/*
* Author: Jon Trulson <jtrulson@ics.com>
* Copyright (c) 2015 Intel Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#pragma once
#include <string>
#include <mraa/common.hpp>
#include <mraa/i2c.hpp>
#include <mraa/gpio.hpp>
#if defined(SWIGJAVA) || defined(JAVACALLBACK)
#include "../IsrCallback.h"
#endif
#define LSM9DS0_I2C_BUS 1
#define LSM9DS0_DEFAULT_XM_ADDR 0x1d
#define LSM9DS0_DEFAULT_GYRO_ADDR 0x6b
namespace upm {
/**
* @brief LSM9DS0 accelerometer library
* @defgroup lsm9ds0 libupm-lsm9ds0
* @ingroup i2c gpio accelerometer compass
*/
/**
* @library lsm9ds0
* @sensor lsm9ds0
* @comname LSM9DS0 3-axis Gyroscope, Accelerometer, and Magnetometer
* @type accelerometer compass
* @man sparkfun
* @con i2c gpio
* @web https://www.sparkfun.com/products/13033
*
* @brief API for the LSM9DS0 3-axis Gyroscope, Accelerometer,
* and Magnetometer
*
* The LSM9DS0 is a system-in-package featuring a 3D digital linear
* acceleration sensor, a 3D digital angular rate sensor, and a 3D
* digital magnetic sensor.
*
* The LSM9DS0 has a linear acceleration full scale of
* 2g/4g/6g/8g/16g, a magnetic field full scale of 2/4/8/12
* gauss and an angular rate of 245/500/2000 dps.
*
* While not all of the functionality of this device is supported
* initially, methods and register definitions are provided that
* should allow an end user to implement whatever features are
* required.
*
* This driver was developed on a Sparkfun 9DOF edison block.
*
* @snippet lsm9ds0.cxx Interesting
*/
class LSM9DS0 {
public:
// NOTE: reserved registers must not be written into or permanent
// damage to the device can result. Reserved bitfields must
// always be 0.
// There are two sub-devices within this device - the
// Accelerometer and Magnetometer (XM) and the Gyroscope (G), each
// with their own I2C address.
/**
* LSM9DS0 Gyroscope (G) registers
*/
typedef enum {
// 0x00-0x0e reserved
REG_WHO_AM_I_G = 0x0f, // should be 0xd4
// 0x10-0x1f reserved
REG_CTRL_REG1_G = 0x20,
REG_CTRL_REG2_G = 0x21,
REG_CTRL_REG3_G = 0x22,
REG_CTRL_REG4_G = 0x23,
REG_CTRL_REG5_G = 0x24,
REG_REFERENCE_G = 0x25,
// 0x26 reserved
REG_STATUS_REG_G = 0x27,
REG_OUT_X_L_G = 0x28, // gyro output, X axis, LSB
REG_OUT_X_H_G = 0x29, // gyro output, X axis, MSB
REG_OUT_Y_L_G = 0x2a,
REG_OUT_Y_H_G = 0x2b,
REG_OUT_Z_L_G = 0x2c,
REG_OUT_Z_H_G = 0x2d,
REG_FIFO_CTRL_REG_G = 0x2e,
REG_FIFO_SRC_REG_G = 0x2f,
REG_INT1_CFG_G = 0x30,
REG_INT1_SRC_G = 0x31,
REG_INT1_TSH_XH_G = 0x32, // interrupt threshold registers
REG_INT1_TSH_XL_G = 0x33,
REG_INT1_TSH_YH_G = 0x34,
REG_INT1_TSH_YL_G = 0x35,
REG_INT1_TSH_ZH_G = 0x36,
REG_INT1_TSH_ZL_G = 0x37,
// See fig 19 & 20 and preceeding description in the datasheet
// on how to use this register
REG_INT1_DURATION_G = 0x38
} REG_G_T;
/**
* Gyro CTRL_REG1_G bits
*/
typedef enum {
CTRL_REG1_G_YEN = 0x01, // Y enable, odd ordering...
CTRL_REG1_G_XEN = 0x02,
CTRL_REG1_G_ZEN = 0x04,
CTRL_REG1_G_PD = 0x08, // power down (0)
CTRL_REG1_G_BW0 = 0x10, // bandwidth
CTRL_REG1_G_BW1 = 0x20,
_CTRL_REG1_G_BW_MASK = 3,
_CTRL_REG1_G_BW_SHIFT = 4,
CTRL_REG1_G_DR0 = 0x40, // data rate
CTRL_REG1_G_DR1 = 0x80,
_CTRL_REG1_G_DR_MASK = 3,
_CTRL_REG1_G_DR_SHIFT = 6,
// The following are synthetic register and shift/mask
// definitions. Together both BW and DR setup the device for a
// specific output data rate (ODR) and cutoff frequency. These
// definitions allow us to use a more informative configuration
// for these 4 bits, rather than having the user go to the
// datasheet to figure out what to put for those values in order
// to get the desired ODR/cutoff. These are the values we will
// use in this driver.
CTRL_REG1_G_ODR0 = 0x10, // BW0
CTRL_REG1_G_ODR1 = 0x20, // BW1
CTRL_REG1_G_ODR2 = 0x40, // DR0
CTRL_REG1_G_ODR3 = 0x80, // DR1
_CTRL_REG1_G_ODR_MASK = 15,
_CTRL_REG1_G_ODR_SHIFT = 4
} CTRL_REG1_G_BITS_T;
/**
* CRTL_REG1_G_ODR values
*/
typedef enum {
G_ODR_95_12_5 = 0, // ODR = 95Hz, cutoff = 12.5
G_ODR_95_25 = 1, // ODR = 95Hz, cutoff = 25
// Other two (2 and 3) are the same (95_25)
G_ODR_190_12_5 = 4,
G_ODR_190_25 = 5,
G_ODR_190_50 = 6,
G_ODR_190_70 = 7,
G_ODR_380_20 = 8,
G_ODR_380_25 = 9,
G_ODR_380_50 = 10,
G_ODR_380_100 = 11,
G_ODR_760_30 = 12,
G_ODR_760_35 = 13,
G_ODR_760_50 = 14,
G_ODR_760_100 = 15
} G_ODR_T;
/**
* Gyro CTRL_REG2_G bits
*/
typedef enum {
CTRL_REG2_G_HPCF0 = 0x01, // high-pass cutoff freq
CTRL_REG2_G_HPCF1 = 0x02,
CTRL_REG2_G_HPCF2 = 0x04,
CTRL_REG2_G_HPCF3 = 0x08,
_CTRL_REG2_G_HPCF_MASK = 15,
_CTRL_REG2_G_HPCF_SHIFT = 0,
CTRL_REG2_G_HPM0 = 0x10, // high-pass filter mode
CTRL_REG2_G_HPM1 = 0x20,
_CTRL_REG2_G_HPM_MASK = 3,
_CTRL_REG2_G_HPM_SHIFT = 4,
// 0x40, 0x80 reserved
} CTRL_REG2_G_BITS_T;
/**
* CRTL_REG2_G_HPCF values
*
* See table 26 in the datasheet, as these depend on your data
* rate (ODR). We will label these according to the 95Hz column,
* but of course the actual cutoff frequency depends on ODR.
*/
typedef enum {
G_HPCF_7_2 = 0, // 7.2 Hz (if ODR is 95Hz)
G_HPCF_3_5 = 1,
G_HPCF_1_8 = 2,
G_HPCF_0_9 = 3, // 0.9Hz
G_HPCF_0_45 = 4,
G_HPCF_0_18 = 5,
G_HPCF_0_09 = 6,
G_HPCF_0_045 = 7,
G_HPCF_0_018 = 8,
G_HPCF_0_009 = 9
// 10-15 unused
} G_HPCF_T;
/**
* CRTL_REG2_G_HPM values
*
*/
typedef enum {
G_HPM_NORMAL_RESET_HPF = 0, // reset reading (HP_RESET_FILTER)
G_HPM_REFERENCE = 1, // REF signal for filtering
G_HPM_NORMAL = 2, // normal mode
G_HPM_AUTORESET_ON_INTR = 3 // autoreset in interrupt event
} G_HPM_T;
/**
* Gyro CTRL_REG3_G bits (interrupt G config)
*/
typedef enum {
CTRL_REG3_G_I2_EMPTY = 0x01, // FIFO empty on DRDY_G
CTRL_REG3_G_I2_ORUN = 0x02, // FIFO Overrun intr
CTRL_REG3_G_I2_WTM = 0x04, // FIFO watermark intr
CTRL_REG3_G_I2_DRDY = 0x08, // data ready on DRDY_G
CTRL_REG3_G_PP_OD = 0x10, // push-pull/open drain
CTRL_REG3_G_H_LACTIVE = 0x20,
CTRL_REG3_G_I1_BOOT = 0x40,
CTRL_REG3_G_I1_INT1 = 0x80, // intr enable on INT_G pin
} CTRL_REG3_G_BITS_T;
/**
* Gyro CTRL_REG4_G bits
*/
typedef enum {
CTRL_REG4_G_SIM = 0x01, // SPI mode selection
CTRL_REG4_G_ST0 = 0x02, // self test enables
CTRL_REG4_G_ST1 = 0x04,
_CTRL_REG4_G_ST_MASK = 3,
_CTRL_REG4_G_ST_SHIFT = 1,
// 0x08 reserved
CTRL_REG4_G_FS0 = 0x10, // full scale selection
CTRL_REG4_G_FS1 = 0x20,
_CTRL_REG4_G_FS_MASK = 3,
_CTRL_REG4_G_FS_SHIFT = 4,
CTRL_REG4_G_BLE = 0x40, // big/little endian data selection
CTRL_REG4_G_BDU = 0x80 // block data updates
} CTRL_REG4_G_BITS_T;
/**
* CRTL_REG4_G_ST values
*
*/
typedef enum {
G_ST_NORMAL = 0, // normal mode
G_ST_SELFTEST0 = 1, // x+, y-, z-
// 2, reserved
G_ST_SELFTEST1 = 3 // x-, y+, z+
} G_ST_T;
/**
* CRTL_REG4_G_FS values
*
*/
typedef enum {
G_FS_245 = 0, // 245 deg/sec
G_FS_500 = 1,
G_FS_2000 = 2
// 3 is also 2000
} G_FS_T;
/**
* Gyro CTRL_REG5_G bits
*/
typedef enum {
CTRL_REG5_G_OUTSEL0 = 0x01, // see fig. 18 in the datasheet
CTRL_REG5_G_OUTSEL1 = 0x02,
_CTRL_REG5_G_OUTSEL_MASK = 3,
_CTRL_REG5_G_OUTSEL_SHIFT = 0,
CTRL_REG5_G_INT1SEL0 = 0x04, // see fig. 18 in the datasheet
CTRL_REG5_G_INT1SEL1 = 0x08,
_CTRL_REG5_G_INT1SEL_MASK = 3,
_CTRL_REG5_G_INT1SEL_SHIFT = 2,
CTRL_REG5_G_HPEN = 0x10, // HPF enable
// 0x20 reserved
CTRL_REG5_G_FIFO_EN = 0x40,
CTRL_REG5_G_BOOT = 0x80 // reboot memory content
} CTRL_REG5_G_BITS_T;
/**
* CRTL_REG5_G_OUTSEL and INT1SEL values. See Figure 18 in the
* datasheet.
*/
typedef enum {
G_INT1OUTSEL_0 = 0,
G_INT1OUTSEL_1 = 1,
G_INT1OUTSEL_2 = 2,
G_INT1OUTSEL_3 = 3
} G_INT1OUTSEL_T;
/**
* Gyro STATUS_REG_G bits
*/
typedef enum {
STATUS_REG_G_XDA = 0x01, // X axis data available
STATUS_REG_G_YDA = 0x02,
STATUS_REG_G_ZDA = 0x04,
STATUS_REG_G_ZYXDA = 0x08, // X, Y, and Z data available
STATUS_REG_G_XOR = 0x10, // X data overrun
STATUS_REG_G_YOR = 0x20,
STATUS_REG_G_ZOR = 0x40,
STATUS_REG_G_ZYXOR = 0x80
} STATUS_REG_G_BITS_T;
/**
* Gyro FIFO_CTRL_REG_G bits
*/
typedef enum {
FIFO_CTRL_REG_G_WTM0 = 0x01, // FIFO watermark
FIFO_CTRL_REG_G_WTM1 = 0x02,
FIFO_CTRL_REG_G_WTM2 = 0x04,
FIFO_CTRL_REG_G_WTM3 = 0x08,
FIFO_CTRL_REG_G_WTM4 = 0x10,
_FIFO_CTRL_REG_G_WTM_MASK = 31,
_FIFO_CTRL_REG_G_WTM_SHIFT = 0,
FIFO_CTRL_REG_G_FM0 = 0x20, // FIFO mode config
FIFO_CTRL_REG_G_FM1 = 0x40,
FIFO_CTRL_REG_G_FM2 = 0x80,
_FIFO_CTRL_REG_G_FM_MASK = 7,
_FIFO_CTRL_REG_G_FM_SHIFT = 5,
} FIFO_CTRL_REG_G_T;
// FIFO_CTRL_REG_G_WTM (FIFO watermark) is just a numeric value
// between 0-31, so we won't enumerate those values.
/**
* FIFO_CTRL_REG_G_FM values (FIFO Modes)
*
*/
typedef enum {
G_FM_BYPASS = 0,
G_FM_FIFO = 1,
G_FM_STREAM = 2,
G_FM_STREAM2FIFO = 3,
G_FM_BYPASS2STREAM = 4
// 5-7 unused
} G_FM_T;
/**
* FIFO_SRC_REG_G bits
*
*/
typedef enum {
FIFO_CTRL_REG_G_FSS0 = 0x01, // FIFO stored data level
FIFO_CTRL_REG_G_FSS1 = 0x02,
FIFO_CTRL_REG_G_FSS2 = 0x04,
FIFO_CTRL_REG_G_FSS3 = 0x08,
FIFO_CTRL_REG_G_FSS4 = 0x10,
_FIFO_CTRL_REG_G_FSS_MASK = 31,
_FIFO_CTRL_REG_G_FSS_SHIFT = 0,
FIFO_CTRL_REG_G_EMPTY = 0x20, // FIFO empty
FIFO_CTRL_REG_G_OVRN = 0x40, // FIFO overrun
FIFO_CTRL_REG_G_WTM = 0x80 // watermark status
} FIFO_SRC_REG_G_BITS_T;
/**
* INT1_CFG_G bits
*
*/
typedef enum {
INT1_CFG_G_XLIE = 0x01, // X Low event interrupt enable
INT1_CFG_G_XHIE = 0x02, // X High event interrupt enable
INT1_CFG_G_YLIE = 0x04,
INT1_CFG_G_YHIE = 0x08,
INT1_CFG_G_ZLIE = 0x10,
INT1_CFG_G_ZHIE = 0x20,
INT1_CFG_G_LIR = 0x40, // latch interrupt request
INT1_CFG_G_ANDOR = 0x80 // OR or AND interrupt events
} INT1_CFG_G_BITS_T;
/**
* INT1_SRC_G bits
*
*/
typedef enum {
INT1_SRC_G_XL = 0x01, // X low interrupt
INT1_SRC_G_XH = 0x02, // X high interrupt
INT1_SRC_G_YL = 0x04,
INT1_SRC_G_YH = 0x08,
INT1_SRC_G_ZL = 0x10,
INT1_SRC_G_ZH = 0x20,
INT1_SRC_G_IA = 0x40 // interrupt active
// 0x80 reserved
} INT1_SRC_G_BITS_T;
// The following registers are for the Accelerometer (A/X),
// Magnetometer (M), and Temperature device.
/**
* LSM9DS0 Accelerometer (X) and Magnetometer (M) registers
*/
typedef enum {
// 0x00-0x04 reserved
REG_OUT_TEMP_L_XM = 0x05, // temperature
REG_OUT_TEMP_H_XM = 0x06,
REG_STATUS_REG_M = 0x07,
REG_OUT_X_L_M = 0x08, // magnetometer outputs
REG_OUT_X_H_M = 0x09,
REG_OUT_Y_L_M = 0x0a,
REG_OUT_Y_H_M = 0x0b,
REG_OUT_Z_L_M = 0x0c,
REG_OUT_Z_H_M = 0x0d,
// 0x0e reserved
REG_WHO_AM_I_XM = 0x0f,
// 0x10, 0x11 reserved
REG_INT_CTRL_REG_M = 0x12,
REG_INT_SRC_REG_M = 0x13,
REG_INT_THS_L_M = 0x14, // magnetometer threshold
REG_INT_THS_H_M = 0x15,
REG_OFFSET_X_L_M = 0x16,
REG_OFFSET_X_H_M = 0x17,
REG_OFFSET_Y_L_M = 0x18,
REG_OFFSET_Y_H_M = 0x19,
REG_OFFSET_Z_L_M = 0x1a,
REG_OFFSET_Z_H_M = 0x1b,
REG_REFERENCE_X = 0x1c,
REG_REFERENCE_Y = 0x1d,
REG_REFERENCE_Z = 0x1e,
REG_CTRL_REG0_XM = 0x1f,
REG_CTRL_REG1_XM = 0x20,
REG_CTRL_REG2_XM = 0x21,
REG_CTRL_REG3_XM = 0x22,
REG_CTRL_REG4_XM = 0x23,
REG_CTRL_REG5_XM = 0x24,
REG_CTRL_REG6_XM = 0x25,
REG_CTRL_REG7_XM = 0x26,
REG_STATUS_REG_A = 0x27,
REG_OUT_X_L_A = 0x28, // accelerometer outputs
REG_OUT_X_H_A = 0x29,
REG_OUT_Y_L_A = 0x2a,
REG_OUT_Y_H_A = 0x2b,
REG_OUT_Z_L_A = 0x2c,
REG_OUT_Z_H_A = 0x2d,
REG_FIFO_CTRL_REG = 0x2e,
REG_FIFO_SRC_REG = 0x2f,
REG_INT_GEN_1_REG = 0x30,
REG_INT_GEN_1_SRC = 0x31,
REG_INT_GEN_1_THS = 0x32,
REG_INT_GEN_1_DURATION = 0x33,
REG_INT_GEN_2_REG = 0x34,
REG_INT_GEN_2_SRC = 0x35,
REG_INT_GEN_2_THS = 0x36,
REG_INT_GEN_2_DURATION = 0x37,
REG_CLICK_CFG = 0x38,
REG_CLICK_SRC = 0x39,
REG_CLICK_THS = 0x3a,
REG_TIME_LIMIT = 0x3b,
REG_TIME_LATENCY = 0x3c,
REG_TIME_WINDOW = 0x3d,
REG_ACT_THS = 0x3e,
REG_ACT_DUR = 0x3f
} REG_XM_T;
/**
* XM STATUS_REG_M bits
*/
typedef enum {
STATUS_REG_M_XMDA = 0x01, // X mag axis data available
STATUS_REG_M_YMDA = 0x02,
STATUS_REG_M_ZMDA = 0x04,
STATUS_REG_M_ZYXMDA = 0x08, // X, Y, and Z mag data available
STATUS_REG_M_XMOR = 0x10, // X mag data overrun
STATUS_REG_M_YMOR = 0x20,
STATUS_REG_M_ZMOR = 0x40,
STATUS_REG_M_ZYXMOR = 0x80
} STATUS_REG_M_BITS_T;
/**
* INT_CTRL_REG_M bits
*/
typedef enum {
INT_CTRL_REG_M_MIEN = 0x01, // mag interrupt enable
INT_CTRL_REG_M_4D = 0x02,
INT_CTRL_REG_M_IEL = 0x04, // latch intr request
INT_CTRL_REG_M_IEA = 0x08,
INT_CTRL_REG_M_PP_OD = 0x10, // push-pull/open drian
INT_CTRL_REG_M_ZMIEN = 0x20, // Z mag axis interrupt recognition
INT_CTRL_REG_M_YMIEN = 0x40,
INT_CTRL_REG_M_XMIEN = 0x80
} INT_CTRL_REG_M_BITS_T;
/**
* INT_SRC_REG_M bits
*/
typedef enum {
INT_SRC_REG_M_MINT = 0x01,
INT_SRC_REG_M_MROI = 0x02,
INT_SRC_REG_M_NTH_Z = 0x04,
INT_SRC_REG_M_NTH_Y = 0x08,
INT_SRC_REG_M_NTH_X = 0x10,
INT_SRC_REG_M_PTH_Z = 0x20,
INT_SRC_REG_M_PTH_Y = 0x40,
INT_SRC_REG_M_PTH_X = 0x80
} INT_SRC_REG_M_BITS_T;
/**
* CTRL_REG0_XM bits
*/
typedef enum {
CTRL_REG0_XM_HPIS2 = 0x01, // HPF enable for int generator 2
CTRL_REG0_XM_HPIS1 = 0x02,
CTRL_REG0_XM_HP_CLICK = 0x04, // HPF enable for click
// 0x08,0x10 reserved
CTRL_REG0_XM_WTM_LEN = 0x20, // watermark enable
CTRL_REG0_XM_FIFO_EN = 0x40, // FIFO enable
CTRL_REG0_XM_BOOT = 0x80 // reboot memory content
} CTRL_REG0_XM_BITS_T;
/**
* CTRL_REG1_XM bits
*/
typedef enum {
CTRL_REG1_XM_AXEN = 0x01, // accelerometer x axis enable
CTRL_REG1_XM_AYEN = 0x02,
CTRL_REG1_XM_AZEN = 0x03,
CTRL_REG1_XM_BDU = 0x04, // block data update
CTRL_REG1_XM_AODR0 = 0x10, // accelerometer output data rate
CTRL_REG1_XM_AODR1 = 0x20,
CTRL_REG1_XM_AODR2 = 0x40,
CTRL_REG1_XM_AODR3 = 0x80,
_CTRL_REG1_XM_AODR_MASK = 15,
_CTRL_REG1_XM_AODR_SHIFT = 4
} CTRL_REG1_XM_BITS_T;
/**
* CTRL_REG1_XM_AODR values
*/
typedef enum {
XM_AODR_PWRDWN = 0, // power down mode
XM_AODR_3_125 = 1, // 3.125 Hz
XM_AODR_6_25 = 2,
XM_AODR_12_5 = 3,
XM_AODR_25 = 4, // 25Hz
XM_AODR_50 = 5,
XM_AODR_100 = 6,
XM_AODR_200 = 7,
XM_AODR_400 = 8,
XM_AODR_800 = 9,
XM_AODR_1000 = 10
// 11-15 unused
} XM_AODR_T;
/**
* CTRL_REG2_XM bits
*/
typedef enum {
CTRL_REG2_XM_SIM = 0x01,
CTRL_REG2_XM_AST0 = 0x02, // accel self-test enable
CTRL_REG2_XM_AST1 = 0x04,
_CTRL_REG2_XM_AST_MASK = 3,
_CTRL_REG2_XM_AST_SHIFT = 1,
CTRL_REG2_XM_AFS0 = 0x08, // accel full scale
CTRL_REG2_XM_AFS1 = 0x10,
CTRL_REG2_XM_AFS2 = 0x20,
_CTRL_REG2_XM_AFS_MASK = 7,
_CTRL_REG2_XM_AFS_SHIFT = 3,
CTRL_REG2_XM_ABW0 = 0x40, // accel anti-alias filter bandwidth
CTRL_REG2_XM_ABW1 = 0x80,
_CTRL_REG2_XM_ABW_MASK = 3,
_CTRL_REG2_XM_ABW_SHIFT = 6
} CTRL_REG2_XM_BITS_T;
/**
* CTRL_REG2_XM_AST values
*/
typedef enum {
XM_AST_NORMAL = 0,
XM_AST_POS_SIGN = 1,
XM_AST_NEG_SIGN = 2
// 3 not allowed
} XM_AST_T;
/**
* CTRL_REG2_XM_AFS (accel full scale) values
*/
typedef enum {
XM_AFS_2 = 0, // 2g
XM_AFS_4 = 1,
XM_AFS_6 = 2,
XM_AFS_8 = 3,
XM_AFS_16 = 4
// 5-7 not used
} XM_AFS_T;
/**
* CTRL_REG2_XM_ABW (accel anti-alias filter bandwidth) values
*/
typedef enum {
XM_ABW_773 = 0, // 773Hz
XM_ABW_194 = 1, // these two might be inverted (typo in ds)
XM_ABW_362 = 2,
XM_ABW_50 = 3
} XM_ABW_T;
/**
* CTRL_REG3_XM bits
*/
typedef enum {
CTRL_REG3_XM_P1_EMPTY = 0x01, // INT1_XM pin enables
CTRL_REG3_XM_P1_DRDYM = 0x02,
CTRL_REG3_XM_P1_DRDYA = 0x04,
CTRL_REG3_XM_P1_INTM = 0x08,
CTRL_REG3_XM_P1_INT2 = 0x10,
CTRL_REG3_XM_P1_INT1 = 0x20,
CTRL_REG3_XM_P1_TAP = 0x40,
CTRL_REG3_XM_P1_BOOT = 0x80
} CTRL_REG3_XM_BITS_T;
/**
* CTRL_REG4_XM bits
*/
typedef enum {
CTRL_REG4_XM_P2_WTM = 0x01, // INT2_XM pin enables
CTRL_REG4_XM_P2_OVERRUN = 0x02,
CTRL_REG4_XM_P2_DRDYM = 0x04,
CTRL_REG4_XM_P2_DRDYA = 0x08,
CTRL_REG4_XM_P2_INTM = 0x10,
CTRL_REG4_XM_P2_INT2 = 0x20,
CTRL_REG4_XM_P2_INT1 = 0x40,
CTRL_REG4_XM_P2_TAP = 0x80
} CTRL_REG4_XM_BITS_T;
/**
* CTRL_REG5_XM bits
*/
typedef enum {
CTRL_REG5_XM_LIR1 = 0x01, // latch intr 1
CTRL_REG5_XM_LIR2 = 0x02, // latch intr 2
CTRL_REG5_XM_ODR0 = 0x04, // mag output data rate
CTRL_REG5_XM_ODR1 = 0x08,
CTRL_REG5_XM_ODR2 = 0x10,
_CTRL_REG5_XM_ODR_MASK = 7,
_CTRL_REG5_XM_ODR_SHIFT = 2,
CTRL_REG5_XM_RES0 = 0x20, // mag resolution
CTRL_REG5_XM_RES1 = 0x40,
_CTRL_REG5_XM_RES_MASK = 3,
_CTRL_REG5_XM_RES_SHIFT = 5,
CTRL_REG5_XM_TEMP_EN = 0x80 // temp sensor enable
} CTRL_REG5_XM_BITS_T;
/**
* CTRL_REG5_XM_ODR (magnetometer output data rate) values
*/
typedef enum {
XM_ODR_3_125 = 0, // 3.125Hz
XM_ODR_6_25 = 1,
XM_ODR_12_5 = 2,
XM_ODR_25 = 3,
XM_ODR_50 = 4,
XM_ODR_100 = 5
// 6, 7 reserved
} XM_ODR_T;
/**
* CTRL_REG5_XM_RES (magnetometer resolution) values
*/
typedef enum {
XM_RES_LOW = 0, // low resolution
// 1, 2 reserved
XM_RES_HIGH = 3,
} XM_RES_T;
/**
* CTRL_REG6_XM bits
*/
typedef enum {
// 0x01-0x10 reserved
CTRL_REG6_XM_MFS0 = 0x20,
CTRL_REG6_XM_MFS1 = 0x40,
_CTRL_REG6_XM_MFS_MASK = 3,
_CTRL_REG6_XM_MFS_SHIFT = 5
// 0x80 reserved
} CTRL_REG6_XM_BITS_T;
/**
* CTRL_REG6_XM_MFS (magnetometer full scale) values
*/
typedef enum {
XM_MFS_2 = 0, // +/- 2 gauss
XM_MFS_4 = 1,
XM_MFS_8 = 2,
XM_MFS_12 = 3
} XM_MFS_T;
/**
* CTRL_REG7_XM bits
*/
typedef enum {
CTRL_REG7_XM_MD0 = 0x01, // mag sensor mode
CTRL_REG7_XM_MD1 = 0x02,
_CTRL_REG7_XM_MD_MASK = 3,
_CTRL_REG7_XM_MD_SHIFT = 0,
CTRL_REG7_XM_MLP = 0x04, // mag low power mode
// 0x08, 0x10 reserved
CTRL_REG7_XM_AFDS = 0x20, // filtered acceleration data
CTRL_REG7_XM_AHPM0 = 0x40, // accel HPF selection
CTRL_REG7_XM_AHPM1 = 0x80,
_CTRL_REG7_XM_AHPM_MASK = 3,
_CTRL_REG7_XM_AHPM_SHIFT = 6
} CTRL_REG7_XM_BITS_T;
/**
* CTRL_REG7_XM_MD (magnetometer sensor mode) values
*/
typedef enum {
XM_MD_CONTINUOUS = 0, // continuous conversion
XM_MD_SINGLE = 1, // single conversion
XM_MD_POWERDOWN = 2 // power down mode
// 3 is also power down mode, for some odd reason
} XM_MD_T;
/**
* CTRL_REG7_AHPM_MD (accel high-pass filter mode) values
*/
typedef enum {
// XM_AHPM_NORMAL_REF: Normal mode (resets x, y and z-axis
// reading REFERENCE_X (1Ch), REFERENCE_Y (1Dh) and REFERENCE_Y
// (1Dh) registers respectively)
XM_AHPM_NORMAL_REF = 0,
XM_AHPM_REFERENCE = 1,
XM_AHPM_NORMAL = 2,
XM_AHPM_AUTORESET = 3 // autoreset on interrupt
} XM_AHPM_T;
/**
* XM STATUS_REG_A bits
*/
typedef enum {
STATUS_REG_A_XADA = 0x01, // X accel axis data available
STATUS_REG_A_YADA = 0x02,
STATUS_REG_A_ZADA = 0x04,
STATUS_REG_A_ZYXADA = 0x08, // X, Y, and Z accel data available
STATUS_REG_A_XAOR = 0x10, // X accel data overrun
STATUS_REG_A_YAOR = 0x20,
STATUS_REG_A_ZAOR = 0x40,
STATUS_REG_A_ZYXAOR = 0x80
} STATUS_REG_A_BITS_T;
/**
* XM FIFO_CTRL_REG bits
*/
typedef enum {
FIFO_CTRL_REG_FTH0 = 0x01, // FIFO watermark/threshold
FIFO_CTRL_REG_FTH1 = 0x02,
FIFO_CTRL_REG_FTH2 = 0x04,
FIFO_CTRL_REG_FTH3 = 0x08,
FIFO_CTRL_REG_FTH4 = 0x10,
_FIFO_CTRL_REG_FTH_MASK = 31,
_FIFO_CTRL_REG_FTH_SHIFT = 0,
FIFO_CTRL_REG_FM0 = 0x20, // FIFO mode config
FIFO_CTRL_REG_FM1 = 0x40,
FIFO_CTRL_REG_FM2 = 0x80,
_FIFO_CTRL_REG_FM_MASK = 7,
_FIFO_CTRL_REG_FM_SHIFT = 5,
} FIFO_CTRL_REG_T;
// FIFO_CTRL_REG_FTH (FIFO watermark/threshold) is just a numeric
// value between 0-31, so we won't enumerate those values.
/**
* XM FIFO_CTRL_REG_FM values (FIFO Modes)
*
*/
typedef enum {
FM_BYPASS = 0,
FM_FIFO = 1,
FM_STREAM = 2,
FM_STREAM2FIFO = 3,
FM_BYPASS2STREAM = 4
// 5-7 unused
} FM_T;
/**
* FIFO_SRC_REG bits
*
*/
typedef enum {
FIFO_CTRL_REG_FSS0 = 0x01, // FIFO stored data level
FIFO_CTRL_REG_FSS1 = 0x02,
FIFO_CTRL_REG_FSS2 = 0x04,
FIFO_CTRL_REG_FSS3 = 0x08,
FIFO_CTRL_REG_FSS4 = 0x10,
_FIFO_CTRL_REG_FSS_MASK = 31,
_FIFO_CTRL_REG_FSS_SHIFT = 0,
FIFO_CTRL_REG_EMPTY = 0x20, // FIFO empty
FIFO_CTRL_REG_OVRN = 0x40, // FIFO overrun
FIFO_CTRL_REG_WTM = 0x80 // watermark status
} FIFO_SRC_REG_BITS_T;
/**
* INT_GEN_1_REG and INT_GEN_2_REG (GEN_X) bits
*
*/
typedef enum {
INT_GEN_X_REG_XLIE_XDOWNE = 0x01, // enable intr on X low or dir recog
INT_GEN_X_REG_XHIE_XUPE = 0x02,
INT_GEN_X_REG_YLIE_YDOWNE = 0x04,
INT_GEN_X_REG_YHIE_YUPE = 0x08,
INT_GEN_X_REG_ZLIE_ZDOWNE = 0x10,
INT_GEN_X_REG_ZHIE_ZUPE = 0x20,
INT_GEN_X_REG_6D = 0x40, // enable 6D direction function
INT_GEN_X_REG_AOI = 0x80 // AND/OR combination of intrs
} INT_GEN_X_REG_BITS_T;
/**
* INT_GEN_1_SRC and INT_GEN_2_SRC (GEN_X) bits
*
*/
typedef enum {
INT_GEN_X_SRC_XL = 0x01,
INT_GEN_X_SRC_XH = 0x02,
INT_GEN_X_SRC_YL = 0x04,
INT_GEN_X_SRC_YH = 0x08,
INT_GEN_X_SRC_ZL = 0x10,
INT_GEN_X_SRC_ZH = 0x20,
INT_GEN_X_SRC_IA = 0x40
// 0x80 reserved
} INT_GEN_X_SRC_BITS_T;
/**
* INT_GEN_1_THS and INT_GEN_2_THS (GEN_X) bits
*
*/
typedef enum {
INT_GEN_X_THS0 = 0x01, // interrupt threshold
INT_GEN_X_THS1 = 0x02,
INT_GEN_X_THS2 = 0x04,
INT_GEN_X_THS3 = 0x08,
INT_GEN_X_THS4 = 0x10,
INT_GEN_X_THS5 = 0x20,
INT_GEN_X_THS6 = 0x40,
_INT_GEN_X_THS_MASK = 127,
_INT_GEN_X_THS_SHIFT = 0
// 0x80 reserved
} INT_GEN_X_THS_BITS_T;
/**
* INT_GEN_1_DUR and INT_GEN_2_DUR (GEN_X) bits
*
*/
typedef enum {
INT_GEN_X_DUR0 = 0x01, // interrupt duration
INT_GEN_X_DUR1 = 0x02,
INT_GEN_X_DUR2 = 0x04,
INT_GEN_X_DUR3 = 0x08,
INT_GEN_X_DUR4 = 0x10,
INT_GEN_X_DUR5 = 0x20,
INT_GEN_X_DUR6 = 0x40,
_INT_GEN_X_DUR_MASK = 127,
_INT_GEN_X_DUR_SHIFT = 0
// 0x80 reserved
} INT_GEN_X_DUR_BITS_T;
/**
* CLICK_CONFIG bits
*
*/
typedef enum {
CLICK_CONFIG_XS = 0x01, // enable intr single click x
CLICK_CONFIG_XD = 0x02, // enable intr double click x
CLICK_CONFIG_YS = 0x04,
CLICK_CONFIG_YD = 0x08,
CLICK_CONFIG_ZS = 0x10,
CLICK_CONFIG_ZD = 0x20
// 0x40, 0x80 reserved
} CLICK_CONFIG_BITS_T;
/**
* CLICK_SRC bits
*
*/
typedef enum {
CLICK_SRC_X = 0x01,
CLICK_SRC_Y = 0x02,
CLICK_SRC_Z = 0x04,
CLICK_SRC_SIGN = 0x08,
CLICK_SRC_SCLICK = 0x10,
CLICK_SRC_DCLICK = 0x20,
CLICK_SRC_IA = 0x40
// 0x80 reserved
} CLICK_SRC_BITS_T;
/**
* CLICK_THS bits
*
*/
typedef enum {
CLICK_THS_THS0 = 0x01, // click threshold
CLICK_THS_THS1 = 0x02,
CLICK_THS_THS2 = 0x04,
CLICK_THS_THS3 = 0x08,
CLICK_THS_THS4 = 0x10,
CLICK_THS_THS5 = 0x20,
CLICK_THS_THS6 = 0x40,
_CLICK_THS_THS_MASK = 127,
_CLICK_THS_THS_SHIFT = 0
// 0x80 reserved
} CLICK_THS_BITS_T;
/**
* CLICK_TIME_LIMIT bits
*
*/
typedef enum {
CLICK_TIME_LIMIT_TLI0 = 0x01,
CLICK_TIME_LIMIT_TLI1 = 0x02,
CLICK_TIME_LIMIT_TLI2 = 0x04,
CLICK_TIME_LIMIT_TLI3 = 0x08,
CLICK_TIME_LIMIT_TLI4 = 0x10,
CLICK_TIME_LIMIT_TLI5 = 0x20,
CLICK_TIME_LIMIT_TLI6 = 0x40,
_CLICK_TIME_LIMIT_TLI_MASK = 127,
_CLICK_TIME_LIMIT_TLI_SHIFT = 0
// 0x80 reserved
} CLICK_TIME_LIMIT_BITS_T;
/**
* ACT_THS (sleep-to-wake/return-to-sleep activation threshold) bits
*
*/
typedef enum {
ACT_THS_ACTH0 = 0x01, // 1 LSb = 16mg (?)
ACT_THS_ACTH1 = 0x02,
ACT_THS_ACTH2 = 0x04,
ACT_THS_ACTH3 = 0x08,
ACT_THS_ACTH4 = 0x10,
ACT_THS_ACTH5 = 0x20,
ACT_THS_ACTH6 = 0x40,
_ACT_THS_ACTH_MASK = 127,
_ACT_THS_ACTH_SHIFT = 0
// 0x80 reserved
} ACT_THS_BITS_T;
// Driver specific enumerations
// device enums for read/write regs
typedef enum {
DEV_GYRO,
DEV_XM
} DEVICE_T;
// interrupt selection for installISR() and uninstallISR()
typedef enum {
INTERRUPT_G_INT, // gyroscope interrupt
INTERRUPT_G_DRDY, // gyroscope data ready interrupt
INTERRUPT_XM_GEN1, // XM interrupt generator 1
INTERRUPT_XM_GEN2 // XM interrupt generator 2
} INTERRUPT_PINS_T;
/**
* lsm9ds0 constructor
*
* @param bus i2c bus to use
* @param address the address for this device
*/
LSM9DS0(int bus=LSM9DS0_I2C_BUS,
uint8_t gAddress=LSM9DS0_DEFAULT_GYRO_ADDR,
uint8_t xmAddress=LSM9DS0_DEFAULT_XM_ADDR);
/**
* LSM9DS0 Destructor
*/
~LSM9DS0();
/**
* set up initial values and start operation
*
* @return true if successful
*/
bool init();
/**
* update the accelerometer, gyroscope, magnetometer and
* termperature values.
*/
void update();
/**
* update the gyroscope values only
*/
void updateGyroscope();
/**
* update the accelerometer values only
*/
void updateAccelerometer();
/**
* update the magnetometer values only
*/
void updateMagnetometer();
/**
* update the temperature value only
*/
void updateTemperature();
/**
* read a register
*
* @param dev the device to access (XM or G)
* @param reg the register to read
* @return the value of the register
*/
uint8_t readReg(DEVICE_T dev, uint8_t reg);
/**
* read contiguous register into a buffer
*
* @param dev the device to access (XM or G)
* @param reg the register to start reading at
* @param buf the buffer to store the results
* @param len the number of registers to read
* @return the value of the register
*/
void readRegs(DEVICE_T dev, uint8_t reg, uint8_t *buffer, int len);
/**
* write to a register
*
* @param dev the device to access (XM or G)
* @param reg the register to write to
* @param val the value to write
* @return true if successful, false otherwise
*/
bool writeReg(DEVICE_T dev, uint8_t reg, uint8_t val);
/**
* enable or disable the gyro power down mode
*
* @param enable true to put device to sleep, false to wake up
* @return true if successful, false otherwise
*/
bool setGyroscopePowerDown(bool enable);
/**
* enable or disable gyroscope axes. If all axis are disabled,
* and powerdown mode is not set, then the gyro goes into sleep
* mode.
*
* @param axes bit mask of valid axes, (CTRL_REG1_G_YEN, ...)
* @return true if successful, false otherwise
*/
bool setGyroscopeEnableAxes(uint8_t axes);
/**
* set the gyroscope Output Data Rate (ODR)
*
* @param odr one of the G_ODR_T values
* @return true if successful, false otherwise
*/
bool setGyroscopeODR(G_ODR_T odr);
/**
* set the scaling mode of the gyroscope
*
* @param scale one of the G_FS_T values
* @return true if successful, false otherwise
*/
bool setGyroscopeScale(G_FS_T scale);
/**
* enable or disable accelerometer axes.
*
* @param axes bit mask of valid axes, (CTRL_REG1_XM_AXEN, ...)
* @return true if successful, false otherwise
*/
bool setAccelerometerEnableAxes(uint8_t axes);
/**
* set the accelerometer Output Data Rate (ODR)
*
* @param odr one of the XM_AODR_T values
* @return true if successful, false otherwise
*/
bool setAccelerometerODR(XM_AODR_T odr);
/**
* set the scaling mode of the accelerometer
*
* @param scale one of the XM_AFS_T values
* @return true if successful, false otherwise
*/
bool setAccelerometerScale(XM_AFS_T scale);
/**
* set the magnetometer resolution
*
* @param res one of the XM_RES_T values
* @return true if successful, false otherwise
*/
bool setMagnetometerResolution(XM_RES_T res);
/**
* set the magnetometer Output Data Rate (ODR)
*
* @param odr one of the XM_ODR_T values
* @return true if successful, false otherwise
*/
bool setMagnetometerODR(XM_ODR_T odr);
/**
* set the magnetometer sensor mode
*
* @param mode one of the XM_MD_T values
* @return true if successful, false otherwise
*/
bool setMagnetometerMode(XM_MD_T mode);
/**
* enable or disable magnetometer low power mode (LPM). When in
* low power mode, the magnetometer updates at 3.125Hz, regardless
* of it's ODR setting.
*
* @param enable true to enable LPM, false otherwise
* @return true if successful, false otherwise
*/
bool setMagnetometerLPM(bool enable);
/**
* set the scaling mode of the magnetometer
*
* @param scale one of the XM_MFS_T values
* @return true if successful, false otherwise
*/
bool setMagnetometerScale(XM_MFS_T scale);
/**
* get the accelerometer values in gravities
*
* @param x the returned x value, if arg is non-NULL
* @param y the returned y value, if arg is non-NULL
* @param z the returned z value, if arg is non-NULL
* @return true if successful, false otherwise
*/
void getAccelerometer(float *x, float *y, float *z);
/**
* get the gyroscope values in degrees per second
*
* @param x the returned x value, if arg is non-NULL
* @param y the returned y value, if arg is non-NULL
* @param z the returned z value, if arg is non-NULL
* @return true if successful, false otherwise
*/
void getGyroscope(float *x, float *y, float *z);
/**
* get the magnetometer values in gauss
*
* @param x the returned x value, if arg is non-NULL
* @param y the returned y value, if arg is non-NULL
* @param z the returned z value, if arg is non-NULL
* @return true if successful, false otherwise
*/
void getMagnetometer(float *x, float *y, float *z);
#if defined(SWIGJAVA) || defined(JAVACALLBACK)
/**
* get the accelerometer values in gravities
*
* @return Array containing X, Y, Z acceleration values
*/
float *getAccelerometer();
/**
* get the gyroscope values in degrees per second
*
* @return Array containing X, Y, Z gyroscope values
*/
float *getGyroscope();
/**
* get the magnetometer values in gauss
*
* @return Array containing X, Y, Z magnetometer values
*/
float *getMagnetometer();
#endif
/**
* get the temperature value. Unfortunately the datasheet does
* not provide a mechanism to convert the temperature value into
* the correct value, so I made a 'guess'. If it's wrong, and you
* figure it out, send a patch!
*
* @return the temperature value in degrees Celcius
*/
float getTemperature();
/**
* enable onboard temperature measurement sensor
*
* @param enable true to enable temperature sensor, false to disable
* @return true if successful, false otherwise
*/
bool enableTemperatureSensor(bool enable);
/**
* return the gyroscope status register
*
* @return bitmask of STATUS_REG_G_BITS_T bits
*/
uint8_t getGyroscopeStatus();
/**
* return the magnetometer status register
*
* @return bitmask of STATUS_REG_M_BITS_T bits
*/
uint8_t getMagnetometerStatus();
/**
* return the accelerometer status register
*
* @return bitmask of STATUS_REG_A_BITS_T bits
*/
uint8_t getAccelerometerStatus();
/**
* return the gyroscope interrupt config register
*
* @return bitmask of INT1_CFG_G_BITS_T bits
*/
uint8_t getGyroscopeInterruptConfig();
/**
* set the gyroscope interrupt config register
*
* @param enables bitmask of INT1_CFG_G_BITS_T values
* @return true if successful
*/
bool setGyroscopeInterruptConfig(uint8_t enables);
/**
* return the gyroscope interrupt src register
*
* @return bitmask of INT1_SRC_G_BITS_T bits
*/
uint8_t getGyroscopeInterruptSrc();
/**
* return the magnetometer interrupt control register
*
* @return bitmask of INT_CTRL_REG_M_BITS_T bits
*/
uint8_t getMagnetometerInterruptControl();
/**
* set the magnetometer interrupt control register
*
* @param enables bitmask of INT_CTRL_REG_M_BITS_T values
* @return true if successful
*/
bool setMagnetometerInterruptControl(uint8_t enables);
/**
* return the magnetometer interrupt src register
*
* @return bitmask of INT_SRC_REG_M_BITS_T bits
*/
uint8_t getMagnetometerInterruptSrc();
/**
* return the inertial interrupt generator 1 register
*
* @return bitmask of INT_GEN_X_REG_BITS_T bits
*/
uint8_t getInterruptGen1();
/**
* set the inertial interrupt generator 1 register
*
* @param enables bitmask of INT_GEN_X_REG_BITS_T values
* @return true if successful
*/
bool setInterruptGen1(uint8_t enables);
/**
* return the inertial interrupt generator 1 src register
*
* @return bitmask of INT_GEN_X_SRC_BITS_T bits
*/
uint8_t getInterruptGen1Src();
/**
* return the inertial interrupt generator 2 register
*
* @return bitmask of INT_GEN_X_REG_BITS_T bits
*/
uint8_t getInterruptGen2();
/**
* set the inertial interrupt generator 2 register
*
* @param enables bitmask of INT_GEN_X_REG_BITS_T values
* @return true if successful
*/
bool setInterruptGen2(uint8_t enables);
/**
* return the inertial interrupt generator 2 src register
*
* @return bitmask of INT_GEN_X_SRC_BITS_T bits
*/
uint8_t getInterruptGen2Src();
#if defined(SWIGJAVA) || defined(JAVACALLBACK)
void installISR(INTERRUPT_PINS_T intr, int gpio, mraa::Edge level,
IsrCallback *cb);
#else
/**
* install an interrupt handler.
*
* @param intr one of the INTERRUPT_PINS_T values specifying which
* interrupt pin out of 4 you are installing
* @param gpio gpio pin to use as interrupt pin
* @param level the interrupt trigger level (one of mraa::Edge
* values). Make sure that you have configured the interrupt pin
* properly for whatever level you choose.
* @param isr the interrupt handler, accepting a void * argument
* @param arg the argument to pass the the interrupt handler
*/
void installISR(INTERRUPT_PINS_T intr, int gpio, mraa::Edge level,
void (*isr)(void *), void *arg);
#endif
/**
* uninstall a previously installed interrupt handler
*
* @param intr one of the INTERRUPT_PINS_T values specifying which
* interrupt pin out of 4 you are uninstalling
*/
void uninstallISR(INTERRUPT_PINS_T intr);
protected:
// uncompensated accelerometer and gyroscope values
float m_accelX;
float m_accelY;
float m_accelZ;
float m_gyroX;
float m_gyroY;
float m_gyroZ;
float m_magX;
float m_magY;
float m_magZ;
// uncompensated temperature value
float m_temp;
// accelerometer and gyro scaling factors, depending on their Full
// Scale settings.
float m_accelScale;
float m_gyroScale;
float m_magScale;
private:
// OR'd with a register, this enables register autoincrement mode,
// which we need.
#if defined(SWIGJAVA) || defined(JAVACALLBACK)
void installISR(INTERRUPT_PINS_T intr, int gpio, mraa::Edge level,
void (*isr)(void *), void *arg);
#endif
static const uint8_t m_autoIncrementMode = 0x80;
mraa::I2c m_i2cG;
mraa::I2c m_i2cXM;
uint8_t m_gAddr;
uint8_t m_xmAddr;
// return a reference to a gpio pin pointer depending on intr
mraa::Gpio*& getPin(INTERRUPT_PINS_T intr);
// possible interrupt pins
mraa::Gpio *m_gpioG_INT;
mraa::Gpio *m_gpioG_DRDY;
mraa::Gpio *m_gpioXM_GEN1;
mraa::Gpio *m_gpioXM_GEN2;
};
}