/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "ssa_builder.h" #include "bytecode_utils.h" #include "mirror/class-inl.h" #include "nodes.h" #include "reference_type_propagation.h" #include "scoped_thread_state_change-inl.h" #include "ssa_phi_elimination.h" namespace art { void SsaBuilder::FixNullConstantType() { // The order doesn't matter here. for (HBasicBlock* block : graph_->GetReversePostOrder()) { for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { HInstruction* equality_instr = it.Current(); if (!equality_instr->IsEqual() && !equality_instr->IsNotEqual()) { continue; } HInstruction* left = equality_instr->InputAt(0); HInstruction* right = equality_instr->InputAt(1); HInstruction* int_operand = nullptr; if ((left->GetType() == Primitive::kPrimNot) && (right->GetType() == Primitive::kPrimInt)) { int_operand = right; } else if ((right->GetType() == Primitive::kPrimNot) && (left->GetType() == Primitive::kPrimInt)) { int_operand = left; } else { continue; } // If we got here, we are comparing against a reference and the int constant // should be replaced with a null constant. // Both type propagation and redundant phi elimination ensure `int_operand` // can only be the 0 constant. DCHECK(int_operand->IsIntConstant()) << int_operand->DebugName(); DCHECK_EQ(0, int_operand->AsIntConstant()->GetValue()); equality_instr->ReplaceInput(graph_->GetNullConstant(), int_operand == right ? 1 : 0); } } } void SsaBuilder::EquivalentPhisCleanup() { // The order doesn't matter here. for (HBasicBlock* block : graph_->GetReversePostOrder()) { for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) { HPhi* phi = it.Current()->AsPhi(); HPhi* next = phi->GetNextEquivalentPhiWithSameType(); if (next != nullptr) { // Make sure we do not replace a live phi with a dead phi. A live phi // has been handled by the type propagation phase, unlike a dead phi. if (next->IsLive()) { phi->ReplaceWith(next); phi->SetDead(); } else { next->ReplaceWith(phi); } DCHECK(next->GetNextEquivalentPhiWithSameType() == nullptr) << "More then one phi equivalent with type " << phi->GetType() << " found for phi" << phi->GetId(); } } } } void SsaBuilder::FixEnvironmentPhis() { for (HBasicBlock* block : graph_->GetReversePostOrder()) { for (HInstructionIterator it_phis(block->GetPhis()); !it_phis.Done(); it_phis.Advance()) { HPhi* phi = it_phis.Current()->AsPhi(); // If the phi is not dead, or has no environment uses, there is nothing to do. if (!phi->IsDead() || !phi->HasEnvironmentUses()) continue; HInstruction* next = phi->GetNext(); if (!phi->IsVRegEquivalentOf(next)) continue; if (next->AsPhi()->IsDead()) { // If the phi equivalent is dead, check if there is another one. next = next->GetNext(); if (!phi->IsVRegEquivalentOf(next)) continue; // There can be at most two phi equivalents. DCHECK(!phi->IsVRegEquivalentOf(next->GetNext())); if (next->AsPhi()->IsDead()) continue; } // We found a live phi equivalent. Update the environment uses of `phi` with it. phi->ReplaceWith(next); } } } static void AddDependentInstructionsToWorklist(HInstruction* instruction, ArenaVector<HPhi*>* worklist) { // If `instruction` is a dead phi, type conflict was just identified. All its // live phi users, and transitively users of those users, therefore need to be // marked dead/conflicting too, so we add them to the worklist. Otherwise we // add users whose type does not match and needs to be updated. bool add_all_live_phis = instruction->IsPhi() && instruction->AsPhi()->IsDead(); for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) { HInstruction* user = use.GetUser(); if (user->IsPhi() && user->AsPhi()->IsLive()) { if (add_all_live_phis || user->GetType() != instruction->GetType()) { worklist->push_back(user->AsPhi()); } } } } // Find a candidate primitive type for `phi` by merging the type of its inputs. // Return false if conflict is identified. static bool TypePhiFromInputs(HPhi* phi) { Primitive::Type common_type = phi->GetType(); for (HInstruction* input : phi->GetInputs()) { if (input->IsPhi() && input->AsPhi()->IsDead()) { // Phis are constructed live so if an input is a dead phi, it must have // been made dead due to type conflict. Mark this phi conflicting too. return false; } Primitive::Type input_type = HPhi::ToPhiType(input->GetType()); if (common_type == input_type) { // No change in type. } else if (Primitive::Is64BitType(common_type) != Primitive::Is64BitType(input_type)) { // Types are of different sizes, e.g. int vs. long. Must be a conflict. return false; } else if (Primitive::IsIntegralType(common_type)) { // Previous inputs were integral, this one is not but is of the same size. // This does not imply conflict since some bytecode instruction types are // ambiguous. TypeInputsOfPhi will either type them or detect a conflict. DCHECK(Primitive::IsFloatingPointType(input_type) || input_type == Primitive::kPrimNot); common_type = input_type; } else if (Primitive::IsIntegralType(input_type)) { // Input is integral, common type is not. Same as in the previous case, if // there is a conflict, it will be detected during TypeInputsOfPhi. DCHECK(Primitive::IsFloatingPointType(common_type) || common_type == Primitive::kPrimNot); } else { // Combining float and reference types. Clearly a conflict. DCHECK((common_type == Primitive::kPrimFloat && input_type == Primitive::kPrimNot) || (common_type == Primitive::kPrimNot && input_type == Primitive::kPrimFloat)); return false; } } // We have found a candidate type for the phi. Set it and return true. We may // still discover conflict whilst typing the individual inputs in TypeInputsOfPhi. phi->SetType(common_type); return true; } // Replace inputs of `phi` to match its type. Return false if conflict is identified. bool SsaBuilder::TypeInputsOfPhi(HPhi* phi, ArenaVector<HPhi*>* worklist) { Primitive::Type common_type = phi->GetType(); if (Primitive::IsIntegralType(common_type)) { // We do not need to retype ambiguous inputs because they are always constructed // with the integral type candidate. if (kIsDebugBuild) { for (HInstruction* input : phi->GetInputs()) { DCHECK(HPhi::ToPhiType(input->GetType()) == common_type); } } // Inputs did not need to be replaced, hence no conflict. Report success. return true; } else { DCHECK(common_type == Primitive::kPrimNot || Primitive::IsFloatingPointType(common_type)); HInputsRef inputs = phi->GetInputs(); for (size_t i = 0; i < inputs.size(); ++i) { HInstruction* input = inputs[i]; if (input->GetType() != common_type) { // Input type does not match phi's type. Try to retype the input or // generate a suitably typed equivalent. HInstruction* equivalent = (common_type == Primitive::kPrimNot) ? GetReferenceTypeEquivalent(input) : GetFloatOrDoubleEquivalent(input, common_type); if (equivalent == nullptr) { // Input could not be typed. Report conflict. return false; } // Make sure the input did not change its type and we do not need to // update its users. DCHECK_NE(input, equivalent); phi->ReplaceInput(equivalent, i); if (equivalent->IsPhi()) { worklist->push_back(equivalent->AsPhi()); } } } // All inputs either matched the type of the phi or we successfully replaced // them with a suitable equivalent. Report success. return true; } } // Attempt to set the primitive type of `phi` to match its inputs. Return whether // it was changed by the algorithm or not. bool SsaBuilder::UpdatePrimitiveType(HPhi* phi, ArenaVector<HPhi*>* worklist) { DCHECK(phi->IsLive()); Primitive::Type original_type = phi->GetType(); // Try to type the phi in two stages: // (1) find a candidate type for the phi by merging types of all its inputs, // (2) try to type the phi's inputs to that candidate type. // Either of these stages may detect a type conflict and fail, in which case // we immediately abort. if (!TypePhiFromInputs(phi) || !TypeInputsOfPhi(phi, worklist)) { // Conflict detected. Mark the phi dead and return true because it changed. phi->SetDead(); return true; } // Return true if the type of the phi has changed. return phi->GetType() != original_type; } void SsaBuilder::RunPrimitiveTypePropagation() { ArenaVector<HPhi*> worklist(graph_->GetArena()->Adapter(kArenaAllocGraphBuilder)); for (HBasicBlock* block : graph_->GetReversePostOrder()) { if (block->IsLoopHeader()) { for (HInstructionIterator phi_it(block->GetPhis()); !phi_it.Done(); phi_it.Advance()) { HPhi* phi = phi_it.Current()->AsPhi(); if (phi->IsLive()) { worklist.push_back(phi); } } } else { for (HInstructionIterator phi_it(block->GetPhis()); !phi_it.Done(); phi_it.Advance()) { // Eagerly compute the type of the phi, for quicker convergence. Note // that we don't need to add users to the worklist because we are // doing a reverse post-order visit, therefore either the phi users are // non-loop phi and will be visited later in the visit, or are loop-phis, // and they are already in the work list. HPhi* phi = phi_it.Current()->AsPhi(); if (phi->IsLive()) { UpdatePrimitiveType(phi, &worklist); } } } } ProcessPrimitiveTypePropagationWorklist(&worklist); EquivalentPhisCleanup(); } void SsaBuilder::ProcessPrimitiveTypePropagationWorklist(ArenaVector<HPhi*>* worklist) { // Process worklist while (!worklist->empty()) { HPhi* phi = worklist->back(); worklist->pop_back(); // The phi could have been made dead as a result of conflicts while in the // worklist. If it is now dead, there is no point in updating its type. if (phi->IsLive() && UpdatePrimitiveType(phi, worklist)) { AddDependentInstructionsToWorklist(phi, worklist); } } } static HArrayGet* FindFloatOrDoubleEquivalentOfArrayGet(HArrayGet* aget) { Primitive::Type type = aget->GetType(); DCHECK(Primitive::IsIntOrLongType(type)); HInstruction* next = aget->GetNext(); if (next != nullptr && next->IsArrayGet()) { HArrayGet* next_aget = next->AsArrayGet(); if (next_aget->IsEquivalentOf(aget)) { return next_aget; } } return nullptr; } static HArrayGet* CreateFloatOrDoubleEquivalentOfArrayGet(HArrayGet* aget) { Primitive::Type type = aget->GetType(); DCHECK(Primitive::IsIntOrLongType(type)); DCHECK(FindFloatOrDoubleEquivalentOfArrayGet(aget) == nullptr); HArrayGet* equivalent = new (aget->GetBlock()->GetGraph()->GetArena()) HArrayGet( aget->GetArray(), aget->GetIndex(), type == Primitive::kPrimInt ? Primitive::kPrimFloat : Primitive::kPrimDouble, aget->GetDexPc()); aget->GetBlock()->InsertInstructionAfter(equivalent, aget); return equivalent; } static Primitive::Type GetPrimitiveArrayComponentType(HInstruction* array) REQUIRES_SHARED(Locks::mutator_lock_) { ReferenceTypeInfo array_type = array->GetReferenceTypeInfo(); DCHECK(array_type.IsPrimitiveArrayClass()); return array_type.GetTypeHandle()->GetComponentType()->GetPrimitiveType(); } bool SsaBuilder::FixAmbiguousArrayOps() { if (ambiguous_agets_.empty() && ambiguous_asets_.empty()) { return true; } // The wrong ArrayGet equivalent may still have Phi uses coming from ArraySet // uses (because they are untyped) and environment uses (if --debuggable). // After resolving all ambiguous ArrayGets, we will re-run primitive type // propagation on the Phis which need to be updated. ArenaVector<HPhi*> worklist(graph_->GetArena()->Adapter(kArenaAllocGraphBuilder)); { ScopedObjectAccess soa(Thread::Current()); for (HArrayGet* aget_int : ambiguous_agets_) { HInstruction* array = aget_int->GetArray(); if (!array->GetReferenceTypeInfo().IsPrimitiveArrayClass()) { // RTP did not type the input array. Bail. return false; } HArrayGet* aget_float = FindFloatOrDoubleEquivalentOfArrayGet(aget_int); Primitive::Type array_type = GetPrimitiveArrayComponentType(array); DCHECK_EQ(Primitive::Is64BitType(aget_int->GetType()), Primitive::Is64BitType(array_type)); if (Primitive::IsIntOrLongType(array_type)) { if (aget_float != nullptr) { // There is a float/double equivalent. We must replace it and re-run // primitive type propagation on all dependent instructions. aget_float->ReplaceWith(aget_int); aget_float->GetBlock()->RemoveInstruction(aget_float); AddDependentInstructionsToWorklist(aget_int, &worklist); } } else { DCHECK(Primitive::IsFloatingPointType(array_type)); if (aget_float == nullptr) { // This is a float/double ArrayGet but there were no typed uses which // would create the typed equivalent. Create it now. aget_float = CreateFloatOrDoubleEquivalentOfArrayGet(aget_int); } // Replace the original int/long instruction. Note that it may have phi // uses, environment uses, as well as real uses (from untyped ArraySets). // We need to re-run primitive type propagation on its dependent instructions. aget_int->ReplaceWith(aget_float); aget_int->GetBlock()->RemoveInstruction(aget_int); AddDependentInstructionsToWorklist(aget_float, &worklist); } } // Set a flag stating that types of ArrayGets have been resolved. Requesting // equivalent of the wrong type with GetFloatOrDoubleEquivalentOfArrayGet // will fail from now on. agets_fixed_ = true; for (HArraySet* aset : ambiguous_asets_) { HInstruction* array = aset->GetArray(); if (!array->GetReferenceTypeInfo().IsPrimitiveArrayClass()) { // RTP did not type the input array. Bail. return false; } HInstruction* value = aset->GetValue(); Primitive::Type value_type = value->GetType(); Primitive::Type array_type = GetPrimitiveArrayComponentType(array); DCHECK_EQ(Primitive::Is64BitType(value_type), Primitive::Is64BitType(array_type)); if (Primitive::IsFloatingPointType(array_type)) { if (!Primitive::IsFloatingPointType(value_type)) { DCHECK(Primitive::IsIntegralType(value_type)); // Array elements are floating-point but the value has not been replaced // with its floating-point equivalent. The replacement must always // succeed in code validated by the verifier. HInstruction* equivalent = GetFloatOrDoubleEquivalent(value, array_type); DCHECK(equivalent != nullptr); aset->ReplaceInput(equivalent, /* input_index */ 2); if (equivalent->IsPhi()) { // Returned equivalent is a phi which may not have had its inputs // replaced yet. We need to run primitive type propagation on it. worklist.push_back(equivalent->AsPhi()); } } // Refine the side effects of this floating point aset. Note that we do this even if // no replacement occurs, since the right-hand-side may have been corrected already. aset->ComputeSideEffects(); } else { // Array elements are integral and the value assigned to it initially // was integral too. Nothing to do. DCHECK(Primitive::IsIntegralType(array_type)); DCHECK(Primitive::IsIntegralType(value_type)); } } } if (!worklist.empty()) { ProcessPrimitiveTypePropagationWorklist(&worklist); EquivalentPhisCleanup(); } return true; } static bool HasAliasInEnvironments(HInstruction* instruction) { HEnvironment* last_user = nullptr; for (const HUseListNode<HEnvironment*>& use : instruction->GetEnvUses()) { DCHECK(use.GetUser() != nullptr); // Note: The first comparison (== null) always fails. if (use.GetUser() == last_user) { return true; } last_user = use.GetUser(); } if (kIsDebugBuild) { // Do a quadratic search to ensure same environment uses are next // to each other. const HUseList<HEnvironment*>& env_uses = instruction->GetEnvUses(); for (auto current = env_uses.begin(), end = env_uses.end(); current != end; ++current) { auto next = current; for (++next; next != end; ++next) { DCHECK(next->GetUser() != current->GetUser()); } } } return false; } void SsaBuilder::RemoveRedundantUninitializedStrings() { if (graph_->IsDebuggable()) { // Do not perform the optimization for consistency with the interpreter // which always allocates an object for new-instance of String. return; } for (HNewInstance* new_instance : uninitialized_strings_) { DCHECK(new_instance->IsInBlock()); DCHECK(new_instance->IsStringAlloc()); // Replace NewInstance of String with NullConstant if not used prior to // calling StringFactory. In case of deoptimization, the interpreter is // expected to skip null check on the `this` argument of the StringFactory call. if (!new_instance->HasNonEnvironmentUses() && !HasAliasInEnvironments(new_instance)) { new_instance->ReplaceWith(graph_->GetNullConstant()); new_instance->GetBlock()->RemoveInstruction(new_instance); // Remove LoadClass if not needed any more. HInstruction* input = new_instance->InputAt(0); HLoadClass* load_class = nullptr; // If the class was not present in the dex cache at the point of building // the graph, the builder inserted a HClinitCheck in between. Since the String // class is always initialized at the point of running Java code, we can remove // that check. if (input->IsClinitCheck()) { load_class = input->InputAt(0)->AsLoadClass(); input->ReplaceWith(load_class); input->GetBlock()->RemoveInstruction(input); } else { load_class = input->AsLoadClass(); DCHECK(new_instance->IsStringAlloc()); DCHECK(!load_class->NeedsAccessCheck()) << "String class is always accessible"; } DCHECK(load_class != nullptr); if (!load_class->HasUses()) { // Even if the HLoadClass needs access check, we can remove it, as we know the // String class does not need it. load_class->GetBlock()->RemoveInstruction(load_class); } } } } GraphAnalysisResult SsaBuilder::BuildSsa() { DCHECK(!graph_->IsInSsaForm()); // 1) Propagate types of phis. At this point, phis are typed void in the general // case, or float/double/reference if we created an equivalent phi. So we need // to propagate the types across phis to give them a correct type. If a type // conflict is detected in this stage, the phi is marked dead. RunPrimitiveTypePropagation(); // 2) Now that the correct primitive types have been assigned, we can get rid // of redundant phis. Note that we cannot do this phase before type propagation, // otherwise we could get rid of phi equivalents, whose presence is a requirement // for the type propagation phase. Note that this is to satisfy statement (a) // of the SsaBuilder (see ssa_builder.h). SsaRedundantPhiElimination(graph_).Run(); // 3) Fix the type for null constants which are part of an equality comparison. // We need to do this after redundant phi elimination, to ensure the only cases // that we can see are reference comparison against 0. The redundant phi // elimination ensures we do not see a phi taking two 0 constants in a HEqual // or HNotEqual. FixNullConstantType(); // 4) Compute type of reference type instructions. The pass assumes that // NullConstant has been fixed up. ReferenceTypePropagation(graph_, class_loader_, dex_cache_, handles_, /* is_first_run */ true).Run(); // 5) HInstructionBuilder duplicated ArrayGet instructions with ambiguous type // (int/float or long/double) and marked ArraySets with ambiguous input type. // Now that RTP computed the type of the array input, the ambiguity can be // resolved and the correct equivalents kept. if (!FixAmbiguousArrayOps()) { return kAnalysisFailAmbiguousArrayOp; } // 6) Mark dead phis. This will mark phis which are not used by instructions // or other live phis. If compiling as debuggable code, phis will also be kept // live if they have an environment use. SsaDeadPhiElimination dead_phi_elimimation(graph_); dead_phi_elimimation.MarkDeadPhis(); // 7) Make sure environments use the right phi equivalent: a phi marked dead // can have a phi equivalent that is not dead. In that case we have to replace // it with the live equivalent because deoptimization and try/catch rely on // environments containing values of all live vregs at that point. Note that // there can be multiple phis for the same Dex register that are live // (for example when merging constants), in which case it is okay for the // environments to just reference one. FixEnvironmentPhis(); // 8) Now that the right phis are used for the environments, we can eliminate // phis we do not need. Regardless of the debuggable status, this phase is /// necessary for statement (b) of the SsaBuilder (see ssa_builder.h), as well // as for the code generation, which does not deal with phis of conflicting // input types. dead_phi_elimimation.EliminateDeadPhis(); // 9) HInstructionBuidler replaced uses of NewInstances of String with the // results of their corresponding StringFactory calls. Unless the String // objects are used before they are initialized, they can be replaced with // NullConstant. Note that this optimization is valid only if unsimplified // code does not use the uninitialized value because we assume execution can // be deoptimized at any safepoint. We must therefore perform it before any // other optimizations. RemoveRedundantUninitializedStrings(); graph_->SetInSsaForm(); return kAnalysisSuccess; } /** * Constants in the Dex format are not typed. So the builder types them as * integers, but when doing the SSA form, we might realize the constant * is used for floating point operations. We create a floating-point equivalent * constant to make the operations correctly typed. */ HFloatConstant* SsaBuilder::GetFloatEquivalent(HIntConstant* constant) { // We place the floating point constant next to this constant. HFloatConstant* result = constant->GetNext()->AsFloatConstant(); if (result == nullptr) { float value = bit_cast<float, int32_t>(constant->GetValue()); result = new (graph_->GetArena()) HFloatConstant(value); constant->GetBlock()->InsertInstructionBefore(result, constant->GetNext()); graph_->CacheFloatConstant(result); } else { // If there is already a constant with the expected type, we know it is // the floating point equivalent of this constant. DCHECK_EQ((bit_cast<int32_t, float>(result->GetValue())), constant->GetValue()); } return result; } /** * Wide constants in the Dex format are not typed. So the builder types them as * longs, but when doing the SSA form, we might realize the constant * is used for floating point operations. We create a floating-point equivalent * constant to make the operations correctly typed. */ HDoubleConstant* SsaBuilder::GetDoubleEquivalent(HLongConstant* constant) { // We place the floating point constant next to this constant. HDoubleConstant* result = constant->GetNext()->AsDoubleConstant(); if (result == nullptr) { double value = bit_cast<double, int64_t>(constant->GetValue()); result = new (graph_->GetArena()) HDoubleConstant(value); constant->GetBlock()->InsertInstructionBefore(result, constant->GetNext()); graph_->CacheDoubleConstant(result); } else { // If there is already a constant with the expected type, we know it is // the floating point equivalent of this constant. DCHECK_EQ((bit_cast<int64_t, double>(result->GetValue())), constant->GetValue()); } return result; } /** * Because of Dex format, we might end up having the same phi being * used for non floating point operations and floating point / reference operations. * Because we want the graph to be correctly typed (and thereafter avoid moves between * floating point registers and core registers), we need to create a copy of the * phi with a floating point / reference type. */ HPhi* SsaBuilder::GetFloatDoubleOrReferenceEquivalentOfPhi(HPhi* phi, Primitive::Type type) { DCHECK(phi->IsLive()) << "Cannot get equivalent of a dead phi since it would create a live one."; // We place the floating point /reference phi next to this phi. HInstruction* next = phi->GetNext(); if (next != nullptr && next->AsPhi()->GetRegNumber() == phi->GetRegNumber() && next->GetType() != type) { // Move to the next phi to see if it is the one we are looking for. next = next->GetNext(); } if (next == nullptr || (next->AsPhi()->GetRegNumber() != phi->GetRegNumber()) || (next->GetType() != type)) { ArenaAllocator* allocator = graph_->GetArena(); HInputsRef inputs = phi->GetInputs(); HPhi* new_phi = new (allocator) HPhi(allocator, phi->GetRegNumber(), inputs.size(), type); // Copy the inputs. Note that the graph may not be correctly typed // by doing this copy, but the type propagation phase will fix it. ArrayRef<HUserRecord<HInstruction*>> new_input_records = new_phi->GetInputRecords(); for (size_t i = 0; i < inputs.size(); ++i) { new_input_records[i] = HUserRecord<HInstruction*>(inputs[i]); } phi->GetBlock()->InsertPhiAfter(new_phi, phi); DCHECK(new_phi->IsLive()); return new_phi; } else { // An existing equivalent was found. If it is dead, conflict was previously // identified and we return nullptr instead. HPhi* next_phi = next->AsPhi(); DCHECK_EQ(next_phi->GetType(), type); return next_phi->IsLive() ? next_phi : nullptr; } } HArrayGet* SsaBuilder::GetFloatOrDoubleEquivalentOfArrayGet(HArrayGet* aget) { DCHECK(Primitive::IsIntegralType(aget->GetType())); if (!Primitive::IsIntOrLongType(aget->GetType())) { // Cannot type boolean, char, byte, short to float/double. return nullptr; } DCHECK(ContainsElement(ambiguous_agets_, aget)); if (agets_fixed_) { // This used to be an ambiguous ArrayGet but its type has been resolved to // int/long. Requesting a float/double equivalent should lead to a conflict. if (kIsDebugBuild) { ScopedObjectAccess soa(Thread::Current()); DCHECK(Primitive::IsIntOrLongType(GetPrimitiveArrayComponentType(aget->GetArray()))); } return nullptr; } else { // This is an ambiguous ArrayGet which has not been resolved yet. Return an // equivalent float/double instruction to use until it is resolved. HArrayGet* equivalent = FindFloatOrDoubleEquivalentOfArrayGet(aget); return (equivalent == nullptr) ? CreateFloatOrDoubleEquivalentOfArrayGet(aget) : equivalent; } } HInstruction* SsaBuilder::GetFloatOrDoubleEquivalent(HInstruction* value, Primitive::Type type) { if (value->IsArrayGet()) { return GetFloatOrDoubleEquivalentOfArrayGet(value->AsArrayGet()); } else if (value->IsLongConstant()) { return GetDoubleEquivalent(value->AsLongConstant()); } else if (value->IsIntConstant()) { return GetFloatEquivalent(value->AsIntConstant()); } else if (value->IsPhi()) { return GetFloatDoubleOrReferenceEquivalentOfPhi(value->AsPhi(), type); } else { return nullptr; } } HInstruction* SsaBuilder::GetReferenceTypeEquivalent(HInstruction* value) { if (value->IsIntConstant() && value->AsIntConstant()->GetValue() == 0) { return graph_->GetNullConstant(); } else if (value->IsPhi()) { return GetFloatDoubleOrReferenceEquivalentOfPhi(value->AsPhi(), Primitive::kPrimNot); } else { return nullptr; } } } // namespace art