/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "load_store_elimination.h" #include "escape.h" #include "side_effects_analysis.h" #include <iostream> namespace art { class ReferenceInfo; // A cap for the number of heap locations to prevent pathological time/space consumption. // The number of heap locations for most of the methods stays below this threshold. constexpr size_t kMaxNumberOfHeapLocations = 32; // A ReferenceInfo contains additional info about a reference such as // whether it's a singleton, returned, etc. class ReferenceInfo : public ArenaObject<kArenaAllocMisc> { public: ReferenceInfo(HInstruction* reference, size_t pos) : reference_(reference), position_(pos), is_singleton_(true), is_singleton_and_not_returned_(true), is_singleton_and_not_deopt_visible_(true), has_index_aliasing_(false) { CalculateEscape(reference_, nullptr, &is_singleton_, &is_singleton_and_not_returned_, &is_singleton_and_not_deopt_visible_); } HInstruction* GetReference() const { return reference_; } size_t GetPosition() const { return position_; } // Returns true if reference_ is the only name that can refer to its value during // the lifetime of the method. So it's guaranteed to not have any alias in // the method (including its callees). bool IsSingleton() const { return is_singleton_; } // Returns true if reference_ is a singleton and not returned to the caller or // used as an environment local of an HDeoptimize instruction. // The allocation and stores into reference_ may be eliminated for such cases. bool IsSingletonAndRemovable() const { return is_singleton_and_not_returned_ && is_singleton_and_not_deopt_visible_; } // Returns true if reference_ is a singleton and returned to the caller or // used as an environment local of an HDeoptimize instruction. bool IsSingletonAndNonRemovable() const { return is_singleton_ && (!is_singleton_and_not_returned_ || !is_singleton_and_not_deopt_visible_); } bool HasIndexAliasing() { return has_index_aliasing_; } void SetHasIndexAliasing(bool has_index_aliasing) { // Only allow setting to true. DCHECK(has_index_aliasing); has_index_aliasing_ = has_index_aliasing; } private: HInstruction* const reference_; const size_t position_; // position in HeapLocationCollector's ref_info_array_. // Can only be referred to by a single name in the method. bool is_singleton_; // Is singleton and not returned to caller. bool is_singleton_and_not_returned_; // Is singleton and not used as an environment local of HDeoptimize. bool is_singleton_and_not_deopt_visible_; // Some heap locations with reference_ have array index aliasing, // e.g. arr[i] and arr[j] may be the same location. bool has_index_aliasing_; DISALLOW_COPY_AND_ASSIGN(ReferenceInfo); }; // A heap location is a reference-offset/index pair that a value can be loaded from // or stored to. class HeapLocation : public ArenaObject<kArenaAllocMisc> { public: static constexpr size_t kInvalidFieldOffset = -1; // TODO: more fine-grained array types. static constexpr int16_t kDeclaringClassDefIndexForArrays = -1; HeapLocation(ReferenceInfo* ref_info, size_t offset, HInstruction* index, int16_t declaring_class_def_index) : ref_info_(ref_info), offset_(offset), index_(index), declaring_class_def_index_(declaring_class_def_index), value_killed_by_loop_side_effects_(true) { DCHECK(ref_info != nullptr); DCHECK((offset == kInvalidFieldOffset && index != nullptr) || (offset != kInvalidFieldOffset && index == nullptr)); if (ref_info->IsSingleton() && !IsArrayElement()) { // Assume this location's value cannot be killed by loop side effects // until proven otherwise. value_killed_by_loop_side_effects_ = false; } } ReferenceInfo* GetReferenceInfo() const { return ref_info_; } size_t GetOffset() const { return offset_; } HInstruction* GetIndex() const { return index_; } // Returns the definition of declaring class' dex index. // It's kDeclaringClassDefIndexForArrays for an array element. int16_t GetDeclaringClassDefIndex() const { return declaring_class_def_index_; } bool IsArrayElement() const { return index_ != nullptr; } bool IsValueKilledByLoopSideEffects() const { return value_killed_by_loop_side_effects_; } void SetValueKilledByLoopSideEffects(bool val) { value_killed_by_loop_side_effects_ = val; } private: ReferenceInfo* const ref_info_; // reference for instance/static field or array access. const size_t offset_; // offset of static/instance field. HInstruction* const index_; // index of an array element. const int16_t declaring_class_def_index_; // declaring class's def's dex index. bool value_killed_by_loop_side_effects_; // value of this location may be killed by loop // side effects because this location is stored // into inside a loop. This gives // better info on whether a singleton's location // value may be killed by loop side effects. DISALLOW_COPY_AND_ASSIGN(HeapLocation); }; static HInstruction* HuntForOriginalReference(HInstruction* ref) { DCHECK(ref != nullptr); while (ref->IsNullCheck() || ref->IsBoundType()) { ref = ref->InputAt(0); } return ref; } // A HeapLocationCollector collects all relevant heap locations and keeps // an aliasing matrix for all locations. class HeapLocationCollector : public HGraphVisitor { public: static constexpr size_t kHeapLocationNotFound = -1; // Start with a single uint32_t word. That's enough bits for pair-wise // aliasing matrix of 8 heap locations. static constexpr uint32_t kInitialAliasingMatrixBitVectorSize = 32; explicit HeapLocationCollector(HGraph* graph) : HGraphVisitor(graph), ref_info_array_(graph->GetArena()->Adapter(kArenaAllocLSE)), heap_locations_(graph->GetArena()->Adapter(kArenaAllocLSE)), aliasing_matrix_(graph->GetArena(), kInitialAliasingMatrixBitVectorSize, true, kArenaAllocLSE), has_heap_stores_(false), has_volatile_(false), has_monitor_operations_(false) {} size_t GetNumberOfHeapLocations() const { return heap_locations_.size(); } HeapLocation* GetHeapLocation(size_t index) const { return heap_locations_[index]; } ReferenceInfo* FindReferenceInfoOf(HInstruction* ref) const { for (size_t i = 0; i < ref_info_array_.size(); i++) { ReferenceInfo* ref_info = ref_info_array_[i]; if (ref_info->GetReference() == ref) { DCHECK_EQ(i, ref_info->GetPosition()); return ref_info; } } return nullptr; } bool HasHeapStores() const { return has_heap_stores_; } bool HasVolatile() const { return has_volatile_; } bool HasMonitorOps() const { return has_monitor_operations_; } // Find and return the heap location index in heap_locations_. size_t FindHeapLocationIndex(ReferenceInfo* ref_info, size_t offset, HInstruction* index, int16_t declaring_class_def_index) const { for (size_t i = 0; i < heap_locations_.size(); i++) { HeapLocation* loc = heap_locations_[i]; if (loc->GetReferenceInfo() == ref_info && loc->GetOffset() == offset && loc->GetIndex() == index && loc->GetDeclaringClassDefIndex() == declaring_class_def_index) { return i; } } return kHeapLocationNotFound; } // Returns true if heap_locations_[index1] and heap_locations_[index2] may alias. bool MayAlias(size_t index1, size_t index2) const { if (index1 < index2) { return aliasing_matrix_.IsBitSet(AliasingMatrixPosition(index1, index2)); } else if (index1 > index2) { return aliasing_matrix_.IsBitSet(AliasingMatrixPosition(index2, index1)); } else { DCHECK(false) << "index1 and index2 are expected to be different"; return true; } } void BuildAliasingMatrix() { const size_t number_of_locations = heap_locations_.size(); if (number_of_locations == 0) { return; } size_t pos = 0; // Compute aliasing info between every pair of different heap locations. // Save the result in a matrix represented as a BitVector. for (size_t i = 0; i < number_of_locations - 1; i++) { for (size_t j = i + 1; j < number_of_locations; j++) { if (ComputeMayAlias(i, j)) { aliasing_matrix_.SetBit(CheckedAliasingMatrixPosition(i, j, pos)); } pos++; } } } private: // An allocation cannot alias with a name which already exists at the point // of the allocation, such as a parameter or a load happening before the allocation. bool MayAliasWithPreexistenceChecking(ReferenceInfo* ref_info1, ReferenceInfo* ref_info2) const { if (ref_info1->GetReference()->IsNewInstance() || ref_info1->GetReference()->IsNewArray()) { // Any reference that can alias with the allocation must appear after it in the block/in // the block's successors. In reverse post order, those instructions will be visited after // the allocation. return ref_info2->GetPosition() >= ref_info1->GetPosition(); } return true; } bool CanReferencesAlias(ReferenceInfo* ref_info1, ReferenceInfo* ref_info2) const { if (ref_info1 == ref_info2) { return true; } else if (ref_info1->IsSingleton()) { return false; } else if (ref_info2->IsSingleton()) { return false; } else if (!MayAliasWithPreexistenceChecking(ref_info1, ref_info2) || !MayAliasWithPreexistenceChecking(ref_info2, ref_info1)) { return false; } return true; } // `index1` and `index2` are indices in the array of collected heap locations. // Returns the position in the bit vector that tracks whether the two heap // locations may alias. size_t AliasingMatrixPosition(size_t index1, size_t index2) const { DCHECK(index2 > index1); const size_t number_of_locations = heap_locations_.size(); // It's (num_of_locations - 1) + ... + (num_of_locations - index1) + (index2 - index1 - 1). return (number_of_locations * index1 - (1 + index1) * index1 / 2 + (index2 - index1 - 1)); } // An additional position is passed in to make sure the calculated position is correct. size_t CheckedAliasingMatrixPosition(size_t index1, size_t index2, size_t position) { size_t calculated_position = AliasingMatrixPosition(index1, index2); DCHECK_EQ(calculated_position, position); return calculated_position; } // Compute if two locations may alias to each other. bool ComputeMayAlias(size_t index1, size_t index2) const { HeapLocation* loc1 = heap_locations_[index1]; HeapLocation* loc2 = heap_locations_[index2]; if (loc1->GetOffset() != loc2->GetOffset()) { // Either two different instance fields, or one is an instance // field and the other is an array element. return false; } if (loc1->GetDeclaringClassDefIndex() != loc2->GetDeclaringClassDefIndex()) { // Different types. return false; } if (!CanReferencesAlias(loc1->GetReferenceInfo(), loc2->GetReferenceInfo())) { return false; } if (loc1->IsArrayElement() && loc2->IsArrayElement()) { HInstruction* array_index1 = loc1->GetIndex(); HInstruction* array_index2 = loc2->GetIndex(); DCHECK(array_index1 != nullptr); DCHECK(array_index2 != nullptr); if (array_index1->IsIntConstant() && array_index2->IsIntConstant() && array_index1->AsIntConstant()->GetValue() != array_index2->AsIntConstant()->GetValue()) { // Different constant indices do not alias. return false; } ReferenceInfo* ref_info = loc1->GetReferenceInfo(); ref_info->SetHasIndexAliasing(true); } return true; } ReferenceInfo* GetOrCreateReferenceInfo(HInstruction* instruction) { ReferenceInfo* ref_info = FindReferenceInfoOf(instruction); if (ref_info == nullptr) { size_t pos = ref_info_array_.size(); ref_info = new (GetGraph()->GetArena()) ReferenceInfo(instruction, pos); ref_info_array_.push_back(ref_info); } return ref_info; } void CreateReferenceInfoForReferenceType(HInstruction* instruction) { if (instruction->GetType() != Primitive::kPrimNot) { return; } DCHECK(FindReferenceInfoOf(instruction) == nullptr); GetOrCreateReferenceInfo(instruction); } HeapLocation* GetOrCreateHeapLocation(HInstruction* ref, size_t offset, HInstruction* index, int16_t declaring_class_def_index) { HInstruction* original_ref = HuntForOriginalReference(ref); ReferenceInfo* ref_info = GetOrCreateReferenceInfo(original_ref); size_t heap_location_idx = FindHeapLocationIndex( ref_info, offset, index, declaring_class_def_index); if (heap_location_idx == kHeapLocationNotFound) { HeapLocation* heap_loc = new (GetGraph()->GetArena()) HeapLocation(ref_info, offset, index, declaring_class_def_index); heap_locations_.push_back(heap_loc); return heap_loc; } return heap_locations_[heap_location_idx]; } HeapLocation* VisitFieldAccess(HInstruction* ref, const FieldInfo& field_info) { if (field_info.IsVolatile()) { has_volatile_ = true; } const uint16_t declaring_class_def_index = field_info.GetDeclaringClassDefIndex(); const size_t offset = field_info.GetFieldOffset().SizeValue(); return GetOrCreateHeapLocation(ref, offset, nullptr, declaring_class_def_index); } void VisitArrayAccess(HInstruction* array, HInstruction* index) { GetOrCreateHeapLocation(array, HeapLocation::kInvalidFieldOffset, index, HeapLocation::kDeclaringClassDefIndexForArrays); } void VisitInstanceFieldGet(HInstanceFieldGet* instruction) OVERRIDE { VisitFieldAccess(instruction->InputAt(0), instruction->GetFieldInfo()); CreateReferenceInfoForReferenceType(instruction); } void VisitInstanceFieldSet(HInstanceFieldSet* instruction) OVERRIDE { HeapLocation* location = VisitFieldAccess(instruction->InputAt(0), instruction->GetFieldInfo()); has_heap_stores_ = true; if (location->GetReferenceInfo()->IsSingleton()) { // A singleton's location value may be killed by loop side effects if it's // defined before that loop, and it's stored into inside that loop. HLoopInformation* loop_info = instruction->GetBlock()->GetLoopInformation(); if (loop_info != nullptr) { HInstruction* ref = location->GetReferenceInfo()->GetReference(); DCHECK(ref->IsNewInstance()); if (loop_info->IsDefinedOutOfTheLoop(ref)) { // ref's location value may be killed by this loop's side effects. location->SetValueKilledByLoopSideEffects(true); } else { // ref is defined inside this loop so this loop's side effects cannot // kill its location value at the loop header since ref/its location doesn't // exist yet at the loop header. } } } else { // For non-singletons, value_killed_by_loop_side_effects_ is inited to // true. DCHECK_EQ(location->IsValueKilledByLoopSideEffects(), true); } } void VisitStaticFieldGet(HStaticFieldGet* instruction) OVERRIDE { VisitFieldAccess(instruction->InputAt(0), instruction->GetFieldInfo()); CreateReferenceInfoForReferenceType(instruction); } void VisitStaticFieldSet(HStaticFieldSet* instruction) OVERRIDE { VisitFieldAccess(instruction->InputAt(0), instruction->GetFieldInfo()); has_heap_stores_ = true; } // We intentionally don't collect HUnresolvedInstanceField/HUnresolvedStaticField accesses // since we cannot accurately track the fields. void VisitArrayGet(HArrayGet* instruction) OVERRIDE { VisitArrayAccess(instruction->InputAt(0), instruction->InputAt(1)); CreateReferenceInfoForReferenceType(instruction); } void VisitArraySet(HArraySet* instruction) OVERRIDE { VisitArrayAccess(instruction->InputAt(0), instruction->InputAt(1)); has_heap_stores_ = true; } void VisitNewInstance(HNewInstance* new_instance) OVERRIDE { // Any references appearing in the ref_info_array_ so far cannot alias with new_instance. CreateReferenceInfoForReferenceType(new_instance); } void VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* instruction) OVERRIDE { CreateReferenceInfoForReferenceType(instruction); } void VisitInvokeVirtual(HInvokeVirtual* instruction) OVERRIDE { CreateReferenceInfoForReferenceType(instruction); } void VisitInvokeInterface(HInvokeInterface* instruction) OVERRIDE { CreateReferenceInfoForReferenceType(instruction); } void VisitParameterValue(HParameterValue* instruction) OVERRIDE { CreateReferenceInfoForReferenceType(instruction); } void VisitSelect(HSelect* instruction) OVERRIDE { CreateReferenceInfoForReferenceType(instruction); } void VisitMonitorOperation(HMonitorOperation* monitor ATTRIBUTE_UNUSED) OVERRIDE { has_monitor_operations_ = true; } ArenaVector<ReferenceInfo*> ref_info_array_; // All references used for heap accesses. ArenaVector<HeapLocation*> heap_locations_; // All heap locations. ArenaBitVector aliasing_matrix_; // aliasing info between each pair of locations. bool has_heap_stores_; // If there is no heap stores, LSE acts as GVN with better // alias analysis and won't be as effective. bool has_volatile_; // If there are volatile field accesses. bool has_monitor_operations_; // If there are monitor operations. DISALLOW_COPY_AND_ASSIGN(HeapLocationCollector); }; // An unknown heap value. Loads with such a value in the heap location cannot be eliminated. // A heap location can be set to kUnknownHeapValue when: // - initially set a value. // - killed due to aliasing, merging, invocation, or loop side effects. static HInstruction* const kUnknownHeapValue = reinterpret_cast<HInstruction*>(static_cast<uintptr_t>(-1)); // Default heap value after an allocation. // A heap location can be set to that value right after an allocation. static HInstruction* const kDefaultHeapValue = reinterpret_cast<HInstruction*>(static_cast<uintptr_t>(-2)); class LSEVisitor : public HGraphVisitor { public: LSEVisitor(HGraph* graph, const HeapLocationCollector& heap_locations_collector, const SideEffectsAnalysis& side_effects) : HGraphVisitor(graph), heap_location_collector_(heap_locations_collector), side_effects_(side_effects), heap_values_for_(graph->GetBlocks().size(), ArenaVector<HInstruction*>(heap_locations_collector. GetNumberOfHeapLocations(), kUnknownHeapValue, graph->GetArena()->Adapter(kArenaAllocLSE)), graph->GetArena()->Adapter(kArenaAllocLSE)), removed_loads_(graph->GetArena()->Adapter(kArenaAllocLSE)), substitute_instructions_for_loads_(graph->GetArena()->Adapter(kArenaAllocLSE)), possibly_removed_stores_(graph->GetArena()->Adapter(kArenaAllocLSE)), singleton_new_instances_(graph->GetArena()->Adapter(kArenaAllocLSE)), singleton_new_arrays_(graph->GetArena()->Adapter(kArenaAllocLSE)) { } void VisitBasicBlock(HBasicBlock* block) OVERRIDE { // Populate the heap_values array for this block. // TODO: try to reuse the heap_values array from one predecessor if possible. if (block->IsLoopHeader()) { HandleLoopSideEffects(block); } else { MergePredecessorValues(block); } HGraphVisitor::VisitBasicBlock(block); } // Remove recorded instructions that should be eliminated. void RemoveInstructions() { size_t size = removed_loads_.size(); DCHECK_EQ(size, substitute_instructions_for_loads_.size()); for (size_t i = 0; i < size; i++) { HInstruction* load = removed_loads_[i]; DCHECK(load != nullptr); DCHECK(load->IsInstanceFieldGet() || load->IsStaticFieldGet() || load->IsArrayGet()); HInstruction* substitute = substitute_instructions_for_loads_[i]; DCHECK(substitute != nullptr); // Keep tracing substitute till one that's not removed. HInstruction* sub_sub = FindSubstitute(substitute); while (sub_sub != substitute) { substitute = sub_sub; sub_sub = FindSubstitute(substitute); } load->ReplaceWith(substitute); load->GetBlock()->RemoveInstruction(load); } // At this point, stores in possibly_removed_stores_ can be safely removed. for (HInstruction* store : possibly_removed_stores_) { DCHECK(store->IsInstanceFieldSet() || store->IsStaticFieldSet() || store->IsArraySet()); store->GetBlock()->RemoveInstruction(store); } // Eliminate allocations that are not used. for (HInstruction* new_instance : singleton_new_instances_) { if (!new_instance->HasNonEnvironmentUses()) { new_instance->RemoveEnvironmentUsers(); new_instance->GetBlock()->RemoveInstruction(new_instance); } } for (HInstruction* new_array : singleton_new_arrays_) { if (!new_array->HasNonEnvironmentUses()) { new_array->RemoveEnvironmentUsers(); new_array->GetBlock()->RemoveInstruction(new_array); } } } private: // If heap_values[index] is an instance field store, need to keep the store. // This is necessary if a heap value is killed due to merging, or loop side // effects (which is essentially merging also), since a load later from the // location won't be eliminated. void KeepIfIsStore(HInstruction* heap_value) { if (heap_value == kDefaultHeapValue || heap_value == kUnknownHeapValue || !(heap_value->IsInstanceFieldSet() || heap_value->IsArraySet())) { return; } auto idx = std::find(possibly_removed_stores_.begin(), possibly_removed_stores_.end(), heap_value); if (idx != possibly_removed_stores_.end()) { // Make sure the store is kept. possibly_removed_stores_.erase(idx); } } void HandleLoopSideEffects(HBasicBlock* block) { DCHECK(block->IsLoopHeader()); int block_id = block->GetBlockId(); ArenaVector<HInstruction*>& heap_values = heap_values_for_[block_id]; // Don't eliminate loads in irreducible loops. This is safe for singletons, because // they are always used by the non-eliminated loop-phi. if (block->GetLoopInformation()->IsIrreducible()) { if (kIsDebugBuild) { for (size_t i = 0; i < heap_values.size(); i++) { DCHECK_EQ(heap_values[i], kUnknownHeapValue); } } return; } HBasicBlock* pre_header = block->GetLoopInformation()->GetPreHeader(); ArenaVector<HInstruction*>& pre_header_heap_values = heap_values_for_[pre_header->GetBlockId()]; // Inherit the values from pre-header. for (size_t i = 0; i < heap_values.size(); i++) { heap_values[i] = pre_header_heap_values[i]; } // We do a single pass in reverse post order. For loops, use the side effects as a hint // to see if the heap values should be killed. if (side_effects_.GetLoopEffects(block).DoesAnyWrite()) { for (size_t i = 0; i < heap_values.size(); i++) { HeapLocation* location = heap_location_collector_.GetHeapLocation(i); ReferenceInfo* ref_info = location->GetReferenceInfo(); if (ref_info->IsSingletonAndRemovable() && !location->IsValueKilledByLoopSideEffects()) { // A removable singleton's field that's not stored into inside a loop is // invariant throughout the loop. Nothing to do. DCHECK(ref_info->IsSingletonAndRemovable()); } else { // heap value is killed by loop side effects (stored into directly, or // due to aliasing). Or the heap value may be needed after method return // or deoptimization. KeepIfIsStore(pre_header_heap_values[i]); heap_values[i] = kUnknownHeapValue; } } } } void MergePredecessorValues(HBasicBlock* block) { const ArenaVector<HBasicBlock*>& predecessors = block->GetPredecessors(); if (predecessors.size() == 0) { return; } ArenaVector<HInstruction*>& heap_values = heap_values_for_[block->GetBlockId()]; for (size_t i = 0; i < heap_values.size(); i++) { HInstruction* merged_value = nullptr; // Whether merged_value is a result that's merged from all predecessors. bool from_all_predecessors = true; ReferenceInfo* ref_info = heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo(); HInstruction* singleton_ref = nullptr; if (ref_info->IsSingleton()) { // We do more analysis of liveness when merging heap values for such // cases since stores into such references may potentially be eliminated. singleton_ref = ref_info->GetReference(); } for (HBasicBlock* predecessor : predecessors) { HInstruction* pred_value = heap_values_for_[predecessor->GetBlockId()][i]; if ((singleton_ref != nullptr) && !singleton_ref->GetBlock()->Dominates(predecessor)) { // singleton_ref is not live in this predecessor. Skip this predecessor since // it does not really have the location. DCHECK_EQ(pred_value, kUnknownHeapValue); from_all_predecessors = false; continue; } if (merged_value == nullptr) { // First seen heap value. merged_value = pred_value; } else if (pred_value != merged_value) { // There are conflicting values. merged_value = kUnknownHeapValue; break; } } if (merged_value == kUnknownHeapValue || ref_info->IsSingletonAndNonRemovable()) { // There are conflicting heap values from different predecessors, // or the heap value may be needed after method return or deoptimization. // Keep the last store in each predecessor since future loads cannot be eliminated. for (HBasicBlock* predecessor : predecessors) { ArenaVector<HInstruction*>& pred_values = heap_values_for_[predecessor->GetBlockId()]; KeepIfIsStore(pred_values[i]); } } if ((merged_value == nullptr) || !from_all_predecessors) { DCHECK(singleton_ref != nullptr); DCHECK((singleton_ref->GetBlock() == block) || !singleton_ref->GetBlock()->Dominates(block)); // singleton_ref is not defined before block or defined only in some of its // predecessors, so block doesn't really have the location at its entry. heap_values[i] = kUnknownHeapValue; } else { heap_values[i] = merged_value; } } } // `instruction` is being removed. Try to see if the null check on it // can be removed. This can happen if the same value is set in two branches // but not in dominators. Such as: // int[] a = foo(); // if () { // a[0] = 2; // } else { // a[0] = 2; // } // // a[0] can now be replaced with constant 2, and the null check on it can be removed. void TryRemovingNullCheck(HInstruction* instruction) { HInstruction* prev = instruction->GetPrevious(); if ((prev != nullptr) && prev->IsNullCheck() && (prev == instruction->InputAt(0))) { // Previous instruction is a null check for this instruction. Remove the null check. prev->ReplaceWith(prev->InputAt(0)); prev->GetBlock()->RemoveInstruction(prev); } } HInstruction* GetDefaultValue(Primitive::Type type) { switch (type) { case Primitive::kPrimNot: return GetGraph()->GetNullConstant(); case Primitive::kPrimBoolean: case Primitive::kPrimByte: case Primitive::kPrimChar: case Primitive::kPrimShort: case Primitive::kPrimInt: return GetGraph()->GetIntConstant(0); case Primitive::kPrimLong: return GetGraph()->GetLongConstant(0); case Primitive::kPrimFloat: return GetGraph()->GetFloatConstant(0); case Primitive::kPrimDouble: return GetGraph()->GetDoubleConstant(0); default: UNREACHABLE(); } } void VisitGetLocation(HInstruction* instruction, HInstruction* ref, size_t offset, HInstruction* index, int16_t declaring_class_def_index) { HInstruction* original_ref = HuntForOriginalReference(ref); ReferenceInfo* ref_info = heap_location_collector_.FindReferenceInfoOf(original_ref); size_t idx = heap_location_collector_.FindHeapLocationIndex( ref_info, offset, index, declaring_class_def_index); DCHECK_NE(idx, HeapLocationCollector::kHeapLocationNotFound); ArenaVector<HInstruction*>& heap_values = heap_values_for_[instruction->GetBlock()->GetBlockId()]; HInstruction* heap_value = heap_values[idx]; if (heap_value == kDefaultHeapValue) { HInstruction* constant = GetDefaultValue(instruction->GetType()); removed_loads_.push_back(instruction); substitute_instructions_for_loads_.push_back(constant); heap_values[idx] = constant; return; } if (heap_value != kUnknownHeapValue) { if (heap_value->IsInstanceFieldSet() || heap_value->IsArraySet()) { HInstruction* store = heap_value; // This load must be from a singleton since it's from the same // field/element that a "removed" store puts the value. That store // must be to a singleton's field/element. DCHECK(ref_info->IsSingleton()); // Get the real heap value of the store. heap_value = heap_value->IsInstanceFieldSet() ? store->InputAt(1) : store->InputAt(2); } } if (heap_value == kUnknownHeapValue) { // Load isn't eliminated. Put the load as the value into the HeapLocation. // This acts like GVN but with better aliasing analysis. heap_values[idx] = instruction; } else { if (Primitive::PrimitiveKind(heap_value->GetType()) != Primitive::PrimitiveKind(instruction->GetType())) { // The only situation where the same heap location has different type is when // we do an array get on an instruction that originates from the null constant // (the null could be behind a field access, an array access, a null check or // a bound type). // In order to stay properly typed on primitive types, we do not eliminate // the array gets. if (kIsDebugBuild) { DCHECK(heap_value->IsArrayGet()) << heap_value->DebugName(); DCHECK(instruction->IsArrayGet()) << instruction->DebugName(); } return; } removed_loads_.push_back(instruction); substitute_instructions_for_loads_.push_back(heap_value); TryRemovingNullCheck(instruction); } } bool Equal(HInstruction* heap_value, HInstruction* value) { if (heap_value == value) { return true; } if (heap_value == kDefaultHeapValue && GetDefaultValue(value->GetType()) == value) { return true; } return false; } void VisitSetLocation(HInstruction* instruction, HInstruction* ref, size_t offset, HInstruction* index, int16_t declaring_class_def_index, HInstruction* value) { HInstruction* original_ref = HuntForOriginalReference(ref); ReferenceInfo* ref_info = heap_location_collector_.FindReferenceInfoOf(original_ref); size_t idx = heap_location_collector_.FindHeapLocationIndex( ref_info, offset, index, declaring_class_def_index); DCHECK_NE(idx, HeapLocationCollector::kHeapLocationNotFound); ArenaVector<HInstruction*>& heap_values = heap_values_for_[instruction->GetBlock()->GetBlockId()]; HInstruction* heap_value = heap_values[idx]; bool same_value = false; bool possibly_redundant = false; if (Equal(heap_value, value)) { // Store into the heap location with the same value. same_value = true; } else if (index != nullptr && ref_info->HasIndexAliasing()) { // For array element, don't eliminate stores if the index can be aliased. } else if (ref_info->IsSingleton()) { // Store into a field of a singleton. The value cannot be killed due to // aliasing/invocation. It can be redundant since future loads can // directly get the value set by this instruction. The value can still be killed due to // merging or loop side effects. Stores whose values are killed due to merging/loop side // effects later will be removed from possibly_removed_stores_ when that is detected. // Stores whose values may be needed after method return or deoptimization // are also removed from possibly_removed_stores_ when that is detected. possibly_redundant = true; HNewInstance* new_instance = ref_info->GetReference()->AsNewInstance(); if (new_instance != nullptr && new_instance->IsFinalizable()) { // Finalizable objects escape globally. Need to keep the store. possibly_redundant = false; } else { HLoopInformation* loop_info = instruction->GetBlock()->GetLoopInformation(); if (loop_info != nullptr) { // instruction is a store in the loop so the loop must does write. DCHECK(side_effects_.GetLoopEffects(loop_info->GetHeader()).DoesAnyWrite()); if (loop_info->IsDefinedOutOfTheLoop(original_ref)) { DCHECK(original_ref->GetBlock()->Dominates(loop_info->GetPreHeader())); // Keep the store since its value may be needed at the loop header. possibly_redundant = false; } else { // The singleton is created inside the loop. Value stored to it isn't needed at // the loop header. This is true for outer loops also. } } } } if (same_value || possibly_redundant) { possibly_removed_stores_.push_back(instruction); } if (!same_value) { if (possibly_redundant) { DCHECK(instruction->IsInstanceFieldSet() || instruction->IsArraySet()); // Put the store as the heap value. If the value is loaded from heap // by a load later, this store isn't really redundant. heap_values[idx] = instruction; } else { heap_values[idx] = value; } } // This store may kill values in other heap locations due to aliasing. for (size_t i = 0; i < heap_values.size(); i++) { if (i == idx) { continue; } if (heap_values[i] == value) { // Same value should be kept even if aliasing happens. continue; } if (heap_values[i] == kUnknownHeapValue) { // Value is already unknown, no need for aliasing check. continue; } if (heap_location_collector_.MayAlias(i, idx)) { // Kill heap locations that may alias. heap_values[i] = kUnknownHeapValue; } } } void VisitInstanceFieldGet(HInstanceFieldGet* instruction) OVERRIDE { HInstruction* obj = instruction->InputAt(0); size_t offset = instruction->GetFieldInfo().GetFieldOffset().SizeValue(); int16_t declaring_class_def_index = instruction->GetFieldInfo().GetDeclaringClassDefIndex(); VisitGetLocation(instruction, obj, offset, nullptr, declaring_class_def_index); } void VisitInstanceFieldSet(HInstanceFieldSet* instruction) OVERRIDE { HInstruction* obj = instruction->InputAt(0); size_t offset = instruction->GetFieldInfo().GetFieldOffset().SizeValue(); int16_t declaring_class_def_index = instruction->GetFieldInfo().GetDeclaringClassDefIndex(); HInstruction* value = instruction->InputAt(1); VisitSetLocation(instruction, obj, offset, nullptr, declaring_class_def_index, value); } void VisitStaticFieldGet(HStaticFieldGet* instruction) OVERRIDE { HInstruction* cls = instruction->InputAt(0); size_t offset = instruction->GetFieldInfo().GetFieldOffset().SizeValue(); int16_t declaring_class_def_index = instruction->GetFieldInfo().GetDeclaringClassDefIndex(); VisitGetLocation(instruction, cls, offset, nullptr, declaring_class_def_index); } void VisitStaticFieldSet(HStaticFieldSet* instruction) OVERRIDE { HInstruction* cls = instruction->InputAt(0); size_t offset = instruction->GetFieldInfo().GetFieldOffset().SizeValue(); int16_t declaring_class_def_index = instruction->GetFieldInfo().GetDeclaringClassDefIndex(); HInstruction* value = instruction->InputAt(1); VisitSetLocation(instruction, cls, offset, nullptr, declaring_class_def_index, value); } void VisitArrayGet(HArrayGet* instruction) OVERRIDE { HInstruction* array = instruction->InputAt(0); HInstruction* index = instruction->InputAt(1); VisitGetLocation(instruction, array, HeapLocation::kInvalidFieldOffset, index, HeapLocation::kDeclaringClassDefIndexForArrays); } void VisitArraySet(HArraySet* instruction) OVERRIDE { HInstruction* array = instruction->InputAt(0); HInstruction* index = instruction->InputAt(1); HInstruction* value = instruction->InputAt(2); VisitSetLocation(instruction, array, HeapLocation::kInvalidFieldOffset, index, HeapLocation::kDeclaringClassDefIndexForArrays, value); } void VisitDeoptimize(HDeoptimize* instruction) { const ArenaVector<HInstruction*>& heap_values = heap_values_for_[instruction->GetBlock()->GetBlockId()]; for (HInstruction* heap_value : heap_values) { // Filter out fake instructions before checking instruction kind below. if (heap_value == kUnknownHeapValue || heap_value == kDefaultHeapValue) { continue; } // A store is kept as the heap value for possibly removed stores. if (heap_value->IsInstanceFieldSet() || heap_value->IsArraySet()) { // Check whether the reference for a store is used by an environment local of // HDeoptimize. HInstruction* reference = heap_value->InputAt(0); DCHECK(heap_location_collector_.FindReferenceInfoOf(reference)->IsSingleton()); for (const HUseListNode<HEnvironment*>& use : reference->GetEnvUses()) { HEnvironment* user = use.GetUser(); if (user->GetHolder() == instruction) { // The singleton for the store is visible at this deoptimization // point. Need to keep the store so that the heap value is // seen by the interpreter. KeepIfIsStore(heap_value); } } } } } void HandleInvoke(HInstruction* invoke) { ArenaVector<HInstruction*>& heap_values = heap_values_for_[invoke->GetBlock()->GetBlockId()]; for (size_t i = 0; i < heap_values.size(); i++) { ReferenceInfo* ref_info = heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo(); if (ref_info->IsSingleton()) { // Singleton references cannot be seen by the callee. } else { heap_values[i] = kUnknownHeapValue; } } } void VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) OVERRIDE { HandleInvoke(invoke); } void VisitInvokeVirtual(HInvokeVirtual* invoke) OVERRIDE { HandleInvoke(invoke); } void VisitInvokeInterface(HInvokeInterface* invoke) OVERRIDE { HandleInvoke(invoke); } void VisitInvokeUnresolved(HInvokeUnresolved* invoke) OVERRIDE { HandleInvoke(invoke); } void VisitInvokePolymorphic(HInvokePolymorphic* invoke) OVERRIDE { HandleInvoke(invoke); } void VisitClinitCheck(HClinitCheck* clinit) OVERRIDE { HandleInvoke(clinit); } void VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet* instruction) OVERRIDE { // Conservatively treat it as an invocation. HandleInvoke(instruction); } void VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet* instruction) OVERRIDE { // Conservatively treat it as an invocation. HandleInvoke(instruction); } void VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet* instruction) OVERRIDE { // Conservatively treat it as an invocation. HandleInvoke(instruction); } void VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet* instruction) OVERRIDE { // Conservatively treat it as an invocation. HandleInvoke(instruction); } void VisitNewInstance(HNewInstance* new_instance) OVERRIDE { ReferenceInfo* ref_info = heap_location_collector_.FindReferenceInfoOf(new_instance); if (ref_info == nullptr) { // new_instance isn't used for field accesses. No need to process it. return; } if (ref_info->IsSingletonAndRemovable() && !new_instance->IsFinalizable() && !new_instance->NeedsChecks()) { singleton_new_instances_.push_back(new_instance); } ArenaVector<HInstruction*>& heap_values = heap_values_for_[new_instance->GetBlock()->GetBlockId()]; for (size_t i = 0; i < heap_values.size(); i++) { HInstruction* ref = heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo()->GetReference(); size_t offset = heap_location_collector_.GetHeapLocation(i)->GetOffset(); if (ref == new_instance && offset >= mirror::kObjectHeaderSize) { // Instance fields except the header fields are set to default heap values. heap_values[i] = kDefaultHeapValue; } } } void VisitNewArray(HNewArray* new_array) OVERRIDE { ReferenceInfo* ref_info = heap_location_collector_.FindReferenceInfoOf(new_array); if (ref_info == nullptr) { // new_array isn't used for array accesses. No need to process it. return; } if (ref_info->IsSingletonAndRemovable()) { singleton_new_arrays_.push_back(new_array); } ArenaVector<HInstruction*>& heap_values = heap_values_for_[new_array->GetBlock()->GetBlockId()]; for (size_t i = 0; i < heap_values.size(); i++) { HeapLocation* location = heap_location_collector_.GetHeapLocation(i); HInstruction* ref = location->GetReferenceInfo()->GetReference(); if (ref == new_array && location->GetIndex() != nullptr) { // Array elements are set to default heap values. heap_values[i] = kDefaultHeapValue; } } } // Find an instruction's substitute if it should be removed. // Return the same instruction if it should not be removed. HInstruction* FindSubstitute(HInstruction* instruction) { size_t size = removed_loads_.size(); for (size_t i = 0; i < size; i++) { if (removed_loads_[i] == instruction) { return substitute_instructions_for_loads_[i]; } } return instruction; } const HeapLocationCollector& heap_location_collector_; const SideEffectsAnalysis& side_effects_; // One array of heap values for each block. ArenaVector<ArenaVector<HInstruction*>> heap_values_for_; // We record the instructions that should be eliminated but may be // used by heap locations. They'll be removed in the end. ArenaVector<HInstruction*> removed_loads_; ArenaVector<HInstruction*> substitute_instructions_for_loads_; // Stores in this list may be removed from the list later when it's // found that the store cannot be eliminated. ArenaVector<HInstruction*> possibly_removed_stores_; ArenaVector<HInstruction*> singleton_new_instances_; ArenaVector<HInstruction*> singleton_new_arrays_; DISALLOW_COPY_AND_ASSIGN(LSEVisitor); }; void LoadStoreElimination::Run() { if (graph_->IsDebuggable() || graph_->HasTryCatch()) { // Debugger may set heap values or trigger deoptimization of callers. // Try/catch support not implemented yet. // Skip this optimization. return; } HeapLocationCollector heap_location_collector(graph_); for (HBasicBlock* block : graph_->GetReversePostOrder()) { heap_location_collector.VisitBasicBlock(block); } if (heap_location_collector.GetNumberOfHeapLocations() > kMaxNumberOfHeapLocations) { // Bail out if there are too many heap locations to deal with. return; } if (!heap_location_collector.HasHeapStores()) { // Without heap stores, this pass would act mostly as GVN on heap accesses. return; } if (heap_location_collector.HasVolatile() || heap_location_collector.HasMonitorOps()) { // Don't do load/store elimination if the method has volatile field accesses or // monitor operations, for now. // TODO: do it right. return; } heap_location_collector.BuildAliasingMatrix(); LSEVisitor lse_visitor(graph_, heap_location_collector, side_effects_); for (HBasicBlock* block : graph_->GetReversePostOrder()) { lse_visitor.VisitBasicBlock(block); } lse_visitor.RemoveInstructions(); } } // namespace art