/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "base/arena_allocator.h" #include "builder.h" #include "induction_var_analysis.h" #include "induction_var_range.h" #include "nodes.h" #include "optimizing_unit_test.h" namespace art { using Value = InductionVarRange::Value; /** * Fixture class for the InductionVarRange tests. */ class InductionVarRangeTest : public CommonCompilerTest { public: InductionVarRangeTest() : pool_(), allocator_(&pool_), graph_(CreateGraph(&allocator_)), iva_(new (&allocator_) HInductionVarAnalysis(graph_)), range_(iva_) { BuildGraph(); } ~InductionVarRangeTest() { } void ExpectEqual(Value v1, Value v2) { EXPECT_EQ(v1.instruction, v2.instruction); EXPECT_EQ(v1.a_constant, v2.a_constant); EXPECT_EQ(v1.b_constant, v2.b_constant); EXPECT_EQ(v1.is_known, v2.is_known); } void ExpectInt(int32_t value, HInstruction* i) { ASSERT_TRUE(i->IsIntConstant()); EXPECT_EQ(value, i->AsIntConstant()->GetValue()); } // // Construction methods. // /** Constructs bare minimum graph. */ void BuildGraph() { graph_->SetNumberOfVRegs(1); entry_block_ = new (&allocator_) HBasicBlock(graph_); exit_block_ = new (&allocator_) HBasicBlock(graph_); graph_->AddBlock(entry_block_); graph_->AddBlock(exit_block_); graph_->SetEntryBlock(entry_block_); graph_->SetExitBlock(exit_block_); // Two parameters. x_ = new (&allocator_) HParameterValue(graph_->GetDexFile(), dex::TypeIndex(0), 0, Primitive::kPrimInt); entry_block_->AddInstruction(x_); y_ = new (&allocator_) HParameterValue(graph_->GetDexFile(), dex::TypeIndex(0), 0, Primitive::kPrimInt); entry_block_->AddInstruction(y_); // Set arbitrary range analysis hint while testing private methods. SetHint(x_); } /** Constructs loop with given upper bound. */ void BuildLoop(int32_t lower, HInstruction* upper, int32_t stride) { // Control flow. loop_preheader_ = new (&allocator_) HBasicBlock(graph_); graph_->AddBlock(loop_preheader_); loop_header_ = new (&allocator_) HBasicBlock(graph_); graph_->AddBlock(loop_header_); loop_body_ = new (&allocator_) HBasicBlock(graph_); graph_->AddBlock(loop_body_); HBasicBlock* return_block = new (&allocator_) HBasicBlock(graph_); graph_->AddBlock(return_block); entry_block_->AddSuccessor(loop_preheader_); loop_preheader_->AddSuccessor(loop_header_); loop_header_->AddSuccessor(loop_body_); loop_header_->AddSuccessor(return_block); loop_body_->AddSuccessor(loop_header_); return_block->AddSuccessor(exit_block_); // Instructions. loop_preheader_->AddInstruction(new (&allocator_) HGoto()); HPhi* phi = new (&allocator_) HPhi(&allocator_, 0, 0, Primitive::kPrimInt); loop_header_->AddPhi(phi); phi->AddInput(graph_->GetIntConstant(lower)); // i = l if (stride > 0) { condition_ = new (&allocator_) HLessThan(phi, upper); // i < u } else { condition_ = new (&allocator_) HGreaterThan(phi, upper); // i > u } loop_header_->AddInstruction(condition_); loop_header_->AddInstruction(new (&allocator_) HIf(condition_)); increment_ = new (&allocator_) HAdd(Primitive::kPrimInt, phi, graph_->GetIntConstant(stride)); loop_body_->AddInstruction(increment_); // i += s phi->AddInput(increment_); loop_body_->AddInstruction(new (&allocator_) HGoto()); return_block->AddInstruction(new (&allocator_) HReturnVoid()); exit_block_->AddInstruction(new (&allocator_) HExit()); } /** Constructs SSA and performs induction variable analysis. */ void PerformInductionVarAnalysis() { graph_->BuildDominatorTree(); iva_->Run(); } /** Sets hint. */ void SetHint(HInstruction* hint) { range_.chase_hint_ = hint; } /** Constructs an invariant. */ HInductionVarAnalysis::InductionInfo* CreateInvariant(char opc, HInductionVarAnalysis::InductionInfo* a, HInductionVarAnalysis::InductionInfo* b) { HInductionVarAnalysis::InductionOp op; switch (opc) { case '+': op = HInductionVarAnalysis::kAdd; break; case '-': op = HInductionVarAnalysis::kSub; break; case 'n': op = HInductionVarAnalysis::kNeg; break; case '*': op = HInductionVarAnalysis::kMul; break; case '/': op = HInductionVarAnalysis::kDiv; break; case '%': op = HInductionVarAnalysis::kRem; break; case '^': op = HInductionVarAnalysis::kXor; break; case '<': op = HInductionVarAnalysis::kLT; break; default: op = HInductionVarAnalysis::kNop; break; } return iva_->CreateInvariantOp(op, a, b); } /** Constructs a fetch. */ HInductionVarAnalysis::InductionInfo* CreateFetch(HInstruction* fetch) { return iva_->CreateInvariantFetch(fetch); } /** Constructs a constant. */ HInductionVarAnalysis::InductionInfo* CreateConst(int32_t c) { return CreateFetch(graph_->GetIntConstant(c)); } /** Constructs a constant trip-count. */ HInductionVarAnalysis::InductionInfo* CreateTripCount(int32_t tc, bool in_loop, bool safe) { HInductionVarAnalysis::InductionOp op = HInductionVarAnalysis::kTripCountInBodyUnsafe; if (in_loop && safe) { op = HInductionVarAnalysis::kTripCountInLoop; } else if (in_loop) { op = HInductionVarAnalysis::kTripCountInLoopUnsafe; } else if (safe) { op = HInductionVarAnalysis::kTripCountInBody; } // Return TC with taken-test 0 < TC. return iva_->CreateTripCount(op, CreateConst(tc), CreateInvariant('<', CreateConst(0), CreateConst(tc)), Primitive::kPrimInt); } /** Constructs a linear a * i + b induction. */ HInductionVarAnalysis::InductionInfo* CreateLinear(int32_t a, int32_t b) { return iva_->CreateInduction(HInductionVarAnalysis::kLinear, HInductionVarAnalysis::kNop, CreateConst(a), CreateConst(b), nullptr, Primitive::kPrimInt); } /** Constructs a polynomial sum(a * i + b) + c induction. */ HInductionVarAnalysis::InductionInfo* CreatePolynomial(int32_t a, int32_t b, int32_t c) { return iva_->CreateInduction(HInductionVarAnalysis::kPolynomial, HInductionVarAnalysis::kNop, CreateLinear(a, b), CreateConst(c), nullptr, Primitive::kPrimInt); } /** Constructs a geometric a * f^i + b induction. */ HInductionVarAnalysis::InductionInfo* CreateGeometric(int32_t a, int32_t b, int32_t f, char op) { return iva_->CreateInduction(HInductionVarAnalysis::kGeometric, op == '*' ? HInductionVarAnalysis::kMul : HInductionVarAnalysis::kDiv, CreateConst(a), CreateConst(b), graph_->GetIntConstant(f), Primitive::kPrimInt); } /** Constructs a range [lo, hi] using a periodic induction. */ HInductionVarAnalysis::InductionInfo* CreateRange(int32_t lo, int32_t hi) { return iva_->CreateInduction(HInductionVarAnalysis::kPeriodic, HInductionVarAnalysis::kNop, CreateConst(lo), CreateConst(hi), nullptr, Primitive::kPrimInt); } /** Constructs a wrap-around induction consisting of a constant, followed by info. */ HInductionVarAnalysis::InductionInfo* CreateWrapAround( int32_t initial, HInductionVarAnalysis::InductionInfo* info) { return iva_->CreateInduction(HInductionVarAnalysis::kWrapAround, HInductionVarAnalysis::kNop, CreateConst(initial), info, nullptr, Primitive::kPrimInt); } /** Constructs a wrap-around induction consisting of a constant, followed by a range. */ HInductionVarAnalysis::InductionInfo* CreateWrapAround(int32_t initial, int32_t lo, int32_t hi) { return CreateWrapAround(initial, CreateRange(lo, hi)); } // // Relay methods. // bool NeedsTripCount(HInductionVarAnalysis::InductionInfo* info) { int64_t s = 0; return range_.NeedsTripCount(info, &s); } bool IsBodyTripCount(HInductionVarAnalysis::InductionInfo* trip) { return range_.IsBodyTripCount(trip); } bool IsUnsafeTripCount(HInductionVarAnalysis::InductionInfo* trip) { return range_.IsUnsafeTripCount(trip); } Value GetMin(HInductionVarAnalysis::InductionInfo* info, HInductionVarAnalysis::InductionInfo* trip) { return range_.GetVal(info, trip, /* in_body */ true, /* is_min */ true); } Value GetMax(HInductionVarAnalysis::InductionInfo* info, HInductionVarAnalysis::InductionInfo* trip) { return range_.GetVal(info, trip, /* in_body */ true, /* is_min */ false); } Value GetMul(HInductionVarAnalysis::InductionInfo* info1, HInductionVarAnalysis::InductionInfo* info2, bool is_min) { return range_.GetMul(info1, info2, nullptr, /* in_body */ true, is_min); } Value GetDiv(HInductionVarAnalysis::InductionInfo* info1, HInductionVarAnalysis::InductionInfo* info2, bool is_min) { return range_.GetDiv(info1, info2, nullptr, /* in_body */ true, is_min); } Value GetRem(HInductionVarAnalysis::InductionInfo* info1, HInductionVarAnalysis::InductionInfo* info2) { return range_.GetRem(info1, info2); } Value GetXor(HInductionVarAnalysis::InductionInfo* info1, HInductionVarAnalysis::InductionInfo* info2) { return range_.GetXor(info1, info2); } bool IsExact(HInductionVarAnalysis::InductionInfo* info, int64_t* value) { return range_.IsConstant(info, InductionVarRange::kExact, value); } bool IsAtMost(HInductionVarAnalysis::InductionInfo* info, int64_t* value) { return range_.IsConstant(info, InductionVarRange::kAtMost, value); } bool IsAtLeast(HInductionVarAnalysis::InductionInfo* info, int64_t* value) { return range_.IsConstant(info, InductionVarRange::kAtLeast, value); } Value AddValue(Value v1, Value v2) { return range_.AddValue(v1, v2); } Value SubValue(Value v1, Value v2) { return range_.SubValue(v1, v2); } Value MulValue(Value v1, Value v2) { return range_.MulValue(v1, v2); } Value DivValue(Value v1, Value v2) { return range_.DivValue(v1, v2); } Value MinValue(Value v1, Value v2) { return range_.MergeVal(v1, v2, true); } Value MaxValue(Value v1, Value v2) { return range_.MergeVal(v1, v2, false); } // General building fields. ArenaPool pool_; ArenaAllocator allocator_; HGraph* graph_; HBasicBlock* entry_block_; HBasicBlock* exit_block_; HBasicBlock* loop_preheader_; HBasicBlock* loop_header_; HBasicBlock* loop_body_; HInductionVarAnalysis* iva_; InductionVarRange range_; // Instructions. HInstruction* condition_; HInstruction* increment_; HInstruction* x_; HInstruction* y_; }; // // Tests on private methods. // TEST_F(InductionVarRangeTest, IsConstant) { int64_t value; // Constant. EXPECT_TRUE(IsExact(CreateConst(12345), &value)); EXPECT_EQ(12345, value); EXPECT_TRUE(IsAtMost(CreateConst(12345), &value)); EXPECT_EQ(12345, value); EXPECT_TRUE(IsAtLeast(CreateConst(12345), &value)); EXPECT_EQ(12345, value); // Constant trivial range. EXPECT_TRUE(IsExact(CreateRange(111, 111), &value)); EXPECT_EQ(111, value); EXPECT_TRUE(IsAtMost(CreateRange(111, 111), &value)); EXPECT_EQ(111, value); EXPECT_TRUE(IsAtLeast(CreateRange(111, 111), &value)); EXPECT_EQ(111, value); // Constant non-trivial range. EXPECT_FALSE(IsExact(CreateRange(11, 22), &value)); EXPECT_TRUE(IsAtMost(CreateRange(11, 22), &value)); EXPECT_EQ(22, value); EXPECT_TRUE(IsAtLeast(CreateRange(11, 22), &value)); EXPECT_EQ(11, value); // Symbolic. EXPECT_FALSE(IsExact(CreateFetch(x_), &value)); EXPECT_FALSE(IsAtMost(CreateFetch(x_), &value)); EXPECT_FALSE(IsAtLeast(CreateFetch(x_), &value)); } TEST_F(InductionVarRangeTest, TripCountProperties) { EXPECT_FALSE(NeedsTripCount(nullptr)); EXPECT_FALSE(NeedsTripCount(CreateConst(1))); EXPECT_TRUE(NeedsTripCount(CreateLinear(1, 1))); EXPECT_FALSE(NeedsTripCount(CreateWrapAround(1, 2, 3))); EXPECT_TRUE(NeedsTripCount(CreateWrapAround(1, CreateLinear(1, 1)))); EXPECT_FALSE(IsBodyTripCount(nullptr)); EXPECT_FALSE(IsBodyTripCount(CreateTripCount(100, true, true))); EXPECT_FALSE(IsBodyTripCount(CreateTripCount(100, true, false))); EXPECT_TRUE(IsBodyTripCount(CreateTripCount(100, false, true))); EXPECT_TRUE(IsBodyTripCount(CreateTripCount(100, false, false))); EXPECT_FALSE(IsUnsafeTripCount(nullptr)); EXPECT_FALSE(IsUnsafeTripCount(CreateTripCount(100, true, true))); EXPECT_TRUE(IsUnsafeTripCount(CreateTripCount(100, true, false))); EXPECT_FALSE(IsUnsafeTripCount(CreateTripCount(100, false, true))); EXPECT_TRUE(IsUnsafeTripCount(CreateTripCount(100, false, false))); } TEST_F(InductionVarRangeTest, GetMinMaxNull) { ExpectEqual(Value(), GetMin(nullptr, nullptr)); ExpectEqual(Value(), GetMax(nullptr, nullptr)); } TEST_F(InductionVarRangeTest, GetMinMaxAdd) { ExpectEqual(Value(12), GetMin(CreateInvariant('+', CreateConst(2), CreateRange(10, 20)), nullptr)); ExpectEqual(Value(22), GetMax(CreateInvariant('+', CreateConst(2), CreateRange(10, 20)), nullptr)); ExpectEqual(Value(x_, 1, -20), GetMin(CreateInvariant('+', CreateFetch(x_), CreateRange(-20, -10)), nullptr)); ExpectEqual(Value(x_, 1, -10), GetMax(CreateInvariant('+', CreateFetch(x_), CreateRange(-20, -10)), nullptr)); ExpectEqual(Value(x_, 1, 10), GetMin(CreateInvariant('+', CreateRange(10, 20), CreateFetch(x_)), nullptr)); ExpectEqual(Value(x_, 1, 20), GetMax(CreateInvariant('+', CreateRange(10, 20), CreateFetch(x_)), nullptr)); ExpectEqual(Value(5), GetMin(CreateInvariant('+', CreateRange(-5, -1), CreateRange(10, 20)), nullptr)); ExpectEqual(Value(19), GetMax(CreateInvariant('+', CreateRange(-5, -1), CreateRange(10, 20)), nullptr)); } TEST_F(InductionVarRangeTest, GetMinMaxSub) { ExpectEqual(Value(-18), GetMin(CreateInvariant('-', CreateConst(2), CreateRange(10, 20)), nullptr)); ExpectEqual(Value(-8), GetMax(CreateInvariant('-', CreateConst(2), CreateRange(10, 20)), nullptr)); ExpectEqual(Value(x_, 1, 10), GetMin(CreateInvariant('-', CreateFetch(x_), CreateRange(-20, -10)), nullptr)); ExpectEqual(Value(x_, 1, 20), GetMax(CreateInvariant('-', CreateFetch(x_), CreateRange(-20, -10)), nullptr)); ExpectEqual(Value(x_, -1, 10), GetMin(CreateInvariant('-', CreateRange(10, 20), CreateFetch(x_)), nullptr)); ExpectEqual(Value(x_, -1, 20), GetMax(CreateInvariant('-', CreateRange(10, 20), CreateFetch(x_)), nullptr)); ExpectEqual(Value(-25), GetMin(CreateInvariant('-', CreateRange(-5, -1), CreateRange(10, 20)), nullptr)); ExpectEqual(Value(-11), GetMax(CreateInvariant('-', CreateRange(-5, -1), CreateRange(10, 20)), nullptr)); } TEST_F(InductionVarRangeTest, GetMinMaxNeg) { ExpectEqual(Value(-20), GetMin(CreateInvariant('n', nullptr, CreateRange(10, 20)), nullptr)); ExpectEqual(Value(-10), GetMax(CreateInvariant('n', nullptr, CreateRange(10, 20)), nullptr)); ExpectEqual(Value(10), GetMin(CreateInvariant('n', nullptr, CreateRange(-20, -10)), nullptr)); ExpectEqual(Value(20), GetMax(CreateInvariant('n', nullptr, CreateRange(-20, -10)), nullptr)); ExpectEqual(Value(x_, -1, 0), GetMin(CreateInvariant('n', nullptr, CreateFetch(x_)), nullptr)); ExpectEqual(Value(x_, -1, 0), GetMax(CreateInvariant('n', nullptr, CreateFetch(x_)), nullptr)); } TEST_F(InductionVarRangeTest, GetMinMaxMul) { ExpectEqual(Value(20), GetMin(CreateInvariant('*', CreateConst(2), CreateRange(10, 20)), nullptr)); ExpectEqual(Value(40), GetMax(CreateInvariant('*', CreateConst(2), CreateRange(10, 20)), nullptr)); } TEST_F(InductionVarRangeTest, GetMinMaxDiv) { ExpectEqual(Value(3), GetMin(CreateInvariant('/', CreateRange(12, 20), CreateConst(4)), nullptr)); ExpectEqual(Value(5), GetMax(CreateInvariant('/', CreateRange(12, 20), CreateConst(4)), nullptr)); } TEST_F(InductionVarRangeTest, GetMinMaxConstant) { ExpectEqual(Value(12345), GetMin(CreateConst(12345), nullptr)); ExpectEqual(Value(12345), GetMax(CreateConst(12345), nullptr)); } TEST_F(InductionVarRangeTest, GetMinMaxFetch) { ExpectEqual(Value(x_, 1, 0), GetMin(CreateFetch(x_), nullptr)); ExpectEqual(Value(x_, 1, 0), GetMax(CreateFetch(x_), nullptr)); } TEST_F(InductionVarRangeTest, GetMinMaxLinear) { ExpectEqual(Value(20), GetMin(CreateLinear(10, 20), CreateTripCount(100, true, true))); ExpectEqual(Value(1010), GetMax(CreateLinear(10, 20), CreateTripCount(100, true, true))); ExpectEqual(Value(-970), GetMin(CreateLinear(-10, 20), CreateTripCount(100, true, true))); ExpectEqual(Value(20), GetMax(CreateLinear(-10, 20), CreateTripCount(100, true, true))); } TEST_F(InductionVarRangeTest, GetMinMaxWrapAround) { ExpectEqual(Value(-5), GetMin(CreateWrapAround(-5, -1, 10), nullptr)); ExpectEqual(Value(10), GetMax(CreateWrapAround(-5, -1, 10), nullptr)); ExpectEqual(Value(-1), GetMin(CreateWrapAround(2, -1, 10), nullptr)); ExpectEqual(Value(10), GetMax(CreateWrapAround(2, -1, 10), nullptr)); ExpectEqual(Value(-1), GetMin(CreateWrapAround(20, -1, 10), nullptr)); ExpectEqual(Value(20), GetMax(CreateWrapAround(20, -1, 10), nullptr)); } TEST_F(InductionVarRangeTest, GetMinMaxPolynomial) { ExpectEqual(Value(7), GetMin(CreatePolynomial(3, 5, 7), nullptr)); ExpectEqual(Value(), GetMax(CreatePolynomial(3, 5, 7), nullptr)); ExpectEqual(Value(7), GetMin(CreatePolynomial(3, 5, 7), CreateTripCount(5, true, true))); ExpectEqual(Value(45), GetMax(CreatePolynomial(3, 5, 7), CreateTripCount(5, true, true))); ExpectEqual(Value(7), GetMin(CreatePolynomial(3, 5, 7), CreateTripCount(10, true, true))); ExpectEqual(Value(160), GetMax(CreatePolynomial(3, 5, 7), CreateTripCount(10, true, true))); ExpectEqual(Value(-7), GetMin(CreatePolynomial(11, 13, -7), CreateTripCount(5, true, true))); ExpectEqual(Value(111), GetMax(CreatePolynomial(11, 13, -7), CreateTripCount(5, true, true))); ExpectEqual(Value(-7), GetMin(CreatePolynomial(11, 13, -7), CreateTripCount(10, true, true))); ExpectEqual(Value(506), GetMax(CreatePolynomial(11, 13, -7), CreateTripCount(10, true, true))); ExpectEqual(Value(), GetMin(CreatePolynomial(-3, 5, 7), CreateTripCount(10, true, true))); ExpectEqual(Value(), GetMax(CreatePolynomial(-3, 5, 7), CreateTripCount(10, true, true))); ExpectEqual(Value(), GetMin(CreatePolynomial(3, -5, 7), CreateTripCount(10, true, true))); ExpectEqual(Value(), GetMax(CreatePolynomial(3, -5, 7), CreateTripCount(10, true, true))); } TEST_F(InductionVarRangeTest, GetMinMaxGeometricMul) { ExpectEqual(Value(), GetMin(CreateGeometric(1, 1, 1, '*'), nullptr)); ExpectEqual(Value(), GetMax(CreateGeometric(1, 1, 1, '*'), nullptr)); } TEST_F(InductionVarRangeTest, GetMinMaxGeometricDiv) { ExpectEqual(Value(5), GetMin(CreateGeometric(11, 5, 3, '/'), nullptr)); ExpectEqual(Value(16), GetMax(CreateGeometric(11, 5, 3, '/'), nullptr)); ExpectEqual(Value(-5), GetMin(CreateGeometric(11, -5, 3, '/'), nullptr)); ExpectEqual(Value(6), GetMax(CreateGeometric(11, -5, 3, '/'), nullptr)); ExpectEqual(Value(-6), GetMin(CreateGeometric(-11, 5, 3, '/'), nullptr)); ExpectEqual(Value(5), GetMax(CreateGeometric(-11, 5, 3, '/'), nullptr)); ExpectEqual(Value(-16), GetMin(CreateGeometric(-11, -5, 3, '/'), nullptr)); ExpectEqual(Value(-5), GetMax(CreateGeometric(-11, -5, 3, '/'), nullptr)); } TEST_F(InductionVarRangeTest, GetMinMaxPeriodic) { ExpectEqual(Value(-2), GetMin(CreateRange(-2, 99), nullptr)); ExpectEqual(Value(99), GetMax(CreateRange(-2, 99), nullptr)); } TEST_F(InductionVarRangeTest, GetMulMin) { ExpectEqual(Value(-14), GetMul(CreateConst(2), CreateRange(-7, 8), true)); ExpectEqual(Value(-16), GetMul(CreateConst(-2), CreateRange(-7, 8), true)); ExpectEqual(Value(-14), GetMul(CreateRange(-7, 8), CreateConst(2), true)); ExpectEqual(Value(-16), GetMul(CreateRange(-7, 8), CreateConst(-2), true)); ExpectEqual(Value(6), GetMul(CreateRange(2, 10), CreateRange(3, 5), true)); ExpectEqual(Value(-50), GetMul(CreateRange(2, 10), CreateRange(-5, -3), true)); ExpectEqual(Value(), GetMul(CreateRange(2, 10), CreateRange(-1, 1), true)); ExpectEqual(Value(-50), GetMul(CreateRange(-10, -2), CreateRange(3, 5), true)); ExpectEqual(Value(6), GetMul(CreateRange(-10, -2), CreateRange(-5, -3), true)); ExpectEqual(Value(), GetMul(CreateRange(-10, -2), CreateRange(-1, 1), true)); ExpectEqual(Value(), GetMul(CreateRange(-1, 1), CreateRange(2, 10), true)); ExpectEqual(Value(), GetMul(CreateRange(-1, 1), CreateRange(-10, -2), true)); ExpectEqual(Value(), GetMul(CreateRange(-1, 1), CreateRange(-1, 1), true)); } TEST_F(InductionVarRangeTest, GetMulMax) { ExpectEqual(Value(16), GetMul(CreateConst(2), CreateRange(-7, 8), false)); ExpectEqual(Value(14), GetMul(CreateConst(-2), CreateRange(-7, 8), false)); ExpectEqual(Value(16), GetMul(CreateRange(-7, 8), CreateConst(2), false)); ExpectEqual(Value(14), GetMul(CreateRange(-7, 8), CreateConst(-2), false)); ExpectEqual(Value(50), GetMul(CreateRange(2, 10), CreateRange(3, 5), false)); ExpectEqual(Value(-6), GetMul(CreateRange(2, 10), CreateRange(-5, -3), false)); ExpectEqual(Value(), GetMul(CreateRange(2, 10), CreateRange(-1, 1), false)); ExpectEqual(Value(-6), GetMul(CreateRange(-10, -2), CreateRange(3, 5), false)); ExpectEqual(Value(50), GetMul(CreateRange(-10, -2), CreateRange(-5, -3), false)); ExpectEqual(Value(), GetMul(CreateRange(-10, -2), CreateRange(-1, 1), false)); ExpectEqual(Value(), GetMul(CreateRange(-1, 1), CreateRange(2, 10), false)); ExpectEqual(Value(), GetMul(CreateRange(-1, 1), CreateRange(-10, -2), false)); ExpectEqual(Value(), GetMul(CreateRange(-1, 1), CreateRange(-1, 1), false)); } TEST_F(InductionVarRangeTest, GetDivMin) { ExpectEqual(Value(-5), GetDiv(CreateRange(-10, 20), CreateConst(2), true)); ExpectEqual(Value(-10), GetDiv(CreateRange(-10, 20), CreateConst(-2), true)); ExpectEqual(Value(10), GetDiv(CreateRange(40, 1000), CreateRange(2, 4), true)); ExpectEqual(Value(-500), GetDiv(CreateRange(40, 1000), CreateRange(-4, -2), true)); ExpectEqual(Value(), GetDiv(CreateRange(40, 1000), CreateRange(-1, 1), true)); ExpectEqual(Value(-500), GetDiv(CreateRange(-1000, -40), CreateRange(2, 4), true)); ExpectEqual(Value(10), GetDiv(CreateRange(-1000, -40), CreateRange(-4, -2), true)); ExpectEqual(Value(), GetDiv(CreateRange(-1000, -40), CreateRange(-1, 1), true)); ExpectEqual(Value(), GetDiv(CreateRange(-1, 1), CreateRange(40, 1000), true)); ExpectEqual(Value(), GetDiv(CreateRange(-1, 1), CreateRange(-1000, -40), true)); ExpectEqual(Value(), GetDiv(CreateRange(-1, 1), CreateRange(-1, 1), true)); } TEST_F(InductionVarRangeTest, GetDivMax) { ExpectEqual(Value(10), GetDiv(CreateRange(-10, 20), CreateConst(2), false)); ExpectEqual(Value(5), GetDiv(CreateRange(-10, 20), CreateConst(-2), false)); ExpectEqual(Value(500), GetDiv(CreateRange(40, 1000), CreateRange(2, 4), false)); ExpectEqual(Value(-10), GetDiv(CreateRange(40, 1000), CreateRange(-4, -2), false)); ExpectEqual(Value(), GetDiv(CreateRange(40, 1000), CreateRange(-1, 1), false)); ExpectEqual(Value(-10), GetDiv(CreateRange(-1000, -40), CreateRange(2, 4), false)); ExpectEqual(Value(500), GetDiv(CreateRange(-1000, -40), CreateRange(-4, -2), false)); ExpectEqual(Value(), GetDiv(CreateRange(-1000, -40), CreateRange(-1, 1), false)); ExpectEqual(Value(), GetDiv(CreateRange(-1, 1), CreateRange(40, 1000), false)); ExpectEqual(Value(), GetDiv(CreateRange(-1, 1), CreateRange(-1000, 40), false)); ExpectEqual(Value(), GetDiv(CreateRange(-1, 1), CreateRange(-1, 1), false)); } TEST_F(InductionVarRangeTest, GetMinMaxRem) { ExpectEqual(Value(), GetMin(CreateInvariant('%', CreateConst(2), CreateRange(10, 20)), nullptr)); ExpectEqual(Value(), GetMax(CreateInvariant('%', CreateConst(2), CreateRange(10, 20)), nullptr)); ExpectEqual(Value(), GetMin(CreateInvariant('%', CreateRange(10, 20), CreateConst(2)), nullptr)); ExpectEqual(Value(), GetMax(CreateInvariant('%', CreateRange(10, 20), CreateConst(2)), nullptr)); ExpectEqual(Value(2), GetMin(CreateInvariant('%', CreateConst(2), CreateConst(5)), nullptr)); ExpectEqual(Value(2), GetMax(CreateInvariant('%', CreateConst(2), CreateConst(5)), nullptr)); ExpectEqual(Value(1), GetMin(CreateInvariant('%', CreateConst(11), CreateConst(5)), nullptr)); ExpectEqual(Value(1), GetMax(CreateInvariant('%', CreateConst(11), CreateConst(5)), nullptr)); } TEST_F(InductionVarRangeTest, GetRem) { ExpectEqual(Value(0), GetRem(CreateConst(1), CreateConst(1))); ExpectEqual(Value(2), GetRem(CreateConst(2), CreateConst(5))); ExpectEqual(Value(1), GetRem(CreateConst(11), CreateConst(5))); ExpectEqual(Value(-2), GetRem(CreateConst(-2), CreateConst(5))); ExpectEqual(Value(-1), GetRem(CreateConst(-11), CreateConst(5))); ExpectEqual(Value(2), GetRem(CreateConst(2), CreateConst(-5))); ExpectEqual(Value(1), GetRem(CreateConst(11), CreateConst(-5))); ExpectEqual(Value(-2), GetRem(CreateConst(-2), CreateConst(-5))); ExpectEqual(Value(-1), GetRem(CreateConst(-11), CreateConst(-5))); ExpectEqual(Value(), GetRem(CreateConst(1), CreateConst(0))); } TEST_F(InductionVarRangeTest, GetMinMaxXor) { ExpectEqual(Value(), GetMin(CreateInvariant('^', CreateConst(2), CreateRange(10, 20)), nullptr)); ExpectEqual(Value(), GetMax(CreateInvariant('^', CreateConst(2), CreateRange(10, 20)), nullptr)); ExpectEqual(Value(), GetMin(CreateInvariant('^', CreateRange(10, 20), CreateConst(2)), nullptr)); ExpectEqual(Value(), GetMax(CreateInvariant('^', CreateRange(10, 20), CreateConst(2)), nullptr)); ExpectEqual(Value(3), GetMin(CreateInvariant('^', CreateConst(1), CreateConst(2)), nullptr)); ExpectEqual(Value(3), GetMax(CreateInvariant('^', CreateConst(1), CreateConst(2)), nullptr)); } TEST_F(InductionVarRangeTest, GetXor) { ExpectEqual(Value(0), GetXor(CreateConst(1), CreateConst(1))); ExpectEqual(Value(3), GetXor(CreateConst(1), CreateConst(2))); ExpectEqual(Value(-2), GetXor(CreateConst(1), CreateConst(-1))); ExpectEqual(Value(0), GetXor(CreateConst(-1), CreateConst(-1))); } TEST_F(InductionVarRangeTest, AddValue) { ExpectEqual(Value(110), AddValue(Value(10), Value(100))); ExpectEqual(Value(-5), AddValue(Value(x_, 1, -4), Value(x_, -1, -1))); ExpectEqual(Value(x_, 3, -5), AddValue(Value(x_, 2, -4), Value(x_, 1, -1))); ExpectEqual(Value(), AddValue(Value(x_, 1, 5), Value(y_, 1, -7))); ExpectEqual(Value(x_, 1, 23), AddValue(Value(x_, 1, 20), Value(3))); ExpectEqual(Value(y_, 1, 5), AddValue(Value(55), Value(y_, 1, -50))); const int32_t max_value = std::numeric_limits<int32_t>::max(); ExpectEqual(Value(max_value), AddValue(Value(max_value - 5), Value(5))); ExpectEqual(Value(), AddValue(Value(max_value - 5), Value(6))); // unsafe } TEST_F(InductionVarRangeTest, SubValue) { ExpectEqual(Value(-90), SubValue(Value(10), Value(100))); ExpectEqual(Value(-3), SubValue(Value(x_, 1, -4), Value(x_, 1, -1))); ExpectEqual(Value(x_, 2, -3), SubValue(Value(x_, 3, -4), Value(x_, 1, -1))); ExpectEqual(Value(), SubValue(Value(x_, 1, 5), Value(y_, 1, -7))); ExpectEqual(Value(x_, 1, 17), SubValue(Value(x_, 1, 20), Value(3))); ExpectEqual(Value(y_, -4, 105), SubValue(Value(55), Value(y_, 4, -50))); const int32_t min_value = std::numeric_limits<int32_t>::min(); ExpectEqual(Value(min_value), SubValue(Value(min_value + 5), Value(5))); ExpectEqual(Value(), SubValue(Value(min_value + 5), Value(6))); // unsafe } TEST_F(InductionVarRangeTest, MulValue) { ExpectEqual(Value(1000), MulValue(Value(10), Value(100))); ExpectEqual(Value(), MulValue(Value(x_, 1, -4), Value(x_, 1, -1))); ExpectEqual(Value(), MulValue(Value(x_, 1, 5), Value(y_, 1, -7))); ExpectEqual(Value(x_, 9, 60), MulValue(Value(x_, 3, 20), Value(3))); ExpectEqual(Value(y_, 55, -110), MulValue(Value(55), Value(y_, 1, -2))); ExpectEqual(Value(), MulValue(Value(90000), Value(-90000))); // unsafe } TEST_F(InductionVarRangeTest, MulValueSpecial) { const int32_t min_value = std::numeric_limits<int32_t>::min(); const int32_t max_value = std::numeric_limits<int32_t>::max(); // Unsafe. ExpectEqual(Value(), MulValue(Value(min_value), Value(min_value))); ExpectEqual(Value(), MulValue(Value(min_value), Value(-1))); ExpectEqual(Value(), MulValue(Value(min_value), Value(max_value))); ExpectEqual(Value(), MulValue(Value(max_value), Value(max_value))); // Safe. ExpectEqual(Value(min_value), MulValue(Value(min_value), Value(1))); ExpectEqual(Value(max_value), MulValue(Value(max_value), Value(1))); ExpectEqual(Value(-max_value), MulValue(Value(max_value), Value(-1))); ExpectEqual(Value(-1), MulValue(Value(1), Value(-1))); ExpectEqual(Value(1), MulValue(Value(-1), Value(-1))); } TEST_F(InductionVarRangeTest, DivValue) { ExpectEqual(Value(25), DivValue(Value(100), Value(4))); ExpectEqual(Value(), DivValue(Value(x_, 1, -4), Value(x_, 1, -1))); ExpectEqual(Value(), DivValue(Value(x_, 1, 5), Value(y_, 1, -7))); ExpectEqual(Value(), DivValue(Value(x_, 12, 24), Value(3))); ExpectEqual(Value(), DivValue(Value(55), Value(y_, 1, -50))); ExpectEqual(Value(), DivValue(Value(1), Value(0))); // unsafe } TEST_F(InductionVarRangeTest, DivValueSpecial) { const int32_t min_value = std::numeric_limits<int32_t>::min(); const int32_t max_value = std::numeric_limits<int32_t>::max(); // Unsafe. ExpectEqual(Value(), DivValue(Value(min_value), Value(-1))); // Safe. ExpectEqual(Value(1), DivValue(Value(min_value), Value(min_value))); ExpectEqual(Value(1), DivValue(Value(max_value), Value(max_value))); ExpectEqual(Value(min_value), DivValue(Value(min_value), Value(1))); ExpectEqual(Value(max_value), DivValue(Value(max_value), Value(1))); ExpectEqual(Value(-max_value), DivValue(Value(max_value), Value(-1))); ExpectEqual(Value(-1), DivValue(Value(1), Value(-1))); ExpectEqual(Value(1), DivValue(Value(-1), Value(-1))); } TEST_F(InductionVarRangeTest, MinValue) { ExpectEqual(Value(10), MinValue(Value(10), Value(100))); ExpectEqual(Value(x_, 1, -4), MinValue(Value(x_, 1, -4), Value(x_, 1, -1))); ExpectEqual(Value(x_, 4, -4), MinValue(Value(x_, 4, -4), Value(x_, 4, -1))); ExpectEqual(Value(), MinValue(Value(x_, 1, 5), Value(y_, 1, -7))); ExpectEqual(Value(), MinValue(Value(x_, 1, 20), Value(3))); ExpectEqual(Value(), MinValue(Value(55), Value(y_, 1, -50))); } TEST_F(InductionVarRangeTest, MaxValue) { ExpectEqual(Value(100), MaxValue(Value(10), Value(100))); ExpectEqual(Value(x_, 1, -1), MaxValue(Value(x_, 1, -4), Value(x_, 1, -1))); ExpectEqual(Value(x_, 4, -1), MaxValue(Value(x_, 4, -4), Value(x_, 4, -1))); ExpectEqual(Value(), MaxValue(Value(x_, 1, 5), Value(y_, 1, -7))); ExpectEqual(Value(), MaxValue(Value(x_, 1, 20), Value(3))); ExpectEqual(Value(), MaxValue(Value(55), Value(y_, 1, -50))); } TEST_F(InductionVarRangeTest, ArrayLengthAndHints) { // We pass a bogus constant for the class to avoid mocking one. HInstruction* new_array = new (&allocator_) HNewArray(x_, x_, 0); entry_block_->AddInstruction(new_array); HInstruction* array_length = new (&allocator_) HArrayLength(new_array, 0); entry_block_->AddInstruction(array_length); // With null hint: yields extreme constants. const int32_t max_value = std::numeric_limits<int32_t>::max(); SetHint(nullptr); ExpectEqual(Value(0), GetMin(CreateFetch(array_length), nullptr)); ExpectEqual(Value(max_value), GetMax(CreateFetch(array_length), nullptr)); // With explicit hint: yields the length instruction. SetHint(array_length); ExpectEqual(Value(array_length, 1, 0), GetMin(CreateFetch(array_length), nullptr)); ExpectEqual(Value(array_length, 1, 0), GetMax(CreateFetch(array_length), nullptr)); // With any non-null hint: chases beyond the length instruction. SetHint(x_); ExpectEqual(Value(x_, 1, 0), GetMin(CreateFetch(array_length), nullptr)); ExpectEqual(Value(x_, 1, 0), GetMax(CreateFetch(array_length), nullptr)); } // // Tests on public methods. // TEST_F(InductionVarRangeTest, ConstantTripCountUp) { BuildLoop(0, graph_->GetIntConstant(1000), 1); PerformInductionVarAnalysis(); Value v1, v2; bool needs_finite_test = true; bool needs_taken_test = true; HInstruction* phi = condition_->InputAt(0); HInstruction* exit = exit_block_->GetLastInstruction(); // In context of header: known. range_.GetInductionRange(condition_, phi, x_, &v1, &v2, &needs_finite_test); EXPECT_FALSE(needs_finite_test); ExpectEqual(Value(0), v1); ExpectEqual(Value(1000), v2); // In context of loop-body: known. range_.GetInductionRange(increment_, phi, x_, &v1, &v2, &needs_finite_test); EXPECT_FALSE(needs_finite_test); ExpectEqual(Value(0), v1); ExpectEqual(Value(999), v2); range_.GetInductionRange(increment_, increment_, x_, &v1, &v2, &needs_finite_test); EXPECT_FALSE(needs_finite_test); ExpectEqual(Value(1), v1); ExpectEqual(Value(1000), v2); // Induction vs. no-induction. EXPECT_TRUE(range_.CanGenerateRange(increment_, phi, &needs_finite_test, &needs_taken_test)); EXPECT_TRUE(range_.CanGenerateLastValue(phi)); EXPECT_FALSE(range_.CanGenerateRange(exit, exit, &needs_finite_test, &needs_taken_test)); EXPECT_FALSE(range_.CanGenerateLastValue(exit)); // Last value (unsimplified). HInstruction* last = range_.GenerateLastValue(phi, graph_, loop_preheader_); ASSERT_TRUE(last->IsAdd()); ExpectInt(1000, last->InputAt(0)); ExpectInt(0, last->InputAt(1)); // Loop logic. int64_t tc = 0; EXPECT_TRUE(range_.IsFinite(loop_header_->GetLoopInformation(), &tc)); EXPECT_EQ(1000, tc); HInstruction* offset = nullptr; EXPECT_TRUE(range_.IsUnitStride(phi, phi, &offset)); EXPECT_TRUE(offset == nullptr); HInstruction* tce = range_.GenerateTripCount( loop_header_->GetLoopInformation(), graph_, loop_preheader_); ASSERT_TRUE(tce != nullptr); ExpectInt(1000, tce); } TEST_F(InductionVarRangeTest, ConstantTripCountDown) { BuildLoop(1000, graph_->GetIntConstant(0), -1); PerformInductionVarAnalysis(); Value v1, v2; bool needs_finite_test = true; bool needs_taken_test = true; HInstruction* phi = condition_->InputAt(0); HInstruction* exit = exit_block_->GetLastInstruction(); // In context of header: known. range_.GetInductionRange(condition_, phi, x_, &v1, &v2, &needs_finite_test); EXPECT_FALSE(needs_finite_test); ExpectEqual(Value(0), v1); ExpectEqual(Value(1000), v2); // In context of loop-body: known. range_.GetInductionRange(increment_, phi, x_, &v1, &v2, &needs_finite_test); EXPECT_FALSE(needs_finite_test); ExpectEqual(Value(1), v1); ExpectEqual(Value(1000), v2); range_.GetInductionRange(increment_, increment_, x_, &v1, &v2, &needs_finite_test); EXPECT_FALSE(needs_finite_test); ExpectEqual(Value(0), v1); ExpectEqual(Value(999), v2); // Induction vs. no-induction. EXPECT_TRUE(range_.CanGenerateRange(increment_, phi, &needs_finite_test, &needs_taken_test)); EXPECT_TRUE(range_.CanGenerateLastValue(phi)); EXPECT_FALSE(range_.CanGenerateRange(exit, exit, &needs_finite_test, &needs_taken_test)); EXPECT_FALSE(range_.CanGenerateLastValue(exit)); // Last value (unsimplified). HInstruction* last = range_.GenerateLastValue(phi, graph_, loop_preheader_); ASSERT_TRUE(last->IsSub()); ExpectInt(1000, last->InputAt(0)); ASSERT_TRUE(last->InputAt(1)->IsNeg()); last = last->InputAt(1)->InputAt(0); ASSERT_TRUE(last->IsSub()); ExpectInt(0, last->InputAt(0)); ExpectInt(1000, last->InputAt(1)); // Loop logic. int64_t tc = 0; EXPECT_TRUE(range_.IsFinite(loop_header_->GetLoopInformation(), &tc)); EXPECT_EQ(1000, tc); HInstruction* offset = nullptr; EXPECT_FALSE(range_.IsUnitStride(phi, phi, &offset)); HInstruction* tce = range_.GenerateTripCount( loop_header_->GetLoopInformation(), graph_, loop_preheader_); ASSERT_TRUE(tce != nullptr); ASSERT_TRUE(tce->IsNeg()); last = tce->InputAt(0); EXPECT_TRUE(last->IsSub()); ExpectInt(0, last->InputAt(0)); ExpectInt(1000, last->InputAt(1)); } TEST_F(InductionVarRangeTest, SymbolicTripCountUp) { BuildLoop(0, x_, 1); PerformInductionVarAnalysis(); Value v1, v2; bool needs_finite_test = true; bool needs_taken_test = true; HInstruction* phi = condition_->InputAt(0); // In context of header: upper unknown. range_.GetInductionRange(condition_, phi, x_, &v1, &v2, &needs_finite_test); EXPECT_FALSE(needs_finite_test); ExpectEqual(Value(0), v1); ExpectEqual(Value(), v2); // In context of loop-body: known. range_.GetInductionRange(increment_, phi, x_, &v1, &v2, &needs_finite_test); EXPECT_FALSE(needs_finite_test); ExpectEqual(Value(0), v1); ExpectEqual(Value(x_, 1, -1), v2); range_.GetInductionRange(increment_, increment_, x_, &v1, &v2, &needs_finite_test); EXPECT_FALSE(needs_finite_test); ExpectEqual(Value(1), v1); ExpectEqual(Value(x_, 1, 0), v2); HInstruction* lower = nullptr; HInstruction* upper = nullptr; // Can generate code in context of loop-body only. EXPECT_FALSE(range_.CanGenerateRange(condition_, phi, &needs_finite_test, &needs_taken_test)); ASSERT_TRUE(range_.CanGenerateRange(increment_, phi, &needs_finite_test, &needs_taken_test)); EXPECT_FALSE(needs_finite_test); EXPECT_TRUE(needs_taken_test); // Generates code (unsimplified). range_.GenerateRange(increment_, phi, graph_, loop_preheader_, &lower, &upper); // Verify lower is 0+0. ASSERT_TRUE(lower != nullptr); ASSERT_TRUE(lower->IsAdd()); ExpectInt(0, lower->InputAt(0)); ExpectInt(0, lower->InputAt(1)); // Verify upper is (V-1)+0. ASSERT_TRUE(upper != nullptr); ASSERT_TRUE(upper->IsAdd()); ASSERT_TRUE(upper->InputAt(0)->IsSub()); EXPECT_TRUE(upper->InputAt(0)->InputAt(0)->IsParameterValue()); ExpectInt(1, upper->InputAt(0)->InputAt(1)); ExpectInt(0, upper->InputAt(1)); // Verify taken-test is 0<V. HInstruction* taken = range_.GenerateTakenTest(increment_, graph_, loop_preheader_); ASSERT_TRUE(taken != nullptr); ASSERT_TRUE(taken->IsLessThan()); ExpectInt(0, taken->InputAt(0)); EXPECT_TRUE(taken->InputAt(1)->IsParameterValue()); // Replacement. range_.Replace(loop_header_->GetLastInstruction(), x_, y_); range_.GetInductionRange(increment_, increment_, x_, &v1, &v2, &needs_finite_test); EXPECT_FALSE(needs_finite_test); ExpectEqual(Value(1), v1); ExpectEqual(Value(y_, 1, 0), v2); // Loop logic. int64_t tc = 0; EXPECT_TRUE(range_.IsFinite(loop_header_->GetLoopInformation(), &tc)); EXPECT_EQ(0, tc); // unknown HInstruction* offset = nullptr; EXPECT_TRUE(range_.IsUnitStride(phi, phi, &offset)); EXPECT_TRUE(offset == nullptr); HInstruction* tce = range_.GenerateTripCount( loop_header_->GetLoopInformation(), graph_, loop_preheader_); ASSERT_TRUE(tce != nullptr); EXPECT_TRUE(tce->IsSelect()); // guarded by taken-test ExpectInt(0, tce->InputAt(0)); EXPECT_TRUE(tce->InputAt(1)->IsParameterValue()); EXPECT_TRUE(tce->InputAt(2)->IsLessThan()); } TEST_F(InductionVarRangeTest, SymbolicTripCountDown) { BuildLoop(1000, x_, -1); PerformInductionVarAnalysis(); Value v1, v2; bool needs_finite_test = true; bool needs_taken_test = true; HInstruction* phi = condition_->InputAt(0); // In context of header: lower unknown. range_.GetInductionRange(condition_, phi, x_, &v1, &v2, &needs_finite_test); EXPECT_FALSE(needs_finite_test); ExpectEqual(Value(), v1); ExpectEqual(Value(1000), v2); // In context of loop-body: known. range_.GetInductionRange(increment_, phi, x_, &v1, &v2, &needs_finite_test); EXPECT_FALSE(needs_finite_test); ExpectEqual(Value(x_, 1, 1), v1); ExpectEqual(Value(1000), v2); range_.GetInductionRange(increment_, increment_, x_, &v1, &v2, &needs_finite_test); EXPECT_FALSE(needs_finite_test); ExpectEqual(Value(x_, 1, 0), v1); ExpectEqual(Value(999), v2); HInstruction* lower = nullptr; HInstruction* upper = nullptr; // Can generate code in context of loop-body only. EXPECT_FALSE(range_.CanGenerateRange(condition_, phi, &needs_finite_test, &needs_taken_test)); ASSERT_TRUE(range_.CanGenerateRange(increment_, phi, &needs_finite_test, &needs_taken_test)); EXPECT_FALSE(needs_finite_test); EXPECT_TRUE(needs_taken_test); // Generates code (unsimplified). range_.GenerateRange(increment_, phi, graph_, loop_preheader_, &lower, &upper); // Verify lower is 1000-((1000-V)-1). ASSERT_TRUE(lower != nullptr); ASSERT_TRUE(lower->IsSub()); ExpectInt(1000, lower->InputAt(0)); lower = lower->InputAt(1); ASSERT_TRUE(lower->IsSub()); ExpectInt(1, lower->InputAt(1)); lower = lower->InputAt(0); ASSERT_TRUE(lower->IsSub()); ExpectInt(1000, lower->InputAt(0)); EXPECT_TRUE(lower->InputAt(1)->IsParameterValue()); // Verify upper is 1000-0. ASSERT_TRUE(upper != nullptr); ASSERT_TRUE(upper->IsSub()); ExpectInt(1000, upper->InputAt(0)); ExpectInt(0, upper->InputAt(1)); // Verify taken-test is 1000>V. HInstruction* taken = range_.GenerateTakenTest(increment_, graph_, loop_preheader_); ASSERT_TRUE(taken != nullptr); ASSERT_TRUE(taken->IsGreaterThan()); ExpectInt(1000, taken->InputAt(0)); EXPECT_TRUE(taken->InputAt(1)->IsParameterValue()); // Replacement. range_.Replace(loop_header_->GetLastInstruction(), x_, y_); range_.GetInductionRange(increment_, increment_, x_, &v1, &v2, &needs_finite_test); EXPECT_FALSE(needs_finite_test); ExpectEqual(Value(y_, 1, 0), v1); ExpectEqual(Value(999), v2); // Loop logic. int64_t tc = 0; EXPECT_TRUE(range_.IsFinite(loop_header_->GetLoopInformation(), &tc)); EXPECT_EQ(0, tc); // unknown HInstruction* offset = nullptr; EXPECT_FALSE(range_.IsUnitStride(phi, phi, &offset)); HInstruction* tce = range_.GenerateTripCount( loop_header_->GetLoopInformation(), graph_, loop_preheader_); ASSERT_TRUE(tce != nullptr); EXPECT_TRUE(tce->IsSelect()); // guarded by taken-test ExpectInt(0, tce->InputAt(0)); EXPECT_TRUE(tce->InputAt(1)->IsSub()); EXPECT_TRUE(tce->InputAt(2)->IsGreaterThan()); tce = tce->InputAt(1); ExpectInt(1000, taken->InputAt(0)); EXPECT_TRUE(taken->InputAt(1)->IsParameterValue()); } } // namespace art