#include "rs_core.rsh"
#include "rs_structs.h"
// Opaque Allocation type operations
extern uint32_t __attribute__((overloadable))
rsAllocationGetDimX(rs_allocation a) {
Allocation_t *alloc = (Allocation_t *)a.p;
return alloc->mHal.drvState.lod[0].dimX;
}
extern uint32_t __attribute__((overloadable))
rsAllocationGetDimY(rs_allocation a) {
Allocation_t *alloc = (Allocation_t *)a.p;
return alloc->mHal.drvState.lod[0].dimY;
}
extern uint32_t __attribute__((overloadable))
rsAllocationGetDimZ(rs_allocation a) {
Allocation_t *alloc = (Allocation_t *)a.p;
return alloc->mHal.drvState.lod[0].dimZ;
}
extern uint32_t __attribute__((overloadable))
rsAllocationGetDimLOD(rs_allocation a) {
Allocation_t *alloc = (Allocation_t *)a.p;
return alloc->mHal.state.hasMipmaps;
}
extern uint32_t __attribute__((overloadable))
rsAllocationGetDimFaces(rs_allocation a) {
Allocation_t *alloc = (Allocation_t *)a.p;
return alloc->mHal.state.hasFaces;
}
extern rs_element __attribute__((overloadable))
rsAllocationGetElement(rs_allocation a) {
Allocation_t *alloc = (Allocation_t *)a.p;
if (alloc == NULL) {
rs_element nullElem = {0};
return nullElem;
}
Type_t *type = (Type_t *)alloc->mHal.state.type;
rs_element returnElem = {type->mHal.state.element};
rs_element rs_retval = {0};
rsSetObject(&rs_retval, returnElem);
return rs_retval;
}
// TODO: this needs to be optimized, obviously
static void local_memcpy(void* dst, const void* src, size_t size) {
char* dst_c = (char*) dst;
const char* src_c = (const char*) src;
for (; size > 0; size--) {
*dst_c++ = *src_c++;
}
}
#ifdef RS_DEBUG_RUNTIME
#define ELEMENT_AT(T) \
extern void __attribute__((overloadable)) \
rsSetElementAt_##T(rs_allocation a, const T *val, uint32_t x); \
extern void __attribute__((overloadable)) \
rsSetElementAt_##T(rs_allocation a, const T *val, uint32_t x, uint32_t y); \
extern void __attribute__((overloadable)) \
rsSetElementAt_##T(rs_allocation a, const T *val, uint32_t x, uint32_t y, uint32_t z); \
extern void __attribute__((overloadable)) \
rsGetElementAt_##T(rs_allocation a, T *val, uint32_t x); \
extern void __attribute__((overloadable)) \
rsGetElementAt_##T(rs_allocation a, T *val, uint32_t x, uint32_t y); \
extern void __attribute__((overloadable)) \
rsGetElementAt_##T(rs_allocation a, T *val, uint32_t x, uint32_t y, uint32_t z); \
\
extern void __attribute__((overloadable)) \
rsSetElementAt_##T(rs_allocation a, T val, uint32_t x) { \
rsSetElementAt_##T(a, &val, x); \
} \
extern void __attribute__((overloadable)) \
rsSetElementAt_##T(rs_allocation a, T val, uint32_t x, uint32_t y) { \
rsSetElementAt_##T(a, &val, x, y); \
} \
extern void __attribute__((overloadable)) \
rsSetElementAt_##T(rs_allocation a, T val, uint32_t x, uint32_t y, uint32_t z) { \
rsSetElementAt_##T(a, &val, x, y, z); \
} \
extern T __attribute__((overloadable)) \
rsGetElementAt_##T(rs_allocation a, uint32_t x) { \
T tmp; \
rsGetElementAt_##T(a, &tmp, x); \
return tmp; \
} \
extern T __attribute__((overloadable)) \
rsGetElementAt_##T(rs_allocation a, uint32_t x, uint32_t y) { \
T tmp; \
rsGetElementAt_##T(a, &tmp, x, y); \
return tmp; \
} \
extern T __attribute__((overloadable)) \
rsGetElementAt_##T(rs_allocation a, uint32_t x, uint32_t y, uint32_t z) { \
T tmp; \
rsGetElementAt_##T(a, &tmp, x, y, z); \
return tmp; \
}
#else
uint8_t*
rsOffset(rs_allocation a, uint32_t sizeOf, uint32_t x, uint32_t y,
uint32_t z) {
Allocation_t *alloc = (Allocation_t *)a.p;
//#ifdef __LP64__
// uint8_t *p = (uint8_t *)a.r;
//#else
uint8_t *p = (uint8_t *)alloc->mHal.drvState.lod[0].mallocPtr;
//#endif
const uint32_t stride = (uint32_t)alloc->mHal.drvState.lod[0].stride;
const uint32_t dimY = alloc->mHal.drvState.lod[0].dimY;
uint8_t *dp = &p[(sizeOf * x) + (y * stride) +
(z * stride * dimY)];
return dp;
}
uint8_t*
rsOffsetNs(rs_allocation a, uint32_t x, uint32_t y, uint32_t z) {
Allocation_t *alloc = (Allocation_t *)a.p;
//#ifdef __LP64__
// uint8_t *p = (uint8_t *)a.r;
//#else
uint8_t *p = (uint8_t *)alloc->mHal.drvState.lod[0].mallocPtr;
//#endif
const uint32_t stride = alloc->mHal.drvState.lod[0].stride;
const uint32_t dimY = alloc->mHal.drvState.lod[0].dimY;
const uint32_t sizeOf = alloc->mHal.state.elementSizeBytes;;
uint8_t *dp = &p[(sizeOf * x) + (y * stride) +
(z * stride * dimY)];
return dp;
}
// The functions rsSetElementAtImpl_T and rsGetElementAtImpl_T are implemented in bitcode
// in ll32/allocation.ll and ll64/allocation.ll. To be able to provide debug info for
// these functions define them here instead, if we are linking with the debug library.
#ifdef RS_G_RUNTIME
#define SET_ELEMENT_AT_IMPL_TYPE_SIZE(typename, size) \
void rsSetElementAtImpl_##typename \
(rs_allocation a, typename val, uint32_t x, uint32_t y, uint32_t z) { \
typename* val_ptr = (typename*)rsOffset(a, size, x, y, z); \
*val_ptr = val; \
}
#define GET_ELEMENT_AT_IMPL_TYPE_SIZE(typename, size) \
typename rsGetElementAtImpl_##typename \
(rs_allocation a, uint32_t x, uint32_t y, uint32_t z) { \
typename *val_ptr = (typename*)rsOffset(a, size, x, y, z); \
return *val_ptr; \
}
#define SET_ELEMENT_AT_IMPL_TYPE(typename) \
SET_ELEMENT_AT_IMPL_TYPE_SIZE(typename, sizeof(typename)) \
SET_ELEMENT_AT_IMPL_TYPE_SIZE(typename##2, sizeof(typename)*2) \
SET_ELEMENT_AT_IMPL_TYPE_SIZE(typename##3, sizeof(typename)*4) \
SET_ELEMENT_AT_IMPL_TYPE_SIZE(typename##4, sizeof(typename)*4)
#define GET_ELEMENT_AT_IMPL_TYPE(typename) \
GET_ELEMENT_AT_IMPL_TYPE_SIZE(typename, sizeof(typename)) \
GET_ELEMENT_AT_IMPL_TYPE_SIZE(typename##2, sizeof(typename)*2) \
GET_ELEMENT_AT_IMPL_TYPE_SIZE(typename##3, sizeof(typename)*4) \
GET_ELEMENT_AT_IMPL_TYPE_SIZE(typename##4, sizeof(typename)*4)
#define ELEMENT_AT_IMPL_TYPE(typename) \
SET_ELEMENT_AT_IMPL_TYPE(typename) \
GET_ELEMENT_AT_IMPL_TYPE(typename)
ELEMENT_AT_IMPL_TYPE(char)
ELEMENT_AT_IMPL_TYPE(uchar)
ELEMENT_AT_IMPL_TYPE(short)
ELEMENT_AT_IMPL_TYPE(ushort)
ELEMENT_AT_IMPL_TYPE(int)
ELEMENT_AT_IMPL_TYPE(uint)
ELEMENT_AT_IMPL_TYPE(long)
ELEMENT_AT_IMPL_TYPE(ulong)
ELEMENT_AT_IMPL_TYPE(half)
ELEMENT_AT_IMPL_TYPE(float)
ELEMENT_AT_IMPL_TYPE(double)
#undef ELEMENT_AT_IMPL_TYPE
#undef GET_ELEMENT_AT_IMPL_TYPE
#undef SET_ELEMENT_AT_IMPL_TYPE
#undef GET_ELEMENT_AT_IMPL_TYPE_SIZE
#undef SET_ELEMENT_AT_IMPL_TYPE_SIZE
#define SET_ELEMENT_AT_TYPE_IMPL(T, typename) /* nothing */
#define GET_ELEMENT_AT_TYPE_IMPL(T, typename) /* nothing */
#else
#define SET_ELEMENT_AT_TYPE_IMPL(T, typename) \
void \
rsSetElementAtImpl_##typename(rs_allocation a, typename val, uint32_t x, \
uint32_t y, uint32_t z);
#define GET_ELEMENT_AT_TYPE_IMPL(T, typename) \
typename \
rsGetElementAtImpl_##typename(rs_allocation a, uint32_t x, uint32_t y, \
uint32_t z);
#endif //RS_G_RUNTIME
#define SET_ELEMENT_AT_TYPE_DEF(T, typename) \
extern void __attribute__((overloadable)) \
rsSetElementAt_##typename(rs_allocation a, T val, uint32_t x) { \
rsSetElementAtImpl_##typename(a, (typename)val, x, 0, 0); \
} \
\
extern void __attribute__((overloadable)) \
rsSetElementAt_##typename(rs_allocation a, T val, uint32_t x, \
uint32_t y) { \
rsSetElementAtImpl_##typename(a, (typename)val, x, y, 0); \
} \
\
extern void __attribute__((overloadable)) \
rsSetElementAt_##typename(rs_allocation a, T val, uint32_t x, uint32_t y, \
uint32_t z) { \
rsSetElementAtImpl_##typename(a, (typename)val, x, y, z); \
}
#define GET_ELEMENT_AT_TYPE_DEF(T, typename) \
extern typename __attribute__((overloadable)) \
rsGetElementAt_##typename(rs_allocation a, uint32_t x) { \
return (typename)rsGetElementAtImpl_##typename(a, x, 0, 0); \
} \
\
extern typename __attribute__((overloadable)) \
rsGetElementAt_##typename(rs_allocation a, uint32_t x, uint32_t y) { \
return (typename)rsGetElementAtImpl_##typename(a, x, y, 0); \
} \
\
extern typename __attribute__((overloadable)) \
rsGetElementAt_##typename(rs_allocation a, uint32_t x, uint32_t y, \
uint32_t z) { \
return (typename)rsGetElementAtImpl_##typename(a, x, y, z); \
}
#define SET_ELEMENT_AT(T) SET_ELEMENT_AT_TYPE_IMPL(T, T) \
SET_ELEMENT_AT_TYPE_DEF(T, T)
#define GET_ELEMENT_AT(T) GET_ELEMENT_AT_TYPE_IMPL(T, T) \
GET_ELEMENT_AT_TYPE_DEF(T, T)
#define ELEMENT_AT(T) \
SET_ELEMENT_AT(T) \
GET_ELEMENT_AT(T)
extern const void * __attribute__((overloadable))
rsGetElementAt(rs_allocation a, uint32_t x) {
Allocation_t *alloc = (Allocation_t *)a.p;
const uint8_t *p = (const uint8_t *)alloc->mHal.drvState.lod[0].mallocPtr;
const uint32_t eSize = alloc->mHal.state.elementSizeBytes;
return &p[eSize * x];
}
extern const void * __attribute__((overloadable))
rsGetElementAt(rs_allocation a, uint32_t x, uint32_t y) {
Allocation_t *alloc = (Allocation_t *)a.p;
const uint8_t *p = (const uint8_t *)alloc->mHal.drvState.lod[0].mallocPtr;
const uint32_t eSize = alloc->mHal.state.elementSizeBytes;
const uint32_t stride = alloc->mHal.drvState.lod[0].stride;
return &p[(eSize * x) + (y * stride)];
}
extern const void * __attribute__((overloadable))
rsGetElementAt(rs_allocation a, uint32_t x, uint32_t y, uint32_t z) {
Allocation_t *alloc = (Allocation_t *)a.p;
const uint8_t *p = (const uint8_t *)alloc->mHal.drvState.lod[0].mallocPtr;
const uint32_t eSize = alloc->mHal.state.elementSizeBytes;
const uint32_t stride = alloc->mHal.drvState.lod[0].stride;
const uint32_t dimY = alloc->mHal.drvState.lod[0].dimY;
return &p[(eSize * x) + (y * stride) + (z * stride * dimY)];
}
extern void __attribute__((overloadable))
rsSetElementAt(rs_allocation a, void* ptr, uint32_t x) {
Allocation_t *alloc = (Allocation_t *)a.p;
const uint8_t *p = (const uint8_t *)alloc->mHal.drvState.lod[0].mallocPtr;
const uint32_t eSize = alloc->mHal.state.elementSizeBytes;
local_memcpy((void*)&p[eSize * x], ptr, eSize);
}
extern void __attribute__((overloadable))
rsSetElementAt(rs_allocation a, void* ptr, uint32_t x, uint32_t y) {
Allocation_t *alloc = (Allocation_t *)a.p;
const uint8_t *p = (const uint8_t *)alloc->mHal.drvState.lod[0].mallocPtr;
const uint32_t eSize = alloc->mHal.state.elementSizeBytes;
const uint32_t stride = alloc->mHal.drvState.lod[0].stride;
local_memcpy((void*)&p[(eSize * x) + (y * stride)], ptr, eSize);
}
extern void __attribute__((overloadable))
rsSetElementAt(rs_allocation a, void* ptr, uint32_t x, uint32_t y, uint32_t z) {
Allocation_t *alloc = (Allocation_t *)a.p;
const uint8_t *p = (const uint8_t *)alloc->mHal.drvState.lod[0].mallocPtr;
const uint32_t eSize = alloc->mHal.state.elementSizeBytes;
const uint32_t stride = alloc->mHal.drvState.lod[0].stride;
const uint32_t dimY = alloc->mHal.drvState.lod[0].dimY;
local_memcpy((void*)&p[(eSize * x) + (y * stride) + (z * stride * dimY)], ptr, eSize);
}
#endif // RS_DEBUG_RUNTIME
ELEMENT_AT(char)
ELEMENT_AT(char2)
ELEMENT_AT(char3)
ELEMENT_AT(char4)
ELEMENT_AT(uchar)
ELEMENT_AT(uchar2)
ELEMENT_AT(uchar3)
ELEMENT_AT(uchar4)
ELEMENT_AT(short)
ELEMENT_AT(short2)
ELEMENT_AT(short3)
ELEMENT_AT(short4)
ELEMENT_AT(ushort)
ELEMENT_AT(ushort2)
ELEMENT_AT(ushort3)
ELEMENT_AT(ushort4)
ELEMENT_AT(int)
ELEMENT_AT(int2)
ELEMENT_AT(int3)
ELEMENT_AT(int4)
ELEMENT_AT(uint)
ELEMENT_AT(uint2)
ELEMENT_AT(uint3)
ELEMENT_AT(uint4)
ELEMENT_AT(long)
ELEMENT_AT(long2)
ELEMENT_AT(long3)
ELEMENT_AT(long4)
ELEMENT_AT(ulong)
ELEMENT_AT(ulong2)
ELEMENT_AT(ulong3)
ELEMENT_AT(ulong4)
ELEMENT_AT(half)
ELEMENT_AT(half2)
ELEMENT_AT(half3)
ELEMENT_AT(half4)
ELEMENT_AT(float)
ELEMENT_AT(float2)
ELEMENT_AT(float3)
ELEMENT_AT(float4)
ELEMENT_AT(double)
ELEMENT_AT(double2)
ELEMENT_AT(double3)
ELEMENT_AT(double4)
typedef unsigned long long ull;
typedef unsigned long long ull2 __attribute__((ext_vector_type(2)));
typedef unsigned long long ull3 __attribute__((ext_vector_type(3)));
typedef unsigned long long ull4 __attribute__((ext_vector_type(4)));
#ifndef RS_DEBUG_RUNTIME
SET_ELEMENT_AT_TYPE_IMPL(ull, ulong)
SET_ELEMENT_AT_TYPE_IMPL(ull2, ulong2)
SET_ELEMENT_AT_TYPE_IMPL(ull3, ulong3)
SET_ELEMENT_AT_TYPE_IMPL(ull4, ulong4)
#undef SET_ELEMENT_AT_TYPE_DEF
#undef GET_ELEMENT_AT_TYPE_DEF
#undef SET_ELEMENT_AT_TYPE_IMPL
#undef GET_ELEMENT_AT_TYPE_IMPL
#undef ELEMENT_AT_TYPE
#endif
#undef ELEMENT_AT
extern uchar __attribute__((overloadable))
rsGetElementAtYuv_uchar_Y(rs_allocation a, uint32_t x, uint32_t y) {
return rsGetElementAt_uchar(a, x, y);
}
extern uchar __attribute__((overloadable))
rsGetElementAtYuv_uchar_U(rs_allocation a, uint32_t x, uint32_t y) {
Allocation_t *alloc = (Allocation_t *)a.p;
const size_t cstep = alloc->mHal.drvState.yuv.step;
const size_t shift = alloc->mHal.drvState.yuv.shift;
const size_t stride = alloc->mHal.drvState.lod[1].stride;
const uchar *pin = (const uchar *)alloc->mHal.drvState.lod[1].mallocPtr;
return pin[((x >> shift) * cstep) + ((y >> shift) * stride)];
}
extern uchar __attribute__((overloadable))
rsGetElementAtYuv_uchar_V(rs_allocation a, uint32_t x, uint32_t y) {
Allocation_t *alloc = (Allocation_t *)a.p;
const size_t cstep = alloc->mHal.drvState.yuv.step;
const size_t shift = alloc->mHal.drvState.yuv.shift;
const size_t stride = alloc->mHal.drvState.lod[2].stride;
const uchar *pin = (const uchar *)alloc->mHal.drvState.lod[2].mallocPtr;
return pin[((x >> shift) * cstep) + ((y >> shift) * stride)];
}
// The functions rsAllocationVLoadXImpl_T and rsAllocationVStoreXImpl_T are implemented in
// bitcode in ll32/allocation.ll and ll64/allocation.ll. To be able to provide debug info
// for these functions define them here instead, if we are linking with the debug library.
#ifdef RS_G_RUNTIME
#define VOP_IMPL(T) \
void __rsAllocationVStoreXImpl_##T \
(rs_allocation a, const T val, uint32_t x, uint32_t y, uint32_t z) {\
T *val_ptr = (T*)rsOffsetNs(a, x, y, z); \
local_memcpy(val_ptr, &val, sizeof(T)); \
} \
T __rsAllocationVLoadXImpl_##T \
(rs_allocation a, uint32_t x, uint32_t y, uint32_t z) { \
T result = {}; \
T* val_ptr = (T*)rsOffsetNs(a, x, y, z); \
local_memcpy(&result, val_ptr, sizeof(T)); \
return result; \
}
#else
#define VOP_IMPL(T) \
extern void __rsAllocationVStoreXImpl_##T(rs_allocation a, const T val, uint32_t x, uint32_t y, uint32_t z); \
extern T __rsAllocationVLoadXImpl_##T(rs_allocation a, uint32_t x, uint32_t y, uint32_t z);
#endif // RS_G_RUNTIME
#define VOP_DEF(T) \
extern void __attribute__((overloadable)) \
rsAllocationVStoreX_##T(rs_allocation a, T val, uint32_t x) { \
__rsAllocationVStoreXImpl_##T(a, val, x, 0, 0); \
} \
extern void __attribute__((overloadable)) \
rsAllocationVStoreX_##T(rs_allocation a, T val, uint32_t x, uint32_t y) { \
__rsAllocationVStoreXImpl_##T(a, val, x, y, 0); \
} \
extern void __attribute__((overloadable)) \
rsAllocationVStoreX_##T(rs_allocation a, T val, uint32_t x, uint32_t y, uint32_t z) { \
__rsAllocationVStoreXImpl_##T(a, val, x, y, z); \
} \
extern T __attribute__((overloadable)) \
rsAllocationVLoadX_##T(rs_allocation a, uint32_t x) { \
return __rsAllocationVLoadXImpl_##T(a, x, 0, 0); \
} \
extern T __attribute__((overloadable)) \
rsAllocationVLoadX_##T(rs_allocation a, uint32_t x, uint32_t y) { \
return __rsAllocationVLoadXImpl_##T(a, x, y, 0); \
} \
extern T __attribute__((overloadable)) \
rsAllocationVLoadX_##T(rs_allocation a, uint32_t x, uint32_t y, uint32_t z) { \
return __rsAllocationVLoadXImpl_##T(a, x, y, z); \
}
#define VOP(T) VOP_IMPL(T) \
VOP_DEF(T)
VOP(char2)
VOP(char3)
VOP(char4)
VOP(uchar2)
VOP(uchar3)
VOP(uchar4)
VOP(short2)
VOP(short3)
VOP(short4)
VOP(ushort2)
VOP(ushort3)
VOP(ushort4)
VOP(int2)
VOP(int3)
VOP(int4)
VOP(uint2)
VOP(uint3)
VOP(uint4)
VOP(long2)
VOP(long3)
VOP(long4)
VOP(ulong2)
VOP(ulong3)
VOP(ulong4)
VOP(float2)
VOP(float3)
VOP(float4)
VOP(double2)
VOP(double3)
VOP(double4)
#undef VOP_IMPL
#undef VOP_DEF
#undef VOP
static const rs_element kInvalidElement = {0};
extern rs_element __attribute__((overloadable)) rsCreateElement(
int32_t dt, int32_t dk, bool isNormalized, uint32_t vecSize);
extern rs_type __attribute__((overloadable)) rsCreateType(
rs_element element, uint32_t dimX, uint32_t dimY, uint32_t dimZ,
bool mipmaps, bool faces, rs_yuv_format yuv_format);
extern rs_allocation __attribute__((overloadable)) rsCreateAllocation(
rs_type type, rs_allocation_mipmap_control mipmaps, uint32_t usages,
void *ptr);
rs_element __attribute__((overloadable)) rsCreateElement(
rs_data_type data_type) {
switch (data_type) {
case RS_TYPE_BOOLEAN:
case RS_TYPE_FLOAT_16:
case RS_TYPE_FLOAT_32:
case RS_TYPE_FLOAT_64:
case RS_TYPE_SIGNED_8:
case RS_TYPE_SIGNED_16:
case RS_TYPE_SIGNED_32:
case RS_TYPE_SIGNED_64:
case RS_TYPE_UNSIGNED_8:
case RS_TYPE_UNSIGNED_16:
case RS_TYPE_UNSIGNED_32:
case RS_TYPE_UNSIGNED_64:
case RS_TYPE_MATRIX_4X4:
case RS_TYPE_MATRIX_3X3:
case RS_TYPE_MATRIX_2X2:
case RS_TYPE_ELEMENT:
case RS_TYPE_TYPE:
case RS_TYPE_ALLOCATION:
case RS_TYPE_SCRIPT:
return rsCreateElement(data_type, RS_KIND_USER, false, 1);
default:
rsDebug("Invalid data_type", data_type);
return kInvalidElement;
}
}
rs_element __attribute__((overloadable)) rsCreateVectorElement(
rs_data_type data_type, uint32_t vector_width) {
if (vector_width < 2 || vector_width > 4) {
rsDebug("Invalid vector_width", vector_width);
return kInvalidElement;
}
switch (data_type) {
case RS_TYPE_BOOLEAN:
case RS_TYPE_FLOAT_16:
case RS_TYPE_FLOAT_32:
case RS_TYPE_FLOAT_64:
case RS_TYPE_SIGNED_8:
case RS_TYPE_SIGNED_16:
case RS_TYPE_SIGNED_32:
case RS_TYPE_SIGNED_64:
case RS_TYPE_UNSIGNED_8:
case RS_TYPE_UNSIGNED_16:
case RS_TYPE_UNSIGNED_32:
case RS_TYPE_UNSIGNED_64:
return rsCreateElement(data_type, RS_KIND_USER, false,
vector_width);
default:
rsDebug("Invalid data_type for vector element", data_type);
return kInvalidElement;
}
}
rs_element __attribute__((overloadable)) rsCreatePixelElement(
rs_data_type data_type, rs_data_kind data_kind) {
if (data_type != RS_TYPE_UNSIGNED_8 &&
data_type != RS_TYPE_UNSIGNED_16 &&
data_type != RS_TYPE_UNSIGNED_5_6_5 &&
data_type != RS_TYPE_UNSIGNED_4_4_4_4 &&
data_type != RS_TYPE_UNSIGNED_5_5_5_1) {
rsDebug("Invalid data_type for pixel element", data_type);
return kInvalidElement;
}
if (data_kind != RS_KIND_PIXEL_L &&
data_kind != RS_KIND_PIXEL_A &&
data_kind != RS_KIND_PIXEL_LA &&
data_kind != RS_KIND_PIXEL_RGB &&
data_kind != RS_KIND_PIXEL_RGBA &&
data_kind != RS_KIND_PIXEL_DEPTH &&
data_kind != RS_KIND_PIXEL_YUV) {
rsDebug("Invalid data_kind for pixel element", data_type);
return kInvalidElement;
}
if (data_type == RS_TYPE_UNSIGNED_5_6_5 && data_kind != RS_KIND_PIXEL_RGB) {
rsDebug("Bad data_type and data_kind combo", data_type, data_kind);
return kInvalidElement;
}
if (data_type == RS_TYPE_UNSIGNED_5_5_5_1 &&
data_kind != RS_KIND_PIXEL_RGBA) {
rsDebug("Bad data_type and data_kind combo", data_type, data_kind);
return kInvalidElement;
}
if (data_type == RS_TYPE_UNSIGNED_4_4_4_4 &&
data_kind != RS_KIND_PIXEL_RGBA) {
rsDebug("Bad data_type and data_kind combo", data_type, data_kind);
return kInvalidElement;
}
if (data_type == RS_TYPE_UNSIGNED_16 && data_kind != RS_KIND_PIXEL_DEPTH) {
rsDebug("Bad data_type and data_kind combo", data_type, data_kind);
return kInvalidElement;
}
int vector_width = 1;
switch (data_kind) {
case RS_KIND_PIXEL_LA:
vector_width = 2;
break;
case RS_KIND_PIXEL_RGB:
vector_width = 3;
break;
case RS_KIND_PIXEL_RGBA:
vector_width = 4;
break;
case RS_KIND_PIXEL_DEPTH:
vector_width = 2;
break;
default:
break;
}
return rsCreateElement(data_type, data_kind, true, vector_width);
}
rs_type __attribute__((overloadable)) rsCreateType(rs_element element,
uint32_t dimX, uint32_t dimY,
uint32_t dimZ) {
return rsCreateType(element, dimX, dimY, dimZ, false, false, RS_YUV_NONE);
}
rs_type __attribute__((overloadable)) rsCreateType(rs_element element,
uint32_t dimX,
uint32_t dimY) {
return rsCreateType(element, dimX, dimY, 0, false, false, RS_YUV_NONE);
}
rs_type __attribute__((overloadable)) rsCreateType(rs_element element,
uint32_t dimX) {
return rsCreateType(element, dimX, 0, 0, false, false, RS_YUV_NONE);
}
rs_allocation __attribute__((overloadable)) rsCreateAllocation(rs_type type,
uint32_t usage) {
return rsCreateAllocation(type, RS_ALLOCATION_MIPMAP_NONE, usage, NULL);
}
rs_allocation __attribute__((overloadable)) rsCreateAllocation(rs_type type) {
return rsCreateAllocation(type, RS_ALLOCATION_MIPMAP_NONE,
RS_ALLOCATION_USAGE_SCRIPT, NULL);
}