/*
 * Copyright (C) 2015 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef ART_CMDLINE_DETAIL_CMDLINE_PARSE_ARGUMENT_DETAIL_H_
#define ART_CMDLINE_DETAIL_CMDLINE_PARSE_ARGUMENT_DETAIL_H_

#include <type_traits>
#include <assert.h>
#include <functional>
#include <vector>
#include <algorithm>
#include <numeric>
#include <memory>

#include "android-base/strings.h"

#include "cmdline_parse_result.h"
#include "cmdline_types.h"
#include "token_range.h"
#include "unit.h"

namespace art {
  // Implementation details for the parser. Do not look inside if you hate templates.
  namespace detail {
    // A non-templated base class for argument parsers. Used by the general parser
    // to parse arguments, without needing to know the argument type at compile time.
    //
    // This is an application of the type erasure idiom.
    struct CmdlineParseArgumentAny {
      virtual ~CmdlineParseArgumentAny() {}

      // Attempt to parse this argument starting at arguments[position].
      // If the parsing succeeds, the parsed value will be saved as a side-effect.
      //
      // In most situations, the parsing will not match by returning kUnknown. In this case,
      // no tokens were consumed and the position variable will not be updated.
      //
      // At other times, parsing may fail due to validation but the initial token was still matched
      // (for example an out of range value, or passing in a string where an int was expected).
      // In this case the tokens are still consumed, and the position variable will get incremented
      // by all the consumed tokens.
      //
      // The # of tokens consumed by the parse attempt will be set as an out-parameter into
      // consumed_tokens. The parser should skip this many tokens before parsing the next
      // argument.
      virtual CmdlineResult ParseArgument(const TokenRange& arguments, size_t* consumed_tokens) = 0;
      // How many tokens should be taken off argv for parsing this argument.
      // For example "--help" is just 1, "-compiler-option _" would be 2 (since there's a space).
      //
      // A [min,max] range is returned to represent argument definitions with multiple
      // value tokens. (e.g. {"-h", "-h " } would return [1,2]).
      virtual std::pair<size_t, size_t> GetNumTokens() const = 0;
      // Get the run-time typename of the argument type.
      virtual const char* GetTypeName() const = 0;
      // Try to do a close match, returning how many tokens were matched against this argument
      // definition. More tokens is better.
      //
      // Do a quick match token-by-token, and see if they match.
      // Any tokens with a wildcard in them are only matched up until the wildcard.
      // If this is true, then the wildcard matching later on can still fail, so this is not
      // a guarantee that the argument is correct, it's more of a strong hint that the
      // user-provided input *probably* was trying to match this argument.
      //
      // Returns how many tokens were either matched (or ignored because there was a
      // wildcard present). 0 means no match. If the Size() tokens are returned.
      virtual size_t MaybeMatches(const TokenRange& tokens) = 0;
    };

    template <typename T>
    using EnableIfNumeric = std::enable_if<std::is_arithmetic<T>::value>;

    template <typename T>
    using DisableIfNumeric = std::enable_if<!std::is_arithmetic<T>::value>;

    // Argument definition information, created by an ArgumentBuilder and an UntypedArgumentBuilder.
    template <typename TArg>
    struct CmdlineParserArgumentInfo {
      // This version will only be used if TArg is arithmetic and thus has the <= operators.
      template <typename T = TArg>  // Necessary to get SFINAE to kick in.
      bool CheckRange(const TArg& value, typename EnableIfNumeric<T>::type* = 0) {
        if (has_range_) {
          return min_ <= value && value <= max_;
        }
        return true;
      }

      // This version will be used at other times when TArg is not arithmetic.
      template <typename T = TArg>
      bool CheckRange(const TArg&, typename DisableIfNumeric<T>::type* = 0) {
        assert(!has_range_);
        return true;
      }

      // Do a quick match token-by-token, and see if they match.
      // Any tokens with a wildcard in them only match the prefix up until the wildcard.
      //
      // If this is true, then the wildcard matching later on can still fail, so this is not
      // a guarantee that the argument is correct, it's more of a strong hint that the
      // user-provided input *probably* was trying to match this argument.
      size_t MaybeMatches(const TokenRange& token_list) const {
        auto best_match = FindClosestMatch(token_list);

        return best_match.second;
      }

      // Attempt to find the closest match (see MaybeMatches).
      //
      // Returns the token range that was the closest match and the # of tokens that
      // this range was matched up until.
      std::pair<const TokenRange*, size_t> FindClosestMatch(const TokenRange& token_list) const {
        const TokenRange* best_match_ptr = nullptr;

        size_t best_match = 0;
        for (auto&& token_range : tokenized_names_) {
          size_t this_match = token_range.MaybeMatches(token_list, std::string("_"));

          if (this_match > best_match) {
            best_match_ptr = &token_range;
            best_match = this_match;
          }
        }

        return std::make_pair(best_match_ptr, best_match);
      }

      // Mark the argument definition as completed, do not mutate the object anymore after this
      // call is done.
      //
      // Performs several sanity checks and token calculations.
      void CompleteArgument() {
        assert(names_.size() >= 1);
        assert(!is_completed_);

        is_completed_ = true;

        size_t blank_count = 0;
        size_t token_count = 0;

        size_t global_blank_count = 0;
        size_t global_token_count = 0;
        for (auto&& name : names_) {
          std::string s(name);

          size_t local_blank_count = std::count(s.begin(), s.end(), '_');
          size_t local_token_count = std::count(s.begin(), s.end(), ' ');

          if (global_blank_count != 0) {
            assert(local_blank_count == global_blank_count
                   && "Every argument descriptor string must have same amount of blanks (_)");
          }

          if (local_blank_count != 0) {
            global_blank_count = local_blank_count;
            blank_count++;

            assert(local_blank_count == 1 && "More than one blank is not supported");
            assert(s.back() == '_' && "The blank character must only be at the end of the string");
          }

          if (global_token_count != 0) {
            assert(local_token_count == global_token_count
                   && "Every argument descriptor string must have same amount of tokens (spaces)");
          }

          if (local_token_count != 0) {
            global_token_count = local_token_count;
            token_count++;
          }

          // Tokenize every name, turning it from a string to a token list.
          tokenized_names_.clear();
          for (auto&& name1 : names_) {
            // Split along ' ' only, removing any duplicated spaces.
            tokenized_names_.push_back(
                TokenRange::Split(name1, {' '}).RemoveToken(" "));
          }

          // remove the _ character from each of the token ranges
          // we will often end up with an empty token (i.e. ["-XX", "_"] -> ["-XX", ""]
          // and this is OK because we still need an empty token to simplify
          // range comparisons
          simple_names_.clear();

          for (auto&& tokenized_name : tokenized_names_) {
            simple_names_.push_back(tokenized_name.RemoveCharacter('_'));
          }
        }

        if (token_count != 0) {
          assert(("Every argument descriptor string must have equal amount of tokens (spaces)" &&
              token_count == names_.size()));
        }

        if (blank_count != 0) {
          assert(("Every argument descriptor string must have an equal amount of blanks (_)" &&
              blank_count == names_.size()));
        }

        using_blanks_ = blank_count > 0;
        {
          size_t smallest_name_token_range_size =
              std::accumulate(tokenized_names_.begin(), tokenized_names_.end(), ~(0u),
                              [](size_t min, const TokenRange& cur) {
                                return std::min(min, cur.Size());
                              });
          size_t largest_name_token_range_size =
              std::accumulate(tokenized_names_.begin(), tokenized_names_.end(), 0u,
                              [](size_t max, const TokenRange& cur) {
                                return std::max(max, cur.Size());
                              });

          token_range_size_ = std::make_pair(smallest_name_token_range_size,
                                             largest_name_token_range_size);
        }

        if (has_value_list_) {
          assert(names_.size() == value_list_.size()
                 && "Number of arg descriptors must match number of values");
          assert(!has_value_map_);
        }
        if (has_value_map_) {
          if (!using_blanks_) {
            assert(names_.size() == value_map_.size() &&
                   "Since no blanks were specified, each arg is mapped directly into a mapped "
                   "value without parsing; sizes must match");
          }

          assert(!has_value_list_);
        }

        if (!using_blanks_ && !CmdlineType<TArg>::kCanParseBlankless) {
          assert((has_value_map_ || has_value_list_) &&
                 "Arguments without a blank (_) must provide either a value map or a value list");
        }

        TypedCheck();
      }

      // List of aliases for a single argument definition, e.g. {"-Xdex2oat", "-Xnodex2oat"}.
      std::vector<const char*> names_;
      // Is there at least 1 wildcard '_' in the argument definition?
      bool using_blanks_ = false;
      // [min, max] token counts in each arg def
      std::pair<size_t, size_t> token_range_size_;

      // contains all the names in a tokenized form, i.e. as a space-delimited list
      std::vector<TokenRange> tokenized_names_;

      // contains the tokenized names, but with the _ character stripped
      std::vector<TokenRange> simple_names_;

      // For argument definitions created with '.AppendValues()'
      // Meaning that parsing should mutate the existing value in-place if possible.
      bool appending_values_ = false;

      // For argument definitions created with '.WithRange(min, max)'
      bool has_range_ = false;
      TArg min_;
      TArg max_;

      // For argument definitions created with '.WithValueMap'
      bool has_value_map_ = false;
      std::vector<std::pair<const char*, TArg>> value_map_;

      // For argument definitions created with '.WithValues'
      bool has_value_list_ = false;
      std::vector<TArg> value_list_;

      // Make sure there's a default constructor.
      CmdlineParserArgumentInfo() = default;

      // Ensure there's a default move constructor.
      CmdlineParserArgumentInfo(CmdlineParserArgumentInfo&&) = default;

     private:
      // Perform type-specific checks at runtime.
      template <typename T = TArg>
      void TypedCheck(typename std::enable_if<std::is_same<Unit, T>::value>::type* = 0) {
        assert(!using_blanks_ &&
               "Blanks are not supported in Unit arguments; since a Unit has no parse-able value");
      }

      void TypedCheck() {}

      bool is_completed_ = false;
    };

    // A virtual-implementation of the necessary argument information in order to
    // be able to parse arguments.
    template <typename TArg>
    struct CmdlineParseArgument : CmdlineParseArgumentAny {
      CmdlineParseArgument(CmdlineParserArgumentInfo<TArg>&& argument_info,
                           std::function<void(TArg&)>&& save_argument,
                           std::function<TArg&(void)>&& load_argument)
          : argument_info_(std::forward<decltype(argument_info)>(argument_info)),
            save_argument_(std::forward<decltype(save_argument)>(save_argument)),
            load_argument_(std::forward<decltype(load_argument)>(load_argument)) {
      }

      using UserTypeInfo = CmdlineType<TArg>;

      virtual CmdlineResult ParseArgument(const TokenRange& arguments, size_t* consumed_tokens) {
        assert(arguments.Size() > 0);
        assert(consumed_tokens != nullptr);

        auto closest_match_res = argument_info_.FindClosestMatch(arguments);
        size_t best_match_size = closest_match_res.second;
        const TokenRange* best_match_arg_def = closest_match_res.first;

        if (best_match_size > arguments.Size()) {
          // The best match has more tokens than were provided.
          // Shouldn't happen in practice since the outer parser does this check.
          return CmdlineResult(CmdlineResult::kUnknown, "Size mismatch");
        }

        assert(best_match_arg_def != nullptr);
        *consumed_tokens = best_match_arg_def->Size();

        if (!argument_info_.using_blanks_) {
          return ParseArgumentSingle(arguments.Join(' '));
        }

        // Extract out the blank value from arguments
        // e.g. for a def of "foo:_" and input "foo:bar", blank_value == "bar"
        std::string blank_value = "";
        size_t idx = 0;
        for (auto&& def_token : *best_match_arg_def) {
          auto&& arg_token = arguments[idx];

          // Does this definition-token have a wildcard in it?
          if (def_token.find('_') == std::string::npos) {
            // No, regular token. Match 1:1 against the argument token.
            bool token_match = def_token == arg_token;

            if (!token_match) {
              return CmdlineResult(CmdlineResult::kFailure,
                                   std::string("Failed to parse ") + best_match_arg_def->GetToken(0)
                                   + " at token " + std::to_string(idx));
            }
          } else {
            // This is a wild-carded token.
            TokenRange def_split_wildcards = TokenRange::Split(def_token, {'_'});

            // Extract the wildcard contents out of the user-provided arg_token.
            std::unique_ptr<TokenRange> arg_matches =
                def_split_wildcards.MatchSubstrings(arg_token, "_");
            if (arg_matches == nullptr) {
              return CmdlineResult(CmdlineResult::kFailure,
                                   std::string("Failed to parse ") + best_match_arg_def->GetToken(0)
                                   + ", with a wildcard pattern " + def_token
                                   + " at token " + std::to_string(idx));
            }

            // Get the corresponding wildcard tokens from arg_matches,
            // and concatenate it to blank_value.
            for (size_t sub_idx = 0;
                sub_idx < def_split_wildcards.Size() && sub_idx < arg_matches->Size(); ++sub_idx) {
              if (def_split_wildcards[sub_idx] == "_") {
                blank_value += arg_matches->GetToken(sub_idx);
              }
            }
          }

          ++idx;
        }

        return ParseArgumentSingle(blank_value);
      }

     private:
      virtual CmdlineResult ParseArgumentSingle(const std::string& argument) {
        // TODO: refactor to use LookupValue for the value lists/maps

        // Handle the 'WithValueMap(...)' argument definition
        if (argument_info_.has_value_map_) {
          for (auto&& value_pair : argument_info_.value_map_) {
            const char* name = value_pair.first;

            if (argument == name) {
              return SaveArgument(value_pair.second);
            }
          }

          // Error case: Fail, telling the user what the allowed values were.
          std::vector<std::string> allowed_values;
          for (auto&& value_pair : argument_info_.value_map_) {
            const char* name = value_pair.first;
            allowed_values.push_back(name);
          }

          std::string allowed_values_flat = android::base::Join(allowed_values, ',');
          return CmdlineResult(CmdlineResult::kFailure,
                               "Argument value '" + argument + "' does not match any of known valid"
                                "values: {" + allowed_values_flat + "}");
        }

        // Handle the 'WithValues(...)' argument definition
        if (argument_info_.has_value_list_) {
          size_t arg_def_idx = 0;
          for (auto&& value : argument_info_.value_list_) {
            auto&& arg_def_token = argument_info_.names_[arg_def_idx];

            if (arg_def_token == argument) {
              return SaveArgument(value);
            }
            ++arg_def_idx;
          }

          assert(arg_def_idx + 1 == argument_info_.value_list_.size() &&
                 "Number of named argument definitions must match number of values defined");

          // Error case: Fail, telling the user what the allowed values were.
          std::vector<std::string> allowed_values;
          for (auto&& arg_name : argument_info_.names_) {
            allowed_values.push_back(arg_name);
          }

          std::string allowed_values_flat = android::base::Join(allowed_values, ',');
          return CmdlineResult(CmdlineResult::kFailure,
                               "Argument value '" + argument + "' does not match any of known valid"
                                "values: {" + allowed_values_flat + "}");
        }

        // Handle the regular case where we parsed an unknown value from a blank.
        UserTypeInfo type_parser;

        if (argument_info_.appending_values_) {
          TArg& existing = load_argument_();
          CmdlineParseResult<TArg> result = type_parser.ParseAndAppend(argument, existing);

          assert(!argument_info_.has_range_);

          return result;
        }

        CmdlineParseResult<TArg> result = type_parser.Parse(argument);

        if (result.IsSuccess()) {
          TArg& value = result.GetValue();

          // Do a range check for 'WithRange(min,max)' argument definition.
          if (!argument_info_.CheckRange(value)) {
            return CmdlineParseResult<TArg>::OutOfRange(
                value, argument_info_.min_, argument_info_.max_);
          }

          return SaveArgument(value);
        }

        // Some kind of type-specific parse error. Pass the result as-is.
        CmdlineResult raw_result = std::move(result);
        return raw_result;
      }

     public:
      virtual const char* GetTypeName() const {
        // TODO: Obviate the need for each type specialization to hardcode the type name
        return UserTypeInfo::Name();
      }

      // How many tokens should be taken off argv for parsing this argument.
      // For example "--help" is just 1, "-compiler-option _" would be 2 (since there's a space).
      //
      // A [min,max] range is returned to represent argument definitions with multiple
      // value tokens. (e.g. {"-h", "-h " } would return [1,2]).
      virtual std::pair<size_t, size_t> GetNumTokens() const {
        return argument_info_.token_range_size_;
      }

      // See if this token range might begin the same as the argument definition.
      virtual size_t MaybeMatches(const TokenRange& tokens) {
        return argument_info_.MaybeMatches(tokens);
      }

     private:
      CmdlineResult SaveArgument(const TArg& value) {
        assert(!argument_info_.appending_values_
               && "If the values are being appended, then the updated parse value is "
                   "updated by-ref as a side effect and shouldn't be stored directly");
        TArg val = value;
        save_argument_(val);
        return CmdlineResult(CmdlineResult::kSuccess);
      }

      CmdlineParserArgumentInfo<TArg> argument_info_;
      std::function<void(TArg&)> save_argument_;
      std::function<TArg&(void)> load_argument_;
    };
  }  // namespace detail  // NOLINT [readability/namespace] [5]
}  // namespace art

#endif  // ART_CMDLINE_DETAIL_CMDLINE_PARSE_ARGUMENT_DETAIL_H_