/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_COMPILER_OPTIMIZING_SCHEDULER_H_ #define ART_COMPILER_OPTIMIZING_SCHEDULER_H_ #include <fstream> #include "base/time_utils.h" #include "driver/compiler_driver.h" #include "nodes.h" #include "optimization.h" namespace art { // General description of instruction scheduling. // // This pass tries to improve the quality of the generated code by reordering // instructions in the graph to avoid execution delays caused by execution // dependencies. // Currently, scheduling is performed at the block level, so no `HInstruction` // ever leaves its block in this pass. // // The scheduling process iterates through blocks in the graph. For blocks that // we can and want to schedule: // 1) Build a dependency graph for instructions. // It includes data dependencies (inputs/uses), but also environment // dependencies and side-effect dependencies. // 2) Schedule the dependency graph. // This is a topological sort of the dependency graph, using heuristics to // decide what node to scheduler first when there are multiple candidates. // // A few factors impacting the quality of the scheduling are: // - The heuristics used to decide what node to schedule in the topological sort // when there are multiple valid candidates. There is a wide range of // complexity possible here, going from a simple model only considering // latencies, to a super detailed CPU pipeline model. // - Fewer dependencies in the dependency graph give more freedom for the // scheduling heuristics. For example de-aliasing can allow possibilities for // reordering of memory accesses. // - The level of abstraction of the IR. It is easier to evaluate scheduling for // IRs that translate to a single assembly instruction than for IRs // that generate multiple assembly instructions or generate different code // depending on properties of the IR. // - Scheduling is performed before register allocation, it is not aware of the // impact of moving instructions on register allocation. // // // The scheduling code uses the terms predecessors, successors, and dependencies. // This can be confusing at times, so here are clarifications. // These terms are used from the point of view of the program dependency graph. So // the inputs of an instruction are part of its dependencies, and hence part its // predecessors. So the uses of an instruction are (part of) its successors. // (Side-effect dependencies can yield predecessors or successors that are not // inputs or uses.) // // Here is a trivial example. For the Java code: // // int a = 1 + 2; // // we would have the instructions // // i1 HIntConstant 1 // i2 HIntConstant 2 // i3 HAdd [i1,i2] // // `i1` and `i2` are predecessors of `i3`. // `i3` is a successor of `i1` and a successor of `i2`. // In a scheduling graph for this code we would have three nodes `n1`, `n2`, // and `n3` (respectively for instructions `i1`, `i1`, and `i3`). // Conceptually the program dependency graph for this would contain two edges // // n1 -> n3 // n2 -> n3 // // Since we schedule backwards (starting from the last instruction in each basic // block), the implementation of nodes keeps a list of pointers their // predecessors. So `n3` would keep pointers to its predecessors `n1` and `n2`. // // Node dependencies are also referred to from the program dependency graph // point of view: we say that node `B` immediately depends on `A` if there is an // edge from `A` to `B` in the program dependency graph. `A` is a predecessor of // `B`, `B` is a successor of `A`. In the example above `n3` depends on `n1` and // `n2`. // Since nodes in the scheduling graph keep a list of their predecessors, node // `B` will have a pointer to its predecessor `A`. // As we schedule backwards, `B` will be selected for scheduling before `A` is. // // So the scheduling for the example above could happen as follow // // |---------------------------+------------------------| // | candidates for scheduling | instructions scheduled | // | --------------------------+------------------------| // // The only node without successors is `n3`, so it is the only initial // candidate. // // | n3 | (none) | // // We schedule `n3` as the last (and only) instruction. All its predecessors // that do not have any unscheduled successors become candidate. That is, `n1` // and `n2` become candidates. // // | n1, n2 | n3 | // // One of the candidates is selected. In practice this is where scheduling // heuristics kick in, to decide which of the candidates should be selected. // In this example, let it be `n1`. It is scheduled before previously scheduled // nodes (in program order). There are no other nodes to add to the list of // candidates. // // | n2 | n1 | // | | n3 | // // The only candidate available for scheduling is `n2`. Schedule it before // (in program order) the previously scheduled nodes. // // | (none) | n2 | // | | n1 | // | | n3 | // |---------------------------+------------------------| // // So finally the instructions will be executed in the order `i2`, `i1`, and `i3`. // In this trivial example, it does not matter which of `i1` and `i2` is // scheduled first since they are constants. However the same process would // apply if `i1` and `i2` were actual operations (for example `HMul` and `HDiv`). // Set to true to have instruction scheduling dump scheduling graphs to the file // `scheduling_graphs.dot`. See `SchedulingGraph::DumpAsDotGraph()`. static constexpr bool kDumpDotSchedulingGraphs = false; // Typically used as a default instruction latency. static constexpr uint32_t kGenericInstructionLatency = 1; class HScheduler; /** * A node representing an `HInstruction` in the `SchedulingGraph`. */ class SchedulingNode : public ArenaObject<kArenaAllocScheduler> { public: SchedulingNode(HInstruction* instr, ArenaAllocator* arena, bool is_scheduling_barrier) : latency_(0), internal_latency_(0), critical_path_(0), instruction_(instr), is_scheduling_barrier_(is_scheduling_barrier), data_predecessors_(arena->Adapter(kArenaAllocScheduler)), other_predecessors_(arena->Adapter(kArenaAllocScheduler)), num_unscheduled_successors_(0) { data_predecessors_.reserve(kPreallocatedPredecessors); } void AddDataPredecessor(SchedulingNode* predecessor) { data_predecessors_.push_back(predecessor); predecessor->num_unscheduled_successors_++; } void AddOtherPredecessor(SchedulingNode* predecessor) { other_predecessors_.push_back(predecessor); predecessor->num_unscheduled_successors_++; } void DecrementNumberOfUnscheduledSuccessors() { num_unscheduled_successors_--; } void MaybeUpdateCriticalPath(uint32_t other_critical_path) { critical_path_ = std::max(critical_path_, other_critical_path); } bool HasUnscheduledSuccessors() const { return num_unscheduled_successors_ != 0; } HInstruction* GetInstruction() const { return instruction_; } uint32_t GetLatency() const { return latency_; } void SetLatency(uint32_t latency) { latency_ = latency; } uint32_t GetInternalLatency() const { return internal_latency_; } void SetInternalLatency(uint32_t internal_latency) { internal_latency_ = internal_latency; } uint32_t GetCriticalPath() const { return critical_path_; } bool IsSchedulingBarrier() const { return is_scheduling_barrier_; } const ArenaVector<SchedulingNode*>& GetDataPredecessors() const { return data_predecessors_; } const ArenaVector<SchedulingNode*>& GetOtherPredecessors() const { return other_predecessors_; } private: // The latency of this node. It represents the latency between the moment the // last instruction for this node has executed to the moment the result // produced by this node is available to users. uint32_t latency_; // This represents the time spent *within* the generated code for this node. // It should be zero for nodes that only generate a single instruction. uint32_t internal_latency_; // The critical path from this instruction to the end of scheduling. It is // used by the scheduling heuristics to measure the priority of this instruction. // It is defined as // critical_path_ = latency_ + max((use.internal_latency_ + use.critical_path_) for all uses) // (Note that here 'uses' is equivalent to 'data successors'. Also see comments in // `HScheduler::Schedule(SchedulingNode* scheduling_node)`). uint32_t critical_path_; // The instruction that this node represents. HInstruction* const instruction_; // If a node is scheduling barrier, other nodes cannot be scheduled before it. const bool is_scheduling_barrier_; // The lists of predecessors. They cannot be scheduled before this node. Once // this node is scheduled, we check whether any of its predecessors has become a // valid candidate for scheduling. // Predecessors in `data_predecessors_` are data dependencies. Those in // `other_predecessors_` contain side-effect dependencies, environment // dependencies, and scheduling barrier dependencies. ArenaVector<SchedulingNode*> data_predecessors_; ArenaVector<SchedulingNode*> other_predecessors_; // The number of unscheduled successors for this node. This number is // decremented as successors are scheduled. When it reaches zero this node // becomes a valid candidate to schedule. uint32_t num_unscheduled_successors_; static constexpr size_t kPreallocatedPredecessors = 4; }; /* * Directed acyclic graph for scheduling. */ class SchedulingGraph : public ValueObject { public: SchedulingGraph(const HScheduler* scheduler, ArenaAllocator* arena) : scheduler_(scheduler), arena_(arena), contains_scheduling_barrier_(false), nodes_map_(arena_->Adapter(kArenaAllocScheduler)) {} SchedulingNode* AddNode(HInstruction* instr, bool is_scheduling_barrier = false) { SchedulingNode* node = new (arena_) SchedulingNode(instr, arena_, is_scheduling_barrier); nodes_map_.Insert(std::make_pair(instr, node)); contains_scheduling_barrier_ |= is_scheduling_barrier; AddDependencies(instr, is_scheduling_barrier); return node; } void Clear() { nodes_map_.Clear(); contains_scheduling_barrier_ = false; } SchedulingNode* GetNode(const HInstruction* instr) const { auto it = nodes_map_.Find(instr); if (it == nodes_map_.end()) { return nullptr; } else { return it->second; } } bool IsSchedulingBarrier(const HInstruction* instruction) const; bool HasImmediateDataDependency(const SchedulingNode* node, const SchedulingNode* other) const; bool HasImmediateDataDependency(const HInstruction* node, const HInstruction* other) const; bool HasImmediateOtherDependency(const SchedulingNode* node, const SchedulingNode* other) const; bool HasImmediateOtherDependency(const HInstruction* node, const HInstruction* other) const; size_t Size() const { return nodes_map_.Size(); } // Dump the scheduling graph, in dot file format, appending it to the file // `scheduling_graphs.dot`. void DumpAsDotGraph(const std::string& description, const ArenaVector<SchedulingNode*>& initial_candidates); protected: void AddDependency(SchedulingNode* node, SchedulingNode* dependency, bool is_data_dependency); void AddDataDependency(SchedulingNode* node, SchedulingNode* dependency) { AddDependency(node, dependency, /*is_data_dependency*/true); } void AddOtherDependency(SchedulingNode* node, SchedulingNode* dependency) { AddDependency(node, dependency, /*is_data_dependency*/false); } // Add dependencies nodes for the given `HInstruction`: inputs, environments, and side-effects. void AddDependencies(HInstruction* instruction, bool is_scheduling_barrier = false); const HScheduler* const scheduler_; ArenaAllocator* const arena_; bool contains_scheduling_barrier_; ArenaHashMap<const HInstruction*, SchedulingNode*> nodes_map_; }; /* * The visitors derived from this base class are used by schedulers to evaluate * the latencies of `HInstruction`s. */ class SchedulingLatencyVisitor : public HGraphDelegateVisitor { public: // This class and its sub-classes will never be used to drive a visit of an // `HGraph` but only to visit `HInstructions` one at a time, so we do not need // to pass a valid graph to `HGraphDelegateVisitor()`. SchedulingLatencyVisitor() : HGraphDelegateVisitor(nullptr), last_visited_latency_(0), last_visited_internal_latency_(0) {} void VisitInstruction(HInstruction* instruction) OVERRIDE { LOG(FATAL) << "Error visiting " << instruction->DebugName() << ". " "Architecture-specific scheduling latency visitors must handle all instructions" " (potentially by overriding the generic `VisitInstruction()`."; UNREACHABLE(); } void Visit(HInstruction* instruction) { instruction->Accept(this); } void CalculateLatency(SchedulingNode* node) { // By default nodes have no internal latency. last_visited_internal_latency_ = 0; Visit(node->GetInstruction()); } uint32_t GetLastVisitedLatency() const { return last_visited_latency_; } uint32_t GetLastVisitedInternalLatency() const { return last_visited_internal_latency_; } protected: // The latency of the most recent visited SchedulingNode. // This is for reporting the latency value to the user of this visitor. uint32_t last_visited_latency_; // This represents the time spent *within* the generated code for the most recent visited // SchedulingNode. This is for reporting the internal latency value to the user of this visitor. uint32_t last_visited_internal_latency_; }; class SchedulingNodeSelector : public ArenaObject<kArenaAllocScheduler> { public: virtual SchedulingNode* PopHighestPriorityNode(ArenaVector<SchedulingNode*>* nodes, const SchedulingGraph& graph) = 0; virtual ~SchedulingNodeSelector() {} protected: static void DeleteNodeAtIndex(ArenaVector<SchedulingNode*>* nodes, size_t index) { (*nodes)[index] = nodes->back(); nodes->pop_back(); } }; /* * Select a `SchedulingNode` at random within the candidates. */ class RandomSchedulingNodeSelector : public SchedulingNodeSelector { public: explicit RandomSchedulingNodeSelector() : seed_(0) { seed_ = static_cast<uint32_t>(NanoTime()); srand(seed_); } SchedulingNode* PopHighestPriorityNode(ArenaVector<SchedulingNode*>* nodes, const SchedulingGraph& graph) OVERRIDE { UNUSED(graph); DCHECK(!nodes->empty()); size_t select = rand_r(&seed_) % nodes->size(); SchedulingNode* select_node = (*nodes)[select]; DeleteNodeAtIndex(nodes, select); return select_node; } uint32_t seed_; }; /* * Select a `SchedulingNode` according to critical path information, * with heuristics to favor certain instruction patterns like materialized condition. */ class CriticalPathSchedulingNodeSelector : public SchedulingNodeSelector { public: CriticalPathSchedulingNodeSelector() : prev_select_(nullptr) {} SchedulingNode* PopHighestPriorityNode(ArenaVector<SchedulingNode*>* nodes, const SchedulingGraph& graph) OVERRIDE; protected: SchedulingNode* GetHigherPrioritySchedulingNode(SchedulingNode* candidate, SchedulingNode* check) const; SchedulingNode* SelectMaterializedCondition(ArenaVector<SchedulingNode*>* nodes, const SchedulingGraph& graph) const; private: const SchedulingNode* prev_select_; }; class HScheduler { public: HScheduler(ArenaAllocator* arena, SchedulingLatencyVisitor* latency_visitor, SchedulingNodeSelector* selector) : arena_(arena), latency_visitor_(latency_visitor), selector_(selector), only_optimize_loop_blocks_(true), scheduling_graph_(this, arena), cursor_(nullptr), candidates_(arena_->Adapter(kArenaAllocScheduler)) {} virtual ~HScheduler() {} void Schedule(HGraph* graph); void SetOnlyOptimizeLoopBlocks(bool loop_only) { only_optimize_loop_blocks_ = loop_only; } // Instructions can not be rescheduled across a scheduling barrier. virtual bool IsSchedulingBarrier(const HInstruction* instruction) const; protected: void Schedule(HBasicBlock* block); void Schedule(SchedulingNode* scheduling_node); void Schedule(HInstruction* instruction); // Any instruction returning `false` via this method will prevent its // containing basic block from being scheduled. // This method is used to restrict scheduling to instructions that we know are // safe to handle. virtual bool IsSchedulable(const HInstruction* instruction) const; bool IsSchedulable(const HBasicBlock* block) const; void CalculateLatency(SchedulingNode* node) { latency_visitor_->CalculateLatency(node); node->SetLatency(latency_visitor_->GetLastVisitedLatency()); node->SetInternalLatency(latency_visitor_->GetLastVisitedInternalLatency()); } ArenaAllocator* const arena_; SchedulingLatencyVisitor* const latency_visitor_; SchedulingNodeSelector* const selector_; bool only_optimize_loop_blocks_; // We instantiate the members below as part of this class to avoid // instantiating them locally for every chunk scheduled. SchedulingGraph scheduling_graph_; // A pointer indicating where the next instruction to be scheduled will be inserted. HInstruction* cursor_; // The list of candidates for scheduling. A node becomes a candidate when all // its predecessors have been scheduled. ArenaVector<SchedulingNode*> candidates_; private: DISALLOW_COPY_AND_ASSIGN(HScheduler); }; inline bool SchedulingGraph::IsSchedulingBarrier(const HInstruction* instruction) const { return scheduler_->IsSchedulingBarrier(instruction); } class HInstructionScheduling : public HOptimization { public: HInstructionScheduling(HGraph* graph, InstructionSet instruction_set) : HOptimization(graph, kInstructionScheduling), instruction_set_(instruction_set) {} void Run() { Run(/*only_optimize_loop_blocks*/ true, /*schedule_randomly*/ false); } void Run(bool only_optimize_loop_blocks, bool schedule_randomly); static constexpr const char* kInstructionScheduling = "scheduler"; const InstructionSet instruction_set_; private: DISALLOW_COPY_AND_ASSIGN(HInstructionScheduling); }; } // namespace art #endif // ART_COMPILER_OPTIMIZING_SCHEDULER_H_