if (stream == nullptr) { return false; } std::vector<LocalInfo> local_in_reg(code_item->registers_size_); uint16_t arg_reg = code_item->registers_size_ - code_item->ins_size_; if (!is_static) { const char* descriptor = GetMethodDeclaringClassDescriptor(GetMethodId(method_idx)); local_in_reg[arg_reg].name_ = "this"; local_in_reg[arg_reg].descriptor_ = descriptor; local_in_reg[arg_reg].signature_ = nullptr; local_in_reg[arg_reg].start_address_ = 0; local_in_reg[arg_reg].reg_ = arg_reg; local_in_reg[arg_reg].is_live_ = true; arg_reg++; } DexFileParameterIterator it(*this, GetMethodPrototype(GetMethodId(method_idx))); DecodeUnsignedLeb128(&stream); // Line. uint32_t parameters_size = DecodeUnsignedLeb128(&stream); uint32_t i; for (i = 0; i < parameters_size && it.HasNext(); ++i, it.Next()) { if (arg_reg >= code_item->registers_size_) { LOG(ERROR) << "invalid stream - arg reg >= reg size (" << arg_reg << " >= " << code_item->registers_size_ << ") in " << GetLocation(); return false; } uint32_t name_idx = DecodeUnsignedLeb128P1(&stream); const char* descriptor = it.GetDescriptor(); local_in_reg[arg_reg].name_ = StringDataByIdx(dex::StringIndex(name_idx)); local_in_reg[arg_reg].descriptor_ = descriptor; local_in_reg[arg_reg].signature_ = nullptr; local_in_reg[arg_reg].start_address_ = 0; local_in_reg[arg_reg].reg_ = arg_reg; local_in_reg[arg_reg].is_live_ = true; switch (*descriptor) { case 'D': case 'J': arg_reg += 2; break; default: arg_reg += 1; break; } } if (i != parameters_size || it.HasNext()) { LOG(ERROR) << "invalid stream - problem with parameter iterator in " << GetLocation() << " for method " << this->PrettyMethod(method_idx); return false; } uint32_t address = 0; for (;;) { uint8_t opcode = *stream++; switch (opcode) { case DBG_END_SEQUENCE: // Emit all variables which are still alive at the end of the method. for (uint16_t reg = 0; reg < code_item->registers_size_; reg++) { if (local_in_reg[reg].is_live_) { local_in_reg[reg].end_address_ = code_item->insns_size_in_code_units_; local_cb(context, local_in_reg[reg]); } } return true; case DBG_ADVANCE_PC: address += DecodeUnsignedLeb128(&stream); break; case DBG_ADVANCE_LINE: DecodeSignedLeb128(&stream); // Line. break; case DBG_START_LOCAL: case DBG_START_LOCAL_EXTENDED: { uint16_t reg = DecodeUnsignedLeb128(&stream); if (reg >= code_item->registers_size_) { LOG(ERROR) << "invalid stream - reg >= reg size (" << reg << " >= " << code_item->registers_size_ << ") in " << GetLocation(); return false; } uint32_t name_idx = DecodeUnsignedLeb128P1(&stream); uint16_t descriptor_idx = DecodeUnsignedLeb128P1(&stream); uint32_t signature_idx = kDexNoIndex; if (opcode == DBG_START_LOCAL_EXTENDED) { signature_idx = DecodeUnsignedLeb128P1(&stream); } // Emit what was previously there, if anything if (local_in_reg[reg].is_live_) { local_in_reg[reg].end_address_ = address; local_cb(context, local_in_reg[reg]); } local_in_reg[reg].name_ = StringDataByIdx(dex::StringIndex(name_idx)); local_in_reg[reg].descriptor_ = StringByTypeIdx(dex::TypeIndex(dchecked_integral_cast<uint16_t>(descriptor_idx)));; local_in_reg[reg].signature_ = StringDataByIdx(dex::StringIndex(signature_idx)); local_in_reg[reg].start_address_ = address; local_in_reg[reg].reg_ = reg; local_in_reg[reg].is_live_ = true; break; } case DBG_END_LOCAL: { uint16_t reg = DecodeUnsignedLeb128(&stream); if (reg >= code_item->registers_size_) { LOG(ERROR) << "invalid stream - reg >= reg size (" << reg << " >= " << code_item->registers_size_ << ") in " << GetLocation(); return false; } if (!local_in_reg[reg].is_live_) { LOG(ERROR) << "invalid stream - end without start in " << GetLocation(); return false; } local_in_reg[reg].end_address_ = address; local_cb(context, local_in_reg[reg]); local_in_reg[reg].is_live_ = false; break; } case DBG_RESTART_LOCAL: { uint16_t reg = DecodeUnsignedLeb128(&stream); if (reg >= code_item->registers_size_) { LOG(ERROR) << "invalid stream - reg >= reg size (" << reg << " >= " << code_item->registers_size_ << ") in " << GetLocation(); return false; } // If the register is live, the "restart" is superfluous, // and we don't want to mess with the existing start address. if (!local_in_reg[reg].is_live_) { local_in_reg[reg].start_address_ = address; local_in_reg[reg].is_live_ = true; } break; } case DBG_SET_PROLOGUE_END: case DBG_SET_EPILOGUE_BEGIN: break; case DBG_SET_FILE: DecodeUnsignedLeb128P1(&stream); // name. break; default: address += (opcode - DBG_FIRST_SPECIAL) / DBG_LINE_RANGE; break; } } } bool DexFile::DecodeDebugPositionInfo(const CodeItem* code_item, DexDebugNewPositionCb position_cb, void* context) const { DCHECK(position_cb != nullptr); if (code_item == nullptr) { return false; } const uint8_t* stream = GetDebugInfoStream(code_item); if (stream == nullptr) { return false; } PositionInfo entry = PositionInfo(); entry.line_ = DecodeUnsignedLeb128(&stream); uint32_t parameters_size = DecodeUnsignedLeb128(&stream); for (uint32_t i = 0; i < parameters_size; ++i) { DecodeUnsignedLeb128P1(&stream); // Parameter name. } for (;;) { uint8_t opcode = *stream++; switch (opcode) { case DBG_END_SEQUENCE: return true; // end of stream. case DBG_ADVANCE_PC: entry.address_ += DecodeUnsignedLeb128(&stream); break; case DBG_ADVANCE_LINE: entry.line_ += DecodeSignedLeb128(&stream); break; case DBG_START_LOCAL: DecodeUnsignedLeb128(&stream); // reg. DecodeUnsignedLeb128P1(&stream); // name. DecodeUnsignedLeb128P1(&stream); // descriptor. break; case DBG_START_LOCAL_EXTENDED: DecodeUnsignedLeb128(&stream); // reg. DecodeUnsignedLeb128P1(&stream); // name. DecodeUnsignedLeb128P1(&stream); // descriptor. DecodeUnsignedLeb128P1(&stream); // signature. break; case DBG_END_LOCAL: case DBG_RESTART_LOCAL: DecodeUnsignedLeb128(&stream); // reg. break; case DBG_SET_PROLOGUE_END: entry.prologue_end_ = true; break; case DBG_SET_EPILOGUE_BEGIN: entry.epilogue_begin_ = true; break; case DBG_SET_FILE: { uint32_t name_idx = DecodeUnsignedLeb128P1(&stream); entry.source_file_ = StringDataByIdx(dex::StringIndex(name_idx)); break; } default: { int adjopcode = opcode - DBG_FIRST_SPECIAL; entry.address_ += adjopcode / DBG_LINE_RANGE; entry.line_ += DBG_LINE_BASE + (adjopcode % DBG_LINE_RANGE); if (position_cb(context, entry)) { return true; // early exit. } entry.prologue_end_ = false; entry.epilogue_begin_ = false; break; } } } } bool DexFile::LineNumForPcCb(void* raw_context, const PositionInfo& entry) { LineNumFromPcContext* context = reinterpret_cast<LineNumFromPcContext*>(raw_context); // We know that this callback will be called in // ascending address order, so keep going until we find // a match or we've just gone past it. if (entry.address_ > context->address_) { // The line number from the previous positions callback // wil be the final result. return true; } else { context->line_num_ = entry.line_; return entry.address_ == context->address_; } } bool DexFile::IsMultiDexLocation(const char* location) { return strrchr(location, kMultiDexSeparator) != nullptr; } std::string DexFile::GetMultiDexClassesDexName(size_t index) { if (index == 0) { return "classes.dex"; } else { return StringPrintf("classes%zu.dex", index + 1); } } std::string DexFile::GetMultiDexLocation(size_t index, const char* dex_location) { if (index == 0) { return dex_location; } else { return StringPrintf("%s" kMultiDexSeparatorString "classes%zu.dex", dex_location, index + 1); } } std::string DexFile::GetDexCanonicalLocation(const char* dex_location) { CHECK_NE(dex_location, static_cast<const char*>(nullptr)); std::string base_location = GetBaseLocation(dex_location); const char* suffix = dex_location + base_location.size(); DCHECK(suffix[0] == 0 || suffix[0] == kMultiDexSeparator); UniqueCPtr<const char[]> path(realpath(base_location.c_str(), nullptr)); if (path != nullptr && path.get() != base_location) { return std::string(path.get()) + suffix; } else if (suffix[0] == 0) { return base_location; } else { return dex_location; } } // Read a signed integer. "zwidth" is the zero-based byte count. int32_t DexFile::ReadSignedInt(const uint8_t* ptr, int zwidth) { int32_t val = 0; for (int i = zwidth; i >= 0; --i) { val = ((uint32_t)val >> 8) | (((int32_t)*ptr++) << 24); } val >>= (3 - zwidth) * 8; return val; } // Read an unsigned integer. "zwidth" is the zero-based byte count, // "fill_on_right" indicates which side we want to zero-fill from. uint32_t DexFile::ReadUnsignedInt(const uint8_t* ptr, int zwidth, bool fill_on_right) { uint32_t val = 0; for (int i = zwidth; i >= 0; --i) { val = (val >> 8) | (((uint32_t)*ptr++) << 24); } if (!fill_on_right) { val >>= (3 - zwidth) * 8; } return val; } // Read a signed long. "zwidth" is the zero-based byte count. int64_t DexFile::ReadSignedLong(const uint8_t* ptr, int zwidth) { int64_t val = 0; for (int i = zwidth; i >= 0; --i) { val = ((uint64_t)val >> 8) | (((int64_t)*ptr++) << 56); } val >>= (7 - zwidth) * 8; return val; } // Read an unsigned long. "zwidth" is the zero-based byte count, // "fill_on_right" indicates which side we want to zero-fill from. uint64_t DexFile::ReadUnsignedLong(const uint8_t* ptr, int zwidth, bool fill_on_right) { uint64_t val = 0; for (int i = zwidth; i >= 0; --i) { val = (val >> 8) | (((uint64_t)*ptr++) << 56); } if (!fill_on_right) { val >>= (7 - zwidth) * 8; } return val; } std::string DexFile::PrettyMethod(uint32_t method_idx, bool with_signature) const { if (method_idx >= NumMethodIds()) { return StringPrintf("<<invalid-method-idx-%d>>", method_idx); } const DexFile::MethodId& method_id = GetMethodId(method_idx); std::string result(PrettyDescriptor(GetMethodDeclaringClassDescriptor(method_id))); result += '.'; result += GetMethodName(method_id); if (with_signature) { const Signature signature = GetMethodSignature(method_id); std::string sig_as_string(signature.ToString()); if (signature == Signature::NoSignature()) { return result + sig_as_string; } result = PrettyReturnType(sig_as_string.c_str()) + " " + result + PrettyArguments(sig_as_string.c_str()); } return result; } std::string DexFile::PrettyField(uint32_t field_idx, bool with_type) const { if (field_idx >= NumFieldIds()) { return StringPrintf("<<invalid-field-idx-%d>>", field_idx); } const DexFile::FieldId& field_id = GetFieldId(field_idx); std::string result; if (with_type) { result += GetFieldTypeDescriptor(field_id); result += ' '; } result += PrettyDescriptor(GetFieldDeclaringClassDescriptor(field_id)); result += '.'; result += GetFieldName(field_id); return result; } std::string DexFile::PrettyType(dex::TypeIndex type_idx) const { if (type_idx.index_ >= NumTypeIds()) { return StringPrintf("<<invalid-type-idx-%d>>", type_idx.index_); } const DexFile::TypeId& type_id = GetTypeId(type_idx); return PrettyDescriptor(GetTypeDescriptor(type_id)); } // Checks that visibility is as expected. Includes special behavior for M and // before to allow runtime and build visibility when expecting runtime. std::ostream& operator<<(std::ostream& os, const DexFile& dex_file) { os << StringPrintf("[DexFile: %s dex-checksum=%08x location-checksum=%08x %p-%p]", dex_file.GetLocation().c_str(), dex_file.GetHeader().checksum_, dex_file.GetLocationChecksum(), dex_file.Begin(), dex_file.Begin() + dex_file.Size()); return os; } std::string Signature::ToString() const { if (dex_file_ == nullptr) { CHECK(proto_id_ == nullptr); return "<no signature>"; } const DexFile::TypeList* params = dex_file_->GetProtoParameters(*proto_id_); std::string result; if (params == nullptr) { result += "()"; } else { result += "("; for (uint32_t i = 0; i < params->Size(); ++i) { result += dex_file_->StringByTypeIdx(params->GetTypeItem(i).type_idx_); } result += ")"; } result += dex_file_->StringByTypeIdx(proto_id_->return_type_idx_); return result; } uint32_t Signature::GetNumberOfParameters() const { const DexFile::TypeList* params = dex_file_->GetProtoParameters(*proto_id_); return (params != nullptr) ? params->Size() : 0; } bool Signature::IsVoid() const { const char* return_type = dex_file_->GetReturnTypeDescriptor(*proto_id_); return strcmp(return_type, "V") == 0; } bool Signature::operator==(const StringPiece& rhs) const { if (dex_file_ == nullptr) { return false; } StringPiece tail(rhs); if (!tail.starts_with("(")) { return false; // Invalid signature } tail.remove_prefix(1); // "("; const DexFile::TypeList* params = dex_file_->GetProtoParameters(*proto_id_); if (params != nullptr) { for (uint32_t i = 0; i < params->Size(); ++i) { StringPiece param(dex_file_->StringByTypeIdx(params->GetTypeItem(i).type_idx_)); if (!tail.starts_with(param)) { return false; } tail.remove_prefix(param.length()); } } if (!tail.starts_with(")")) { return false; } tail.remove_prefix(1); // ")"; return tail == dex_file_->StringByTypeIdx(proto_id_->return_type_idx_); } std::ostream& operator<<(std::ostream& os, const Signature& sig) { return os << sig.ToString(); } // Decodes the header section from the class data bytes. void ClassDataItemIterator::ReadClassDataHeader() { CHECK(ptr_pos_ != nullptr); header_.static_fields_size_ = DecodeUnsignedLeb128(&ptr_pos_); header_.instance_fields_size_ = DecodeUnsignedLeb128(&ptr_pos_); header_.direct_methods_size_ = DecodeUnsignedLeb128(&ptr_pos_); header_.virtual_methods_size_ = DecodeUnsignedLeb128(&ptr_pos_); } void ClassDataItemIterator::ReadClassDataField() { field_.field_idx_delta_ = DecodeUnsignedLeb128(&ptr_pos_); field_.access_flags_ = DecodeUnsignedLeb128(&ptr_pos_); // The user of the iterator is responsible for checking if there // are unordered or duplicate indexes. } void ClassDataItemIterator::ReadClassDataMethod() { method_.method_idx_delta_ = DecodeUnsignedLeb128(&ptr_pos_); method_.access_flags_ = DecodeUnsignedLeb128(&ptr_pos_); method_.code_off_ = DecodeUnsignedLeb128(&ptr_pos_); if (last_idx_ != 0 && method_.method_idx_delta_ == 0) { LOG(WARNING) << "Duplicate method in " << dex_file_.GetLocation(); } } EncodedArrayValueIterator::EncodedArrayValueIterator(const DexFile& dex_file, const uint8_t* array_data) : dex_file_(dex_file), array_size_(), pos_(-1), ptr_(array_data), type_(kByte) { array_size_ = (ptr_ != nullptr) ? DecodeUnsignedLeb128(&ptr_) : 0; if (array_size_ > 0) { Next(); } } void EncodedArrayValueIterator::Next() { pos_++; if (pos_ >= array_size_) { return; } uint8_t value_type = *ptr_++; uint8_t value_arg = value_type >> kEncodedValueArgShift; size_t width = value_arg + 1; // assume and correct later type_ = static_cast<ValueType>(value_type & kEncodedValueTypeMask); switch (type_) { case kBoolean: jval_.i = (value_arg != 0) ? 1 : 0; width = 0; break; case kByte: jval_.i = DexFile::ReadSignedInt(ptr_, value_arg); CHECK(IsInt<8>(jval_.i)); break; case kShort: jval_.i = DexFile::ReadSignedInt(ptr_, value_arg); CHECK(IsInt<16>(jval_.i)); break; case kChar: jval_.i = DexFile::ReadUnsignedInt(ptr_, value_arg, false); CHECK(IsUint<16>(jval_.i)); break; case kInt: jval_.i = DexFile::ReadSignedInt(ptr_, value_arg); break; case kLong: jval_.j = DexFile::ReadSignedLong(ptr_, value_arg); break; case kFloat: jval_.i = DexFile::ReadUnsignedInt(ptr_, value_arg, true); break; case kDouble: jval_.j = DexFile::ReadUnsignedLong(ptr_, value_arg, true); break; case kString: case kType: case kMethodType: case kMethodHandle: jval_.i = DexFile::ReadUnsignedInt(ptr_, value_arg, false); break; case kField: case kMethod: case kEnum: case kArray: case kAnnotation: UNIMPLEMENTED(FATAL) << ": type " << type_; UNREACHABLE(); case kNull: jval_.l = nullptr; width = 0; break; default: LOG(FATAL) << "Unreached"; UNREACHABLE(); } ptr_ += width; } CatchHandlerIterator::CatchHandlerIterator(const DexFile::CodeItem& code_item, uint32_t address) { handler_.address_ = -1; int32_t offset = -1; // Short-circuit the overwhelmingly common cases. switch (code_item.tries_size_) { case 0: break; case 1: { const DexFile::TryItem* tries = DexFile::GetTryItems(code_item, 0); uint32_t start = tries->start_addr_; if (address >= start) { uint32_t end = start + tries->insn_count_; if (address < end) { offset = tries->handler_off_; } } break; } default: offset = DexFile::FindCatchHandlerOffset(code_item, address); } Init(code_item, offset); } CatchHandlerIterator::CatchHandlerIterator(const DexFile::CodeItem& code_item, const DexFile::TryItem& try_item) { handler_.address_ = -1; Init(code_item, try_item.handler_off_); } void CatchHandlerIterator::Init(const DexFile::CodeItem& code_item, int32_t offset) { if (offset >= 0) { Init(DexFile::GetCatchHandlerData(code_item, offset)); } else { // Not found, initialize as empty current_data_ = nullptr; remaining_count_ = -1; catch_all_ = false; DCHECK(!HasNext()); } } void CatchHandlerIterator::Init(const uint8_t* handler_data) { current_data_ = handler_data; remaining_count_ = DecodeSignedLeb128(¤t_data_); // If remaining_count_ is non-positive, then it is the negative of // the number of catch types, and the catches are followed by a // catch-all handler. if (remaining_count_ <= 0) { catch_all_ = true; remaining_count_ = -remaining_count_; } else { catch_all_ = false; } Next(); } void CatchHandlerIterator::Next() { if (remaining_count_ > 0) { handler_.type_idx_ = dex::TypeIndex(DecodeUnsignedLeb128(¤t_data_)); handler_.address_ = DecodeUnsignedLeb128(¤t_data_); remaining_count_--; return; } if (catch_all_) { handler_.type_idx_ = dex::TypeIndex(DexFile::kDexNoIndex16); handler_.address_ = DecodeUnsignedLeb128(¤t_data_); catch_all_ = false; return; } // no more handler remaining_count_ = -1; } namespace dex { std::ostream& operator<<(std::ostream& os, const StringIndex& index) { os << "StringIndex[" << index.index_ << "]"; return os; } std::ostream& operator<<(std::ostream& os, const TypeIndex& index) { os << "TypeIndex[" << index.index_ << "]"; return os; } } // namespace dex } // namespace art