/*
 * Copyright (C) 2014 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef ART_COMPILER_UTILS_X86_64_ASSEMBLER_X86_64_H_
#define ART_COMPILER_UTILS_X86_64_ASSEMBLER_X86_64_H_

#include <vector>

#include "base/arena_containers.h"
#include "base/array_ref.h"
#include "base/bit_utils.h"
#include "base/macros.h"
#include "constants_x86_64.h"
#include "globals.h"
#include "managed_register_x86_64.h"
#include "offsets.h"
#include "utils/assembler.h"
#include "utils/jni_macro_assembler.h"

namespace art {
namespace x86_64 {

// Encodes an immediate value for operands.
//
// Note: Immediates can be 64b on x86-64 for certain instructions, but are often restricted
// to 32b.
//
// Note: As we support cross-compilation, the value type must be int64_t. Please be aware of
// conversion rules in expressions regarding negation, especially size_t on 32b.
class Immediate : public ValueObject {
 public:
  explicit Immediate(int64_t value_in) : value_(value_in) {}

  int64_t value() const { return value_; }

  bool is_int8() const { return IsInt<8>(value_); }
  bool is_uint8() const { return IsUint<8>(value_); }
  bool is_int16() const { return IsInt<16>(value_); }
  bool is_uint16() const { return IsUint<16>(value_); }
  bool is_int32() const { return IsInt<32>(value_); }

 private:
  const int64_t value_;
};


class Operand : public ValueObject {
 public:
  uint8_t mod() const {
    return (encoding_at(0) >> 6) & 3;
  }

  Register rm() const {
    return static_cast<Register>(encoding_at(0) & 7);
  }

  ScaleFactor scale() const {
    return static_cast<ScaleFactor>((encoding_at(1) >> 6) & 3);
  }

  Register index() const {
    return static_cast<Register>((encoding_at(1) >> 3) & 7);
  }

  Register base() const {
    return static_cast<Register>(encoding_at(1) & 7);
  }

  uint8_t rex() const {
    return rex_;
  }

  int8_t disp8() const {
    CHECK_GE(length_, 2);
    return static_cast<int8_t>(encoding_[length_ - 1]);
  }

  int32_t disp32() const {
    CHECK_GE(length_, 5);
    int32_t value;
    memcpy(&value, &encoding_[length_ - 4], sizeof(value));
    return value;
  }

  bool IsRegister(CpuRegister reg) const {
    return ((encoding_[0] & 0xF8) == 0xC0)  // Addressing mode is register only.
        && ((encoding_[0] & 0x07) == reg.LowBits())  // Register codes match.
        && (reg.NeedsRex() == ((rex_ & 1) != 0));  // REX.000B bits match.
  }

  AssemblerFixup* GetFixup() const {
    return fixup_;
  }

 protected:
  // Operand can be sub classed (e.g: Address).
  Operand() : rex_(0), length_(0), fixup_(nullptr) { }

  void SetModRM(uint8_t mod_in, CpuRegister rm_in) {
    CHECK_EQ(mod_in & ~3, 0);
    if (rm_in.NeedsRex()) {
      rex_ |= 0x41;  // REX.000B
    }
    encoding_[0] = (mod_in << 6) | rm_in.LowBits();
    length_ = 1;
  }

  void SetSIB(ScaleFactor scale_in, CpuRegister index_in, CpuRegister base_in) {
    CHECK_EQ(length_, 1);
    CHECK_EQ(scale_in & ~3, 0);
    if (base_in.NeedsRex()) {
      rex_ |= 0x41;  // REX.000B
    }
    if (index_in.NeedsRex()) {
      rex_ |= 0x42;  // REX.00X0
    }
    encoding_[1] = (scale_in << 6) | (static_cast<uint8_t>(index_in.LowBits()) << 3) |
        static_cast<uint8_t>(base_in.LowBits());
    length_ = 2;
  }

  void SetDisp8(int8_t disp) {
    CHECK(length_ == 1 || length_ == 2);
    encoding_[length_++] = static_cast<uint8_t>(disp);
  }

  void SetDisp32(int32_t disp) {
    CHECK(length_ == 1 || length_ == 2);
    int disp_size = sizeof(disp);
    memmove(&encoding_[length_], &disp, disp_size);
    length_ += disp_size;
  }

  void SetFixup(AssemblerFixup* fixup) {
    fixup_ = fixup;
  }

 private:
  uint8_t rex_;
  uint8_t length_;
  uint8_t encoding_[6];
  AssemblerFixup* fixup_;

  explicit Operand(CpuRegister reg) : rex_(0), length_(0), fixup_(nullptr) { SetModRM(3, reg); }

  // Get the operand encoding byte at the given index.
  uint8_t encoding_at(int index_in) const {
    CHECK_GE(index_in, 0);
    CHECK_LT(index_in, length_);
    return encoding_[index_in];
  }

  friend class X86_64Assembler;
};


class Address : public Operand {
 public:
  Address(CpuRegister base_in, int32_t disp) {
    Init(base_in, disp);
  }

  Address(CpuRegister base_in, Offset disp) {
    Init(base_in, disp.Int32Value());
  }

  Address(CpuRegister base_in, FrameOffset disp) {
    CHECK_EQ(base_in.AsRegister(), RSP);
    Init(CpuRegister(RSP), disp.Int32Value());
  }

  Address(CpuRegister base_in, MemberOffset disp) {
    Init(base_in, disp.Int32Value());
  }

  void Init(CpuRegister base_in, int32_t disp) {
    if (disp == 0 && base_in.LowBits() != RBP) {
      SetModRM(0, base_in);
      if (base_in.LowBits() == RSP) {
        SetSIB(TIMES_1, CpuRegister(RSP), base_in);
      }
    } else if (disp >= -128 && disp <= 127) {
      SetModRM(1, base_in);
      if (base_in.LowBits() == RSP) {
        SetSIB(TIMES_1, CpuRegister(RSP), base_in);
      }
      SetDisp8(disp);
    } else {
      SetModRM(2, base_in);
      if (base_in.LowBits() == RSP) {
        SetSIB(TIMES_1, CpuRegister(RSP), base_in);
      }
      SetDisp32(disp);
    }
  }


  Address(CpuRegister index_in, ScaleFactor scale_in, int32_t disp) {
    CHECK_NE(index_in.AsRegister(), RSP);  // Illegal addressing mode.
    SetModRM(0, CpuRegister(RSP));
    SetSIB(scale_in, index_in, CpuRegister(RBP));
    SetDisp32(disp);
  }

  Address(CpuRegister base_in, CpuRegister index_in, ScaleFactor scale_in, int32_t disp) {
    CHECK_NE(index_in.AsRegister(), RSP);  // Illegal addressing mode.
    if (disp == 0 && base_in.LowBits() != RBP) {
      SetModRM(0, CpuRegister(RSP));
      SetSIB(scale_in, index_in, base_in);
    } else if (disp >= -128 && disp <= 127) {
      SetModRM(1, CpuRegister(RSP));
      SetSIB(scale_in, index_in, base_in);
      SetDisp8(disp);
    } else {
      SetModRM(2, CpuRegister(RSP));
      SetSIB(scale_in, index_in, base_in);
      SetDisp32(disp);
    }
  }

  // If no_rip is true then the Absolute address isn't RIP relative.
  static Address Absolute(uintptr_t addr, bool no_rip = false) {
    Address result;
    if (no_rip) {
      result.SetModRM(0, CpuRegister(RSP));
      result.SetSIB(TIMES_1, CpuRegister(RSP), CpuRegister(RBP));
      result.SetDisp32(addr);
    } else {
      // RIP addressing is done using RBP as the base register.
      // The value in RBP isn't used.  Instead the offset is added to RIP.
      result.SetModRM(0, CpuRegister(RBP));
      result.SetDisp32(addr);
    }
    return result;
  }

  // An RIP relative address that will be fixed up later.
  static Address RIP(AssemblerFixup* fixup) {
    Address result;
    // RIP addressing is done using RBP as the base register.
    // The value in RBP isn't used.  Instead the offset is added to RIP.
    result.SetModRM(0, CpuRegister(RBP));
    result.SetDisp32(0);
    result.SetFixup(fixup);
    return result;
  }

  // If no_rip is true then the Absolute address isn't RIP relative.
  static Address Absolute(ThreadOffset64 addr, bool no_rip = false) {
    return Absolute(addr.Int32Value(), no_rip);
  }

 private:
  Address() {}
};


/**
 * Class to handle constant area values.
 */
class ConstantArea {
 public:
  explicit ConstantArea(ArenaAllocator* arena) : buffer_(arena->Adapter(kArenaAllocAssembler)) {}

  // Add a double to the constant area, returning the offset into
  // the constant area where the literal resides.
  size_t AddDouble(double v);

  // Add a float to the constant area, returning the offset into
  // the constant area where the literal resides.
  size_t AddFloat(float v);

  // Add an int32_t to the constant area, returning the offset into
  // the constant area where the literal resides.
  size_t AddInt32(int32_t v);

  // Add an int32_t to the end of the constant area, returning the offset into
  // the constant area where the literal resides.
  size_t AppendInt32(int32_t v);

  // Add an int64_t to the constant area, returning the offset into
  // the constant area where the literal resides.
  size_t AddInt64(int64_t v);

  size_t GetSize() const {
    return buffer_.size() * elem_size_;
  }

  ArrayRef<const int32_t> GetBuffer() const {
    return ArrayRef<const int32_t>(buffer_);
  }

 private:
  static constexpr size_t elem_size_ = sizeof(int32_t);
  ArenaVector<int32_t> buffer_;
};


// This is equivalent to the Label class, used in a slightly different context. We
// inherit the functionality of the Label class, but prevent unintended
// derived-to-base conversions by making the base class private.
class NearLabel : private Label {
 public:
  NearLabel() : Label() {}

  // Expose the Label routines that we need.
  using Label::Position;
  using Label::LinkPosition;
  using Label::IsBound;
  using Label::IsUnused;
  using Label::IsLinked;

 private:
  using Label::BindTo;
  using Label::LinkTo;

  friend class x86_64::X86_64Assembler;

  DISALLOW_COPY_AND_ASSIGN(NearLabel);
};


class X86_64Assembler FINAL : public Assembler {
 public:
  explicit X86_64Assembler(ArenaAllocator* arena) : Assembler(arena), constant_area_(arena) {}
  virtual ~X86_64Assembler() {}

  /*
   * Emit Machine Instructions.
   */
  void call(CpuRegister reg);
  void call(const Address& address);
  void call(Label* label);

  void pushq(CpuRegister reg);
  void pushq(const Address& address);
  void pushq(const Immediate& imm);

  void popq(CpuRegister reg);
  void popq(const Address& address);

  void movq(CpuRegister dst, const Immediate& src);
  void movl(CpuRegister dst, const Immediate& src);
  void movq(CpuRegister dst, CpuRegister src);
  void movl(CpuRegister dst, CpuRegister src);

  void movntl(const Address& dst, CpuRegister src);
  void movntq(const Address& dst, CpuRegister src);

  void movq(CpuRegister dst, const Address& src);
  void movl(CpuRegister dst, const Address& src);
  void movq(const Address& dst, CpuRegister src);
  void movq(const Address& dst, const Immediate& imm);
  void movl(const Address& dst, CpuRegister src);
  void movl(const Address& dst, const Immediate& imm);

  void cmov(Condition c, CpuRegister dst, CpuRegister src);  // This is the 64b version.
  void cmov(Condition c, CpuRegister dst, CpuRegister src, bool is64bit);
  void cmov(Condition c, CpuRegister dst, const Address& src, bool is64bit);

  void movzxb(CpuRegister dst, CpuRegister src);
  void movzxb(CpuRegister dst, const Address& src);
  void movsxb(CpuRegister dst, CpuRegister src);
  void movsxb(CpuRegister dst, const Address& src);
  void movb(CpuRegister dst, const Address& src);
  void movb(const Address& dst, CpuRegister src);
  void movb(const Address& dst, const Immediate& imm);

  void movzxw(CpuRegister dst, CpuRegister src);
  void movzxw(CpuRegister dst, const Address& src);
  void movsxw(CpuRegister dst, CpuRegister src);
  void movsxw(CpuRegister dst, const Address& src);
  void movw(CpuRegister dst, const Address& src);
  void movw(const Address& dst, CpuRegister src);
  void movw(const Address& dst, const Immediate& imm);

  void leaq(CpuRegister dst, const Address& src);
  void leal(CpuRegister dst, const Address& src);

  void movaps(XmmRegister dst, XmmRegister src);     // move
  void movaps(XmmRegister dst, const Address& src);  // load aligned
  void movups(XmmRegister dst, const Address& src);  // load unaligned
  void movaps(const Address& dst, XmmRegister src);  // store aligned
  void movups(const Address& dst, XmmRegister src);  // store unaligned

  void movss(XmmRegister dst, const Address& src);
  void movss(const Address& dst, XmmRegister src);
  void movss(XmmRegister dst, XmmRegister src);

  void movsxd(CpuRegister dst, CpuRegister src);
  void movsxd(CpuRegister dst, const Address& src);

  void movd(XmmRegister dst, CpuRegister src);  // Note: this is the r64 version, formally movq.
  void movd(CpuRegister dst, XmmRegister src);  // Note: this is the r64 version, formally movq.
  void movd(XmmRegister dst, CpuRegister src, bool is64bit);
  void movd(CpuRegister dst, XmmRegister src, bool is64bit);

  void addss(XmmRegister dst, XmmRegister src);
  void addss(XmmRegister dst, const Address& src);
  void subss(XmmRegister dst, XmmRegister src);
  void subss(XmmRegister dst, const Address& src);
  void mulss(XmmRegister dst, XmmRegister src);
  void mulss(XmmRegister dst, const Address& src);
  void divss(XmmRegister dst, XmmRegister src);
  void divss(XmmRegister dst, const Address& src);

  void addps(XmmRegister dst, XmmRegister src);  // no addr variant (for now)
  void subps(XmmRegister dst, XmmRegister src);
  void mulps(XmmRegister dst, XmmRegister src);
  void divps(XmmRegister dst, XmmRegister src);

  void movapd(XmmRegister dst, XmmRegister src);     // move
  void movapd(XmmRegister dst, const Address& src);  // load aligned
  void movupd(XmmRegister dst, const Address& src);  // load unaligned
  void movapd(const Address& dst, XmmRegister src);  // store aligned
  void movupd(const Address& dst, XmmRegister src);  // store unaligned

  void movsd(XmmRegister dst, const Address& src);
  void movsd(const Address& dst, XmmRegister src);
  void movsd(XmmRegister dst, XmmRegister src);

  void addsd(XmmRegister dst, XmmRegister src);
  void addsd(XmmRegister dst, const Address& src);
  void subsd(XmmRegister dst, XmmRegister src);
  void subsd(XmmRegister dst, const Address& src);
  void mulsd(XmmRegister dst, XmmRegister src);
  void mulsd(XmmRegister dst, const Address& src);
  void divsd(XmmRegister dst, XmmRegister src);
  void divsd(XmmRegister dst, const Address& src);

  void addpd(XmmRegister dst, XmmRegister src);  // no addr variant (for now)
  void subpd(XmmRegister dst, XmmRegister src);
  void mulpd(XmmRegister dst, XmmRegister src);
  void divpd(XmmRegister dst, XmmRegister src);

  void movdqa(XmmRegister dst, XmmRegister src);     // move
  void movdqa(XmmRegister dst, const Address& src);  // load aligned
  void movdqu(XmmRegister dst, const Address& src);  // load unaligned
  void movdqa(const Address& dst, XmmRegister src);  // store aligned
  void movdqu(const Address& dst, XmmRegister src);  // store unaligned

  void paddb(XmmRegister dst, XmmRegister src);  // no addr variant (for now)
  void psubb(XmmRegister dst, XmmRegister src);

  void paddw(XmmRegister dst, XmmRegister src);
  void psubw(XmmRegister dst, XmmRegister src);
  void pmullw(XmmRegister dst, XmmRegister src);

  void paddd(XmmRegister dst, XmmRegister src);
  void psubd(XmmRegister dst, XmmRegister src);
  void pmulld(XmmRegister dst, XmmRegister src);

  void paddq(XmmRegister dst, XmmRegister src);
  void psubq(XmmRegister dst, XmmRegister src);

  void cvtsi2ss(XmmRegister dst, CpuRegister src);  // Note: this is the r/m32 version.
  void cvtsi2ss(XmmRegister dst, CpuRegister src, bool is64bit);
  void cvtsi2ss(XmmRegister dst, const Address& src, bool is64bit);
  void cvtsi2sd(XmmRegister dst, CpuRegister src);  // Note: this is the r/m32 version.
  void cvtsi2sd(XmmRegister dst, CpuRegister src, bool is64bit);
  void cvtsi2sd(XmmRegister dst, const Address& src, bool is64bit);

  void cvtss2si(CpuRegister dst, XmmRegister src);  // Note: this is the r32 version.
  void cvtss2sd(XmmRegister dst, XmmRegister src);
  void cvtss2sd(XmmRegister dst, const Address& src);

  void cvtsd2si(CpuRegister dst, XmmRegister src);  // Note: this is the r32 version.
  void cvtsd2ss(XmmRegister dst, XmmRegister src);
  void cvtsd2ss(XmmRegister dst, const Address& src);

  void cvttss2si(CpuRegister dst, XmmRegister src);  // Note: this is the r32 version.
  void cvttss2si(CpuRegister dst, XmmRegister src, bool is64bit);
  void cvttsd2si(CpuRegister dst, XmmRegister src);  // Note: this is the r32 version.
  void cvttsd2si(CpuRegister dst, XmmRegister src, bool is64bit);

  void cvtdq2ps(XmmRegister dst, XmmRegister src);
  void cvtdq2pd(XmmRegister dst, XmmRegister src);

  void comiss(XmmRegister a, XmmRegister b);
  void comiss(XmmRegister a, const Address& b);
  void comisd(XmmRegister a, XmmRegister b);
  void comisd(XmmRegister a, const Address& b);
  void ucomiss(XmmRegister a, XmmRegister b);
  void ucomiss(XmmRegister a, const Address& b);
  void ucomisd(XmmRegister a, XmmRegister b);
  void ucomisd(XmmRegister a, const Address& b);

  void roundsd(XmmRegister dst, XmmRegister src, const Immediate& imm);
  void roundss(XmmRegister dst, XmmRegister src, const Immediate& imm);

  void sqrtsd(XmmRegister dst, XmmRegister src);
  void sqrtss(XmmRegister dst, XmmRegister src);

  void xorpd(XmmRegister dst, const Address& src);
  void xorpd(XmmRegister dst, XmmRegister src);
  void xorps(XmmRegister dst, const Address& src);
  void xorps(XmmRegister dst, XmmRegister src);
  void pxor(XmmRegister dst, XmmRegister src);  // no addr variant (for now)

  void andpd(XmmRegister dst, const Address& src);
  void andpd(XmmRegister dst, XmmRegister src);
  void andps(XmmRegister dst, XmmRegister src);  // no addr variant (for now)
  void pand(XmmRegister dst, XmmRegister src);

  void andnpd(XmmRegister dst, XmmRegister src);  // no addr variant (for now)
  void andnps(XmmRegister dst, XmmRegister src);
  void pandn(XmmRegister dst, XmmRegister src);

  void orpd(XmmRegister dst, XmmRegister src);  // no addr variant (for now)
  void orps(XmmRegister dst, XmmRegister src);
  void por(XmmRegister dst, XmmRegister src);

  void pavgb(XmmRegister dst, XmmRegister src);  // no addr variant (for now)
  void pavgw(XmmRegister dst, XmmRegister src);

  void pcmpeqb(XmmRegister dst, XmmRegister src);
  void pcmpeqw(XmmRegister dst, XmmRegister src);
  void pcmpeqd(XmmRegister dst, XmmRegister src);
  void pcmpeqq(XmmRegister dst, XmmRegister src);

  void pcmpgtb(XmmRegister dst, XmmRegister src);
  void pcmpgtw(XmmRegister dst, XmmRegister src);
  void pcmpgtd(XmmRegister dst, XmmRegister src);
  void pcmpgtq(XmmRegister dst, XmmRegister src);  // SSE4.2

  void shufpd(XmmRegister dst, XmmRegister src, const Immediate& imm);
  void shufps(XmmRegister dst, XmmRegister src, const Immediate& imm);
  void pshufd(XmmRegister dst, XmmRegister src, const Immediate& imm);

  void punpcklbw(XmmRegister dst, XmmRegister src);
  void punpcklwd(XmmRegister dst, XmmRegister src);
  void punpckldq(XmmRegister dst, XmmRegister src);
  void punpcklqdq(XmmRegister dst, XmmRegister src);

  void psllw(XmmRegister reg, const Immediate& shift_count);
  void pslld(XmmRegister reg, const Immediate& shift_count);
  void psllq(XmmRegister reg, const Immediate& shift_count);

  void psraw(XmmRegister reg, const Immediate& shift_count);
  void psrad(XmmRegister reg, const Immediate& shift_count);
  // no psraq

  void psrlw(XmmRegister reg, const Immediate& shift_count);
  void psrld(XmmRegister reg, const Immediate& shift_count);
  void psrlq(XmmRegister reg, const Immediate& shift_count);

  void flds(const Address& src);
  void fstps(const Address& dst);
  void fsts(const Address& dst);

  void fldl(const Address& src);
  void fstpl(const Address& dst);
  void fstl(const Address& dst);

  void fstsw();

  void fucompp();

  void fnstcw(const Address& dst);
  void fldcw(const Address& src);

  void fistpl(const Address& dst);
  void fistps(const Address& dst);
  void fildl(const Address& src);
  void filds(const Address& src);

  void fincstp();
  void ffree(const Immediate& index);

  void fsin();
  void fcos();
  void fptan();
  void fprem();

  void xchgl(CpuRegister dst, CpuRegister src);
  void xchgq(CpuRegister dst, CpuRegister src);
  void xchgl(CpuRegister reg, const Address& address);

  void cmpb(const Address& address, const Immediate& imm);
  void cmpw(const Address& address, const Immediate& imm);

  void cmpl(CpuRegister reg, const Immediate& imm);
  void cmpl(CpuRegister reg0, CpuRegister reg1);
  void cmpl(CpuRegister reg, const Address& address);
  void cmpl(const Address& address, CpuRegister reg);
  void cmpl(const Address& address, const Immediate& imm);

  void cmpq(CpuRegister reg0, CpuRegister reg1);
  void cmpq(CpuRegister reg0, const Immediate& imm);
  void cmpq(CpuRegister reg0, const Address& address);
  void cmpq(const Address& address, const Immediate& imm);

  void testl(CpuRegister reg1, CpuRegister reg2);
  void testl(CpuRegister reg, const Address& address);
  void testl(CpuRegister reg, const Immediate& imm);

  void testq(CpuRegister reg1, CpuRegister reg2);
  void testq(CpuRegister reg, const Address& address);

  void testb(const Address& address, const Immediate& imm);
  void testl(const Address& address, const Immediate& imm);

  void andl(CpuRegister dst, const Immediate& imm);
  void andl(CpuRegister dst, CpuRegister src);
  void andl(CpuRegister reg, const Address& address);
  void andq(CpuRegister dst, const Immediate& imm);
  void andq(CpuRegister dst, CpuRegister src);
  void andq(CpuRegister reg, const Address& address);

  void orl(CpuRegister dst, const Immediate& imm);
  void orl(CpuRegister dst, CpuRegister src);
  void orl(CpuRegister reg, const Address& address);
  void orq(CpuRegister dst, CpuRegister src);
  void orq(CpuRegister dst, const Immediate& imm);
  void orq(CpuRegister reg, const Address& address);

  void xorl(CpuRegister dst, CpuRegister src);
  void xorl(CpuRegister dst, const Immediate& imm);
  void xorl(CpuRegister reg, const Address& address);
  void xorq(CpuRegister dst, const Immediate& imm);
  void xorq(CpuRegister dst, CpuRegister src);
  void xorq(CpuRegister reg, const Address& address);

  void addl(CpuRegister dst, CpuRegister src);
  void addl(CpuRegister reg, const Immediate& imm);
  void addl(CpuRegister reg, const Address& address);
  void addl(const Address& address, CpuRegister reg);
  void addl(const Address& address, const Immediate& imm);

  void addq(CpuRegister reg, const Immediate& imm);
  void addq(CpuRegister dst, CpuRegister src);
  void addq(CpuRegister dst, const Address& address);

  void subl(CpuRegister dst, CpuRegister src);
  void subl(CpuRegister reg, const Immediate& imm);
  void subl(CpuRegister reg, const Address& address);

  void subq(CpuRegister reg, const Immediate& imm);
  void subq(CpuRegister dst, CpuRegister src);
  void subq(CpuRegister dst, const Address& address);

  void cdq();
  void cqo();

  void idivl(CpuRegister reg);
  void idivq(CpuRegister reg);

  void imull(CpuRegister dst, CpuRegister src);
  void imull(CpuRegister reg, const Immediate& imm);
  void imull(CpuRegister dst, CpuRegister src, const Immediate& imm);
  void imull(CpuRegister reg, const Address& address);

  void imulq(CpuRegister src);
  void imulq(CpuRegister dst, CpuRegister src);
  void imulq(CpuRegister reg, const Immediate& imm);
  void imulq(CpuRegister reg, const Address& address);
  void imulq(CpuRegister dst, CpuRegister reg, const Immediate& imm);

  void imull(CpuRegister reg);
  void imull(const Address& address);

  void mull(CpuRegister reg);
  void mull(const Address& address);

  void shll(CpuRegister reg, const Immediate& imm);
  void shll(CpuRegister operand, CpuRegister shifter);
  void shrl(CpuRegister reg, const Immediate& imm);
  void shrl(CpuRegister operand, CpuRegister shifter);
  void sarl(CpuRegister reg, const Immediate& imm);
  void sarl(CpuRegister operand, CpuRegister shifter);

  void shlq(CpuRegister reg, const Immediate& imm);
  void shlq(CpuRegister operand, CpuRegister shifter);
  void shrq(CpuRegister reg, const Immediate& imm);
  void shrq(CpuRegister operand, CpuRegister shifter);
  void sarq(CpuRegister reg, const Immediate& imm);
  void sarq(CpuRegister operand, CpuRegister shifter);

  void negl(CpuRegister reg);
  void negq(CpuRegister reg);

  void notl(CpuRegister reg);
  void notq(CpuRegister reg);

  void enter(const Immediate& imm);
  void leave();

  void ret();
  void ret(const Immediate& imm);

  void nop();
  void int3();
  void hlt();

  void j(Condition condition, Label* label);
  void j(Condition condition, NearLabel* label);
  void jrcxz(NearLabel* label);

  void jmp(CpuRegister reg);
  void jmp(const Address& address);
  void jmp(Label* label);
  void jmp(NearLabel* label);

  X86_64Assembler* lock();
  void cmpxchgl(const Address& address, CpuRegister reg);
  void cmpxchgq(const Address& address, CpuRegister reg);

  void mfence();

  X86_64Assembler* gs();

  void setcc(Condition condition, CpuRegister dst);

  void bswapl(CpuRegister dst);
  void bswapq(CpuRegister dst);

  void bsfl(CpuRegister dst, CpuRegister src);
  void bsfl(CpuRegister dst, const Address& src);
  void bsfq(CpuRegister dst, CpuRegister src);
  void bsfq(CpuRegister dst, const Address& src);

  void bsrl(CpuRegister dst, CpuRegister src);
  void bsrl(CpuRegister dst, const Address& src);
  void bsrq(CpuRegister dst, CpuRegister src);
  void bsrq(CpuRegister dst, const Address& src);

  void popcntl(CpuRegister dst, CpuRegister src);
  void popcntl(CpuRegister dst, const Address& src);
  void popcntq(CpuRegister dst, CpuRegister src);
  void popcntq(CpuRegister dst, const Address& src);

  void rorl(CpuRegister reg, const Immediate& imm);
  void rorl(CpuRegister operand, CpuRegister shifter);
  void roll(CpuRegister reg, const Immediate& imm);
  void roll(CpuRegister operand, CpuRegister shifter);

  void rorq(CpuRegister reg, const Immediate& imm);
  void rorq(CpuRegister operand, CpuRegister shifter);
  void rolq(CpuRegister reg, const Immediate& imm);
  void rolq(CpuRegister operand, CpuRegister shifter);

  void repne_scasb();
  void repne_scasw();
  void repe_cmpsw();
  void repe_cmpsl();
  void repe_cmpsq();
  void rep_movsw();

  //
  // Macros for High-level operations.
  //

  void AddImmediate(CpuRegister reg, const Immediate& imm);

  void LoadDoubleConstant(XmmRegister dst, double value);

  void LockCmpxchgl(const Address& address, CpuRegister reg) {
    lock()->cmpxchgl(address, reg);
  }

  void LockCmpxchgq(const Address& address, CpuRegister reg) {
    lock()->cmpxchgq(address, reg);
  }

  //
  // Misc. functionality
  //
  int PreferredLoopAlignment() { return 16; }
  void Align(int alignment, int offset);
  void Bind(Label* label) OVERRIDE;
  void Jump(Label* label) OVERRIDE {
    jmp(label);
  }
  void Bind(NearLabel* label);

  // Add a double to the constant area, returning the offset into
  // the constant area where the literal resides.
  size_t AddDouble(double v) { return constant_area_.AddDouble(v); }

  // Add a float to the constant area, returning the offset into
  // the constant area where the literal resides.
  size_t AddFloat(float v)   { return constant_area_.AddFloat(v); }

  // Add an int32_t to the constant area, returning the offset into
  // the constant area where the literal resides.
  size_t AddInt32(int32_t v) {
    return constant_area_.AddInt32(v);
  }

  // Add an int32_t to the end of the constant area, returning the offset into
  // the constant area where the literal resides.
  size_t AppendInt32(int32_t v) {
    return constant_area_.AppendInt32(v);
  }

  // Add an int64_t to the constant area, returning the offset into
  // the constant area where the literal resides.
  size_t AddInt64(int64_t v) { return constant_area_.AddInt64(v); }

  // Add the contents of the constant area to the assembler buffer.
  void AddConstantArea();

  // Is the constant area empty? Return true if there are no literals in the constant area.
  bool IsConstantAreaEmpty() const { return constant_area_.GetSize() == 0; }

  // Return the current size of the constant area.
  size_t ConstantAreaSize() const { return constant_area_.GetSize(); }

  //
  // Heap poisoning.
  //

  // Poison a heap reference contained in `reg`.
  void PoisonHeapReference(CpuRegister reg) { negl(reg); }
  // Unpoison a heap reference contained in `reg`.
  void UnpoisonHeapReference(CpuRegister reg) { negl(reg); }
  // Poison a heap reference contained in `reg` if heap poisoning is enabled.
  void MaybePoisonHeapReference(CpuRegister reg) {
    if (kPoisonHeapReferences) {
      PoisonHeapReference(reg);
    }
  }
  // Unpoison a heap reference contained in `reg` if heap poisoning is enabled.
  void MaybeUnpoisonHeapReference(CpuRegister reg) {
    if (kPoisonHeapReferences) {
      UnpoisonHeapReference(reg);
    }
  }

 private:
  void EmitUint8(uint8_t value);
  void EmitInt32(int32_t value);
  void EmitInt64(int64_t value);
  void EmitRegisterOperand(uint8_t rm, uint8_t reg);
  void EmitXmmRegisterOperand(uint8_t rm, XmmRegister reg);
  void EmitFixup(AssemblerFixup* fixup);
  void EmitOperandSizeOverride();

  void EmitOperand(uint8_t rm, const Operand& operand);
  void EmitImmediate(const Immediate& imm);
  void EmitComplex(uint8_t rm, const Operand& operand, const Immediate& immediate);
  void EmitLabel(Label* label, int instruction_size);
  void EmitLabelLink(Label* label);
  void EmitLabelLink(NearLabel* label);

  void EmitGenericShift(bool wide, int rm, CpuRegister reg, const Immediate& imm);
  void EmitGenericShift(bool wide, int rm, CpuRegister operand, CpuRegister shifter);

  // If any input is not false, output the necessary rex prefix.
  void EmitOptionalRex(bool force, bool w, bool r, bool x, bool b);

  // Emit a rex prefix byte if necessary for reg. ie if reg is a register in the range R8 to R15.
  void EmitOptionalRex32(CpuRegister reg);
  void EmitOptionalRex32(CpuRegister dst, CpuRegister src);
  void EmitOptionalRex32(XmmRegister dst, XmmRegister src);
  void EmitOptionalRex32(CpuRegister dst, XmmRegister src);
  void EmitOptionalRex32(XmmRegister dst, CpuRegister src);
  void EmitOptionalRex32(const Operand& operand);
  void EmitOptionalRex32(CpuRegister dst, const Operand& operand);
  void EmitOptionalRex32(XmmRegister dst, const Operand& operand);

  // Emit a REX.W prefix plus necessary register bit encodings.
  void EmitRex64();
  void EmitRex64(CpuRegister reg);
  void EmitRex64(const Operand& operand);
  void EmitRex64(CpuRegister dst, CpuRegister src);
  void EmitRex64(CpuRegister dst, const Operand& operand);
  void EmitRex64(XmmRegister dst, const Operand& operand);
  void EmitRex64(XmmRegister dst, CpuRegister src);
  void EmitRex64(CpuRegister dst, XmmRegister src);

  // Emit a REX prefix to normalize byte registers plus necessary register bit encodings.
  void EmitOptionalByteRegNormalizingRex32(CpuRegister dst, CpuRegister src);
  void EmitOptionalByteRegNormalizingRex32(CpuRegister dst, const Operand& operand);

  ConstantArea constant_area_;

  DISALLOW_COPY_AND_ASSIGN(X86_64Assembler);
};

inline void X86_64Assembler::EmitUint8(uint8_t value) {
  buffer_.Emit<uint8_t>(value);
}

inline void X86_64Assembler::EmitInt32(int32_t value) {
  buffer_.Emit<int32_t>(value);
}

inline void X86_64Assembler::EmitInt64(int64_t value) {
  // Write this 64-bit value as two 32-bit words for alignment reasons
  // (this is essentially when running on ARM, which does not allow
  // 64-bit unaligned accesses).  We assume little-endianness here.
  EmitInt32(Low32Bits(value));
  EmitInt32(High32Bits(value));
}

inline void X86_64Assembler::EmitRegisterOperand(uint8_t rm, uint8_t reg) {
  CHECK_GE(rm, 0);
  CHECK_LT(rm, 8);
  buffer_.Emit<uint8_t>((0xC0 | (reg & 7)) + (rm << 3));
}

inline void X86_64Assembler::EmitXmmRegisterOperand(uint8_t rm, XmmRegister reg) {
  EmitRegisterOperand(rm, static_cast<uint8_t>(reg.AsFloatRegister()));
}

inline void X86_64Assembler::EmitFixup(AssemblerFixup* fixup) {
  buffer_.EmitFixup(fixup);
}

inline void X86_64Assembler::EmitOperandSizeOverride() {
  EmitUint8(0x66);
}

}  // namespace x86_64
}  // namespace art

#endif  // ART_COMPILER_UTILS_X86_64_ASSEMBLER_X86_64_H_