/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_COMPILER_UTILS_ASSEMBLER_H_ #define ART_COMPILER_UTILS_ASSEMBLER_H_ #include <vector> #include "arch/instruction_set.h" #include "arch/instruction_set_features.h" #include "arm/constants_arm.h" #include "base/arena_allocator.h" #include "base/arena_object.h" #include "base/array_ref.h" #include "base/enums.h" #include "base/logging.h" #include "base/macros.h" #include "debug/dwarf/debug_frame_opcode_writer.h" #include "label.h" #include "managed_register.h" #include "memory_region.h" #include "mips/constants_mips.h" #include "offsets.h" #include "x86/constants_x86.h" #include "x86_64/constants_x86_64.h" namespace art { class Assembler; class AssemblerBuffer; // Assembler fixups are positions in generated code that require processing // after the code has been copied to executable memory. This includes building // relocation information. class AssemblerFixup { public: virtual void Process(const MemoryRegion& region, int position) = 0; virtual ~AssemblerFixup() {} private: AssemblerFixup* previous_; int position_; AssemblerFixup* previous() const { return previous_; } void set_previous(AssemblerFixup* previous_in) { previous_ = previous_in; } int position() const { return position_; } void set_position(int position_in) { position_ = position_in; } friend class AssemblerBuffer; }; // Parent of all queued slow paths, emitted during finalization class SlowPath : public DeletableArenaObject<kArenaAllocAssembler> { public: SlowPath() : next_(nullptr) {} virtual ~SlowPath() {} Label* Continuation() { return &continuation_; } Label* Entry() { return &entry_; } // Generate code for slow path virtual void Emit(Assembler *sp_asm) = 0; protected: // Entry branched to by fast path Label entry_; // Optional continuation that is branched to at the end of the slow path Label continuation_; // Next in linked list of slow paths SlowPath *next_; private: friend class AssemblerBuffer; DISALLOW_COPY_AND_ASSIGN(SlowPath); }; class AssemblerBuffer { public: explicit AssemblerBuffer(ArenaAllocator* arena); ~AssemblerBuffer(); ArenaAllocator* GetArena() { return arena_; } // Basic support for emitting, loading, and storing. template<typename T> void Emit(T value) { CHECK(HasEnsuredCapacity()); *reinterpret_cast<T*>(cursor_) = value; cursor_ += sizeof(T); } template<typename T> T Load(size_t position) { CHECK_LE(position, Size() - static_cast<int>(sizeof(T))); return *reinterpret_cast<T*>(contents_ + position); } template<typename T> void Store(size_t position, T value) { CHECK_LE(position, Size() - static_cast<int>(sizeof(T))); *reinterpret_cast<T*>(contents_ + position) = value; } void Resize(size_t new_size) { if (new_size > Capacity()) { ExtendCapacity(new_size); } cursor_ = contents_ + new_size; } void Move(size_t newposition, size_t oldposition, size_t size) { // Move a chunk of the buffer from oldposition to newposition. DCHECK_LE(oldposition + size, Size()); DCHECK_LE(newposition + size, Size()); memmove(contents_ + newposition, contents_ + oldposition, size); } // Emit a fixup at the current location. void EmitFixup(AssemblerFixup* fixup) { fixup->set_previous(fixup_); fixup->set_position(Size()); fixup_ = fixup; } void EnqueueSlowPath(SlowPath* slowpath) { if (slow_path_ == nullptr) { slow_path_ = slowpath; } else { SlowPath* cur = slow_path_; for ( ; cur->next_ != nullptr ; cur = cur->next_) {} cur->next_ = slowpath; } } void EmitSlowPaths(Assembler* sp_asm) { SlowPath* cur = slow_path_; SlowPath* next = nullptr; slow_path_ = nullptr; for ( ; cur != nullptr ; cur = next) { cur->Emit(sp_asm); next = cur->next_; delete cur; } } // Get the size of the emitted code. size_t Size() const { CHECK_GE(cursor_, contents_); return cursor_ - contents_; } uint8_t* contents() const { return contents_; } // Copy the assembled instructions into the specified memory block // and apply all fixups. void FinalizeInstructions(const MemoryRegion& region); // To emit an instruction to the assembler buffer, the EnsureCapacity helper // must be used to guarantee that the underlying data area is big enough to // hold the emitted instruction. Usage: // // AssemblerBuffer buffer; // AssemblerBuffer::EnsureCapacity ensured(&buffer); // ... emit bytes for single instruction ... #ifndef NDEBUG class EnsureCapacity { public: explicit EnsureCapacity(AssemblerBuffer* buffer) { if (buffer->cursor() > buffer->limit()) { buffer->ExtendCapacity(buffer->Size() + kMinimumGap); } // In debug mode, we save the assembler buffer along with the gap // size before we start emitting to the buffer. This allows us to // check that any single generated instruction doesn't overflow the // limit implied by the minimum gap size. buffer_ = buffer; gap_ = ComputeGap(); // Make sure that extending the capacity leaves a big enough gap // for any kind of instruction. CHECK_GE(gap_, kMinimumGap); // Mark the buffer as having ensured the capacity. CHECK(!buffer->HasEnsuredCapacity()); // Cannot nest. buffer->has_ensured_capacity_ = true; } ~EnsureCapacity() { // Unmark the buffer, so we cannot emit after this. buffer_->has_ensured_capacity_ = false; // Make sure the generated instruction doesn't take up more // space than the minimum gap. int delta = gap_ - ComputeGap(); CHECK_LE(delta, kMinimumGap); } private: AssemblerBuffer* buffer_; int gap_; int ComputeGap() { return buffer_->Capacity() - buffer_->Size(); } }; bool has_ensured_capacity_; bool HasEnsuredCapacity() const { return has_ensured_capacity_; } #else class EnsureCapacity { public: explicit EnsureCapacity(AssemblerBuffer* buffer) { if (buffer->cursor() > buffer->limit()) { buffer->ExtendCapacity(buffer->Size() + kMinimumGap); } } }; // When building the C++ tests, assertion code is enabled. To allow // asserting that the user of the assembler buffer has ensured the // capacity needed for emitting, we add a dummy method in non-debug mode. bool HasEnsuredCapacity() const { return true; } #endif // Returns the position in the instruction stream. int GetPosition() { return cursor_ - contents_; } size_t Capacity() const { CHECK_GE(limit_, contents_); return (limit_ - contents_) + kMinimumGap; } // Unconditionally increase the capacity. // The provided `min_capacity` must be higher than current `Capacity()`. void ExtendCapacity(size_t min_capacity); private: // The limit is set to kMinimumGap bytes before the end of the data area. // This leaves enough space for the longest possible instruction and allows // for a single, fast space check per instruction. static const int kMinimumGap = 32; ArenaAllocator* arena_; uint8_t* contents_; uint8_t* cursor_; uint8_t* limit_; AssemblerFixup* fixup_; #ifndef NDEBUG bool fixups_processed_; #endif // Head of linked list of slow paths SlowPath* slow_path_; uint8_t* cursor() const { return cursor_; } uint8_t* limit() const { return limit_; } // Process the fixup chain starting at the given fixup. The offset is // non-zero for fixups in the body if the preamble is non-empty. void ProcessFixups(const MemoryRegion& region); // Compute the limit based on the data area and the capacity. See // description of kMinimumGap for the reasoning behind the value. static uint8_t* ComputeLimit(uint8_t* data, size_t capacity) { return data + capacity - kMinimumGap; } friend class AssemblerFixup; }; // The purpose of this class is to ensure that we do not have to explicitly // call the AdvancePC method (which is good for convenience and correctness). class DebugFrameOpCodeWriterForAssembler FINAL : public dwarf::DebugFrameOpCodeWriter<> { public: struct DelayedAdvancePC { uint32_t stream_pos; uint32_t pc; }; // This method is called the by the opcode writers. virtual void ImplicitlyAdvancePC() FINAL; explicit DebugFrameOpCodeWriterForAssembler(Assembler* buffer) : dwarf::DebugFrameOpCodeWriter<>(false /* enabled */), assembler_(buffer), delay_emitting_advance_pc_(false), delayed_advance_pcs_() { } ~DebugFrameOpCodeWriterForAssembler() { DCHECK(delayed_advance_pcs_.empty()); } // Tell the writer to delay emitting advance PC info. // The assembler must explicitly process all the delayed advances. void DelayEmittingAdvancePCs() { delay_emitting_advance_pc_ = true; } // Override the last delayed PC. The new PC can be out of order. void OverrideDelayedPC(size_t pc) { DCHECK(delay_emitting_advance_pc_); if (enabled_) { DCHECK(!delayed_advance_pcs_.empty()); delayed_advance_pcs_.back().pc = pc; } } // Return the number of delayed advance PC entries. size_t NumberOfDelayedAdvancePCs() const { return delayed_advance_pcs_.size(); } // Release the CFI stream and advance PC infos so that the assembler can patch it. std::pair<std::vector<uint8_t>, std::vector<DelayedAdvancePC>> ReleaseStreamAndPrepareForDelayedAdvancePC() { DCHECK(delay_emitting_advance_pc_); delay_emitting_advance_pc_ = false; std::pair<std::vector<uint8_t>, std::vector<DelayedAdvancePC>> result; result.first.swap(opcodes_); result.second.swap(delayed_advance_pcs_); return result; } // Reserve space for the CFI stream. void ReserveCFIStream(size_t capacity) { opcodes_.reserve(capacity); } // Append raw data to the CFI stream. void AppendRawData(const std::vector<uint8_t>& raw_data, size_t first, size_t last) { DCHECK_LE(0u, first); DCHECK_LE(first, last); DCHECK_LE(last, raw_data.size()); opcodes_.insert(opcodes_.end(), raw_data.begin() + first, raw_data.begin() + last); } private: Assembler* assembler_; bool delay_emitting_advance_pc_; std::vector<DelayedAdvancePC> delayed_advance_pcs_; }; class Assembler : public DeletableArenaObject<kArenaAllocAssembler> { public: // Finalize the code; emit slow paths, fixup branches, add literal pool, etc. virtual void FinalizeCode() { buffer_.EmitSlowPaths(this); } // Size of generated code virtual size_t CodeSize() const { return buffer_.Size(); } virtual const uint8_t* CodeBufferBaseAddress() const { return buffer_.contents(); } // CodePosition() is a non-const method similar to CodeSize(), which is used to // record positions within the code buffer for the purpose of signal handling // (stack overflow checks and implicit null checks may trigger signals and the // signal handlers expect them right before the recorded positions). // On most architectures CodePosition() should be equivalent to CodeSize(), but // the MIPS assembler needs to be aware of this recording, so it doesn't put // the instructions that can trigger signals into branch delay slots. Handling // signals from instructions in delay slots is a bit problematic and should be // avoided. virtual size_t CodePosition() { return CodeSize(); } // Copy instructions out of assembly buffer into the given region of memory virtual void FinalizeInstructions(const MemoryRegion& region) { buffer_.FinalizeInstructions(region); } // TODO: Implement with disassembler. virtual void Comment(const char* format ATTRIBUTE_UNUSED, ...) {} virtual void Bind(Label* label) = 0; virtual void Jump(Label* label) = 0; virtual ~Assembler() {} /** * @brief Buffer of DWARF's Call Frame Information opcodes. * @details It is used by debuggers and other tools to unwind the call stack. */ DebugFrameOpCodeWriterForAssembler& cfi() { return cfi_; } ArenaAllocator* GetArena() { return buffer_.GetArena(); } AssemblerBuffer* GetBuffer() { return &buffer_; } protected: explicit Assembler(ArenaAllocator* arena) : buffer_(arena), cfi_(this) {} AssemblerBuffer buffer_; DebugFrameOpCodeWriterForAssembler cfi_; }; } // namespace art #endif // ART_COMPILER_UTILS_ASSEMBLER_H_