/*
* Wrapper functions for OpenSSL libcrypto
* Copyright (c) 2004-2015, Jouni Malinen <j@w1.fi>
*
* This software may be distributed under the terms of the BSD license.
* See README for more details.
*/
#include "includes.h"
#include <openssl/opensslv.h>
#include <openssl/err.h>
#include <openssl/des.h>
#include <openssl/aes.h>
#include <openssl/bn.h>
#include <openssl/evp.h>
#include <openssl/dh.h>
#include <openssl/hmac.h>
#include <openssl/rand.h>
#ifdef CONFIG_OPENSSL_CMAC
#include <openssl/cmac.h>
#endif /* CONFIG_OPENSSL_CMAC */
#ifdef CONFIG_ECC
#include <openssl/ec.h>
#endif /* CONFIG_ECC */
#include "common.h"
#include "wpabuf.h"
#include "dh_group5.h"
#include "sha1.h"
#include "sha256.h"
#include "sha384.h"
#include "crypto.h"
#if OPENSSL_VERSION_NUMBER < 0x10100000L || defined(LIBRESSL_VERSION_NUMBER)
/* Compatibility wrappers for older versions. */
static HMAC_CTX * HMAC_CTX_new(void)
{
HMAC_CTX *ctx;
ctx = os_zalloc(sizeof(*ctx));
if (ctx)
HMAC_CTX_init(ctx);
return ctx;
}
static void HMAC_CTX_free(HMAC_CTX *ctx)
{
HMAC_CTX_cleanup(ctx);
bin_clear_free(ctx, sizeof(*ctx));
}
static EVP_MD_CTX * EVP_MD_CTX_new(void)
{
EVP_MD_CTX *ctx;
ctx = os_zalloc(sizeof(*ctx));
if (ctx)
EVP_MD_CTX_init(ctx);
return ctx;
}
static void EVP_MD_CTX_free(EVP_MD_CTX *ctx)
{
bin_clear_free(ctx, sizeof(*ctx));
}
#endif /* OpenSSL version < 1.1.0 */
static BIGNUM * get_group5_prime(void)
{
#ifdef OPENSSL_IS_BORINGSSL
static const unsigned char RFC3526_PRIME_1536[] = {
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2,
0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1,
0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6,
0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD,
0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D,
0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45,
0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9,
0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED,
0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11,
0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D,
0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36,
0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F,
0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56,
0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D,
0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08,
0xCA,0x23,0x73,0x27,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
};
return BN_bin2bn(RFC3526_PRIME_1536, sizeof(RFC3526_PRIME_1536), NULL);
#else /* OPENSSL_IS_BORINGSSL */
return get_rfc3526_prime_1536(NULL);
#endif /* OPENSSL_IS_BORINGSSL */
}
#ifdef OPENSSL_NO_SHA256
#define NO_SHA256_WRAPPER
#endif
static int openssl_digest_vector(const EVP_MD *type, size_t num_elem,
const u8 *addr[], const size_t *len, u8 *mac)
{
EVP_MD_CTX *ctx;
size_t i;
unsigned int mac_len;
if (TEST_FAIL())
return -1;
ctx = EVP_MD_CTX_new();
if (!ctx)
return -1;
if (!EVP_DigestInit_ex(ctx, type, NULL)) {
wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestInit_ex failed: %s",
ERR_error_string(ERR_get_error(), NULL));
EVP_MD_CTX_free(ctx);
return -1;
}
for (i = 0; i < num_elem; i++) {
if (!EVP_DigestUpdate(ctx, addr[i], len[i])) {
wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestUpdate "
"failed: %s",
ERR_error_string(ERR_get_error(), NULL));
EVP_MD_CTX_free(ctx);
return -1;
}
}
if (!EVP_DigestFinal(ctx, mac, &mac_len)) {
wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestFinal failed: %s",
ERR_error_string(ERR_get_error(), NULL));
EVP_MD_CTX_free(ctx);
return -1;
}
EVP_MD_CTX_free(ctx);
return 0;
}
#ifndef CONFIG_FIPS
int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
{
return openssl_digest_vector(EVP_md4(), num_elem, addr, len, mac);
}
#endif /* CONFIG_FIPS */
void des_encrypt(const u8 *clear, const u8 *key, u8 *cypher)
{
u8 pkey[8], next, tmp;
int i;
DES_key_schedule ks;
/* Add parity bits to the key */
next = 0;
for (i = 0; i < 7; i++) {
tmp = key[i];
pkey[i] = (tmp >> i) | next | 1;
next = tmp << (7 - i);
}
pkey[i] = next | 1;
DES_set_key((DES_cblock *) &pkey, &ks);
DES_ecb_encrypt((DES_cblock *) clear, (DES_cblock *) cypher, &ks,
DES_ENCRYPT);
}
#ifndef CONFIG_NO_RC4
int rc4_skip(const u8 *key, size_t keylen, size_t skip,
u8 *data, size_t data_len)
{
#ifdef OPENSSL_NO_RC4
return -1;
#else /* OPENSSL_NO_RC4 */
EVP_CIPHER_CTX *ctx;
int outl;
int res = -1;
unsigned char skip_buf[16];
ctx = EVP_CIPHER_CTX_new();
if (!ctx ||
!EVP_CIPHER_CTX_set_padding(ctx, 0) ||
!EVP_CipherInit_ex(ctx, EVP_rc4(), NULL, NULL, NULL, 1) ||
!EVP_CIPHER_CTX_set_key_length(ctx, keylen) ||
!EVP_CipherInit_ex(ctx, NULL, NULL, key, NULL, 1))
goto out;
while (skip >= sizeof(skip_buf)) {
size_t len = skip;
if (len > sizeof(skip_buf))
len = sizeof(skip_buf);
if (!EVP_CipherUpdate(ctx, skip_buf, &outl, skip_buf, len))
goto out;
skip -= len;
}
if (EVP_CipherUpdate(ctx, data, &outl, data, data_len))
res = 0;
out:
if (ctx)
EVP_CIPHER_CTX_free(ctx);
return res;
#endif /* OPENSSL_NO_RC4 */
}
#endif /* CONFIG_NO_RC4 */
#ifndef CONFIG_FIPS
int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
{
return openssl_digest_vector(EVP_md5(), num_elem, addr, len, mac);
}
#endif /* CONFIG_FIPS */
int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
{
return openssl_digest_vector(EVP_sha1(), num_elem, addr, len, mac);
}
#ifndef NO_SHA256_WRAPPER
int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len,
u8 *mac)
{
return openssl_digest_vector(EVP_sha256(), num_elem, addr, len, mac);
}
#endif /* NO_SHA256_WRAPPER */
static const EVP_CIPHER * aes_get_evp_cipher(size_t keylen)
{
switch (keylen) {
case 16:
return EVP_aes_128_ecb();
#ifndef OPENSSL_IS_BORINGSSL
case 24:
return EVP_aes_192_ecb();
#endif /* OPENSSL_IS_BORINGSSL */
case 32:
return EVP_aes_256_ecb();
}
return NULL;
}
void * aes_encrypt_init(const u8 *key, size_t len)
{
EVP_CIPHER_CTX *ctx;
const EVP_CIPHER *type;
if (TEST_FAIL())
return NULL;
type = aes_get_evp_cipher(len);
if (type == NULL)
return NULL;
ctx = EVP_CIPHER_CTX_new();
if (ctx == NULL)
return NULL;
if (EVP_EncryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
os_free(ctx);
return NULL;
}
EVP_CIPHER_CTX_set_padding(ctx, 0);
return ctx;
}
void aes_encrypt(void *ctx, const u8 *plain, u8 *crypt)
{
EVP_CIPHER_CTX *c = ctx;
int clen = 16;
if (EVP_EncryptUpdate(c, crypt, &clen, plain, 16) != 1) {
wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptUpdate failed: %s",
ERR_error_string(ERR_get_error(), NULL));
}
}
void aes_encrypt_deinit(void *ctx)
{
EVP_CIPHER_CTX *c = ctx;
u8 buf[16];
int len = sizeof(buf);
if (EVP_EncryptFinal_ex(c, buf, &len) != 1) {
wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptFinal_ex failed: "
"%s", ERR_error_string(ERR_get_error(), NULL));
}
if (len != 0) {
wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
"in AES encrypt", len);
}
EVP_CIPHER_CTX_free(c);
}
void * aes_decrypt_init(const u8 *key, size_t len)
{
EVP_CIPHER_CTX *ctx;
const EVP_CIPHER *type;
if (TEST_FAIL())
return NULL;
type = aes_get_evp_cipher(len);
if (type == NULL)
return NULL;
ctx = EVP_CIPHER_CTX_new();
if (ctx == NULL)
return NULL;
if (EVP_DecryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
EVP_CIPHER_CTX_free(ctx);
return NULL;
}
EVP_CIPHER_CTX_set_padding(ctx, 0);
return ctx;
}
void aes_decrypt(void *ctx, const u8 *crypt, u8 *plain)
{
EVP_CIPHER_CTX *c = ctx;
int plen = 16;
if (EVP_DecryptUpdate(c, plain, &plen, crypt, 16) != 1) {
wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptUpdate failed: %s",
ERR_error_string(ERR_get_error(), NULL));
}
}
void aes_decrypt_deinit(void *ctx)
{
EVP_CIPHER_CTX *c = ctx;
u8 buf[16];
int len = sizeof(buf);
if (EVP_DecryptFinal_ex(c, buf, &len) != 1) {
wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptFinal_ex failed: "
"%s", ERR_error_string(ERR_get_error(), NULL));
}
if (len != 0) {
wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
"in AES decrypt", len);
}
EVP_CIPHER_CTX_free(c);
}
#ifndef CONFIG_FIPS
#ifndef CONFIG_OPENSSL_INTERNAL_AES_WRAP
int aes_wrap(const u8 *kek, size_t kek_len, int n, const u8 *plain, u8 *cipher)
{
AES_KEY actx;
int res;
if (AES_set_encrypt_key(kek, kek_len << 3, &actx))
return -1;
res = AES_wrap_key(&actx, NULL, cipher, plain, n * 8);
OPENSSL_cleanse(&actx, sizeof(actx));
return res <= 0 ? -1 : 0;
}
int aes_unwrap(const u8 *kek, size_t kek_len, int n, const u8 *cipher,
u8 *plain)
{
AES_KEY actx;
int res;
if (AES_set_decrypt_key(kek, kek_len << 3, &actx))
return -1;
res = AES_unwrap_key(&actx, NULL, plain, cipher, (n + 1) * 8);
OPENSSL_cleanse(&actx, sizeof(actx));
return res <= 0 ? -1 : 0;
}
#endif /* CONFIG_OPENSSL_INTERNAL_AES_WRAP */
#endif /* CONFIG_FIPS */
int aes_128_cbc_encrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len)
{
EVP_CIPHER_CTX *ctx;
int clen, len;
u8 buf[16];
int res = -1;
if (TEST_FAIL())
return -1;
ctx = EVP_CIPHER_CTX_new();
if (!ctx)
return -1;
clen = data_len;
len = sizeof(buf);
if (EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv) == 1 &&
EVP_CIPHER_CTX_set_padding(ctx, 0) == 1 &&
EVP_EncryptUpdate(ctx, data, &clen, data, data_len) == 1 &&
clen == (int) data_len &&
EVP_EncryptFinal_ex(ctx, buf, &len) == 1 && len == 0)
res = 0;
EVP_CIPHER_CTX_free(ctx);
return res;
}
int aes_128_cbc_decrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len)
{
EVP_CIPHER_CTX *ctx;
int plen, len;
u8 buf[16];
int res = -1;
if (TEST_FAIL())
return -1;
ctx = EVP_CIPHER_CTX_new();
if (!ctx)
return -1;
plen = data_len;
len = sizeof(buf);
if (EVP_DecryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv) == 1 &&
EVP_CIPHER_CTX_set_padding(ctx, 0) == 1 &&
EVP_DecryptUpdate(ctx, data, &plen, data, data_len) == 1 &&
plen == (int) data_len &&
EVP_DecryptFinal_ex(ctx, buf, &len) == 1 && len == 0)
res = 0;
EVP_CIPHER_CTX_free(ctx);
return res;
}
int crypto_mod_exp(const u8 *base, size_t base_len,
const u8 *power, size_t power_len,
const u8 *modulus, size_t modulus_len,
u8 *result, size_t *result_len)
{
BIGNUM *bn_base, *bn_exp, *bn_modulus, *bn_result;
int ret = -1;
BN_CTX *ctx;
ctx = BN_CTX_new();
if (ctx == NULL)
return -1;
bn_base = BN_bin2bn(base, base_len, NULL);
bn_exp = BN_bin2bn(power, power_len, NULL);
bn_modulus = BN_bin2bn(modulus, modulus_len, NULL);
bn_result = BN_new();
if (bn_base == NULL || bn_exp == NULL || bn_modulus == NULL ||
bn_result == NULL)
goto error;
if (BN_mod_exp(bn_result, bn_base, bn_exp, bn_modulus, ctx) != 1)
goto error;
*result_len = BN_bn2bin(bn_result, result);
ret = 0;
error:
BN_clear_free(bn_base);
BN_clear_free(bn_exp);
BN_clear_free(bn_modulus);
BN_clear_free(bn_result);
BN_CTX_free(ctx);
return ret;
}
struct crypto_cipher {
EVP_CIPHER_CTX *enc;
EVP_CIPHER_CTX *dec;
};
struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg,
const u8 *iv, const u8 *key,
size_t key_len)
{
struct crypto_cipher *ctx;
const EVP_CIPHER *cipher;
ctx = os_zalloc(sizeof(*ctx));
if (ctx == NULL)
return NULL;
switch (alg) {
#ifndef CONFIG_NO_RC4
#ifndef OPENSSL_NO_RC4
case CRYPTO_CIPHER_ALG_RC4:
cipher = EVP_rc4();
break;
#endif /* OPENSSL_NO_RC4 */
#endif /* CONFIG_NO_RC4 */
#ifndef OPENSSL_NO_AES
case CRYPTO_CIPHER_ALG_AES:
switch (key_len) {
case 16:
cipher = EVP_aes_128_cbc();
break;
#ifndef OPENSSL_IS_BORINGSSL
case 24:
cipher = EVP_aes_192_cbc();
break;
#endif /* OPENSSL_IS_BORINGSSL */
case 32:
cipher = EVP_aes_256_cbc();
break;
default:
os_free(ctx);
return NULL;
}
break;
#endif /* OPENSSL_NO_AES */
#ifndef OPENSSL_NO_DES
case CRYPTO_CIPHER_ALG_3DES:
cipher = EVP_des_ede3_cbc();
break;
case CRYPTO_CIPHER_ALG_DES:
cipher = EVP_des_cbc();
break;
#endif /* OPENSSL_NO_DES */
#ifndef OPENSSL_NO_RC2
case CRYPTO_CIPHER_ALG_RC2:
cipher = EVP_rc2_ecb();
break;
#endif /* OPENSSL_NO_RC2 */
default:
os_free(ctx);
return NULL;
}
if (!(ctx->enc = EVP_CIPHER_CTX_new()) ||
!EVP_CIPHER_CTX_set_padding(ctx->enc, 0) ||
!EVP_EncryptInit_ex(ctx->enc, cipher, NULL, NULL, NULL) ||
!EVP_CIPHER_CTX_set_key_length(ctx->enc, key_len) ||
!EVP_EncryptInit_ex(ctx->enc, NULL, NULL, key, iv)) {
if (ctx->enc)
EVP_CIPHER_CTX_free(ctx->enc);
os_free(ctx);
return NULL;
}
if (!(ctx->dec = EVP_CIPHER_CTX_new()) ||
!EVP_CIPHER_CTX_set_padding(ctx->dec, 0) ||
!EVP_DecryptInit_ex(ctx->dec, cipher, NULL, NULL, NULL) ||
!EVP_CIPHER_CTX_set_key_length(ctx->dec, key_len) ||
!EVP_DecryptInit_ex(ctx->dec, NULL, NULL, key, iv)) {
EVP_CIPHER_CTX_free(ctx->enc);
if (ctx->dec)
EVP_CIPHER_CTX_free(ctx->dec);
os_free(ctx);
return NULL;
}
return ctx;
}
int crypto_cipher_encrypt(struct crypto_cipher *ctx, const u8 *plain,
u8 *crypt, size_t len)
{
int outl;
if (!EVP_EncryptUpdate(ctx->enc, crypt, &outl, plain, len))
return -1;
return 0;
}
int crypto_cipher_decrypt(struct crypto_cipher *ctx, const u8 *crypt,
u8 *plain, size_t len)
{
int outl;
outl = len;
if (!EVP_DecryptUpdate(ctx->dec, plain, &outl, crypt, len))
return -1;
return 0;
}
void crypto_cipher_deinit(struct crypto_cipher *ctx)
{
EVP_CIPHER_CTX_free(ctx->enc);
EVP_CIPHER_CTX_free(ctx->dec);
os_free(ctx);
}
void * dh5_init(struct wpabuf **priv, struct wpabuf **publ)
{
DH *dh;
struct wpabuf *pubkey = NULL, *privkey = NULL;
size_t publen, privlen;
*priv = NULL;
*publ = NULL;
dh = DH_new();
if (dh == NULL)
return NULL;
dh->g = BN_new();
if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
goto err;
dh->p = get_group5_prime();
if (dh->p == NULL)
goto err;
if (DH_generate_key(dh) != 1)
goto err;
publen = BN_num_bytes(dh->pub_key);
pubkey = wpabuf_alloc(publen);
if (pubkey == NULL)
goto err;
privlen = BN_num_bytes(dh->priv_key);
privkey = wpabuf_alloc(privlen);
if (privkey == NULL)
goto err;
BN_bn2bin(dh->pub_key, wpabuf_put(pubkey, publen));
BN_bn2bin(dh->priv_key, wpabuf_put(privkey, privlen));
*priv = privkey;
*publ = pubkey;
return dh;
err:
wpabuf_clear_free(pubkey);
wpabuf_clear_free(privkey);
DH_free(dh);
return NULL;
}
void * dh5_init_fixed(const struct wpabuf *priv, const struct wpabuf *publ)
{
DH *dh;
dh = DH_new();
if (dh == NULL)
return NULL;
dh->g = BN_new();
if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
goto err;
dh->p = get_group5_prime();
if (dh->p == NULL)
goto err;
dh->priv_key = BN_bin2bn(wpabuf_head(priv), wpabuf_len(priv), NULL);
if (dh->priv_key == NULL)
goto err;
dh->pub_key = BN_bin2bn(wpabuf_head(publ), wpabuf_len(publ), NULL);
if (dh->pub_key == NULL)
goto err;
if (DH_generate_key(dh) != 1)
goto err;
return dh;
err:
DH_free(dh);
return NULL;
}
struct wpabuf * dh5_derive_shared(void *ctx, const struct wpabuf *peer_public,
const struct wpabuf *own_private)
{
BIGNUM *pub_key;
struct wpabuf *res = NULL;
size_t rlen;
DH *dh = ctx;
int keylen;
if (ctx == NULL)
return NULL;
pub_key = BN_bin2bn(wpabuf_head(peer_public), wpabuf_len(peer_public),
NULL);
if (pub_key == NULL)
return NULL;
rlen = DH_size(dh);
res = wpabuf_alloc(rlen);
if (res == NULL)
goto err;
keylen = DH_compute_key(wpabuf_mhead(res), pub_key, dh);
if (keylen < 0)
goto err;
wpabuf_put(res, keylen);
BN_clear_free(pub_key);
return res;
err:
BN_clear_free(pub_key);
wpabuf_clear_free(res);
return NULL;
}
void dh5_free(void *ctx)
{
DH *dh;
if (ctx == NULL)
return;
dh = ctx;
DH_free(dh);
}
struct crypto_hash {
HMAC_CTX *ctx;
};
struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key,
size_t key_len)
{
struct crypto_hash *ctx;
const EVP_MD *md;
switch (alg) {
#ifndef OPENSSL_NO_MD5
case CRYPTO_HASH_ALG_HMAC_MD5:
md = EVP_md5();
break;
#endif /* OPENSSL_NO_MD5 */
#ifndef OPENSSL_NO_SHA
case CRYPTO_HASH_ALG_HMAC_SHA1:
md = EVP_sha1();
break;
#endif /* OPENSSL_NO_SHA */
#ifndef OPENSSL_NO_SHA256
#ifdef CONFIG_SHA256
case CRYPTO_HASH_ALG_HMAC_SHA256:
md = EVP_sha256();
break;
#endif /* CONFIG_SHA256 */
#endif /* OPENSSL_NO_SHA256 */
default:
return NULL;
}
ctx = os_zalloc(sizeof(*ctx));
if (ctx == NULL)
return NULL;
ctx->ctx = HMAC_CTX_new();
if (!ctx->ctx) {
os_free(ctx);
return NULL;
}
if (HMAC_Init_ex(ctx->ctx, key, key_len, md, NULL) != 1) {
HMAC_CTX_free(ctx->ctx);
bin_clear_free(ctx, sizeof(*ctx));
return NULL;
}
return ctx;
}
void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len)
{
if (ctx == NULL)
return;
HMAC_Update(ctx->ctx, data, len);
}
int crypto_hash_finish(struct crypto_hash *ctx, u8 *mac, size_t *len)
{
unsigned int mdlen;
int res;
if (ctx == NULL)
return -2;
if (mac == NULL || len == NULL) {
HMAC_CTX_free(ctx->ctx);
bin_clear_free(ctx, sizeof(*ctx));
return 0;
}
mdlen = *len;
res = HMAC_Final(ctx->ctx, mac, &mdlen);
HMAC_CTX_free(ctx->ctx);
bin_clear_free(ctx, sizeof(*ctx));
if (res == 1) {
*len = mdlen;
return 0;
}
return -1;
}
static int openssl_hmac_vector(const EVP_MD *type, const u8 *key,
size_t key_len, size_t num_elem,
const u8 *addr[], const size_t *len, u8 *mac,
unsigned int mdlen)
{
HMAC_CTX *ctx;
size_t i;
int res;
if (TEST_FAIL())
return -1;
ctx = HMAC_CTX_new();
if (!ctx)
return -1;
res = HMAC_Init_ex(ctx, key, key_len, type, NULL);
if (res != 1)
goto done;
for (i = 0; i < num_elem; i++)
HMAC_Update(ctx, addr[i], len[i]);
res = HMAC_Final(ctx, mac, &mdlen);
done:
HMAC_CTX_free(ctx);
return res == 1 ? 0 : -1;
}
#ifndef CONFIG_FIPS
int hmac_md5_vector(const u8 *key, size_t key_len, size_t num_elem,
const u8 *addr[], const size_t *len, u8 *mac)
{
return openssl_hmac_vector(EVP_md5(), key ,key_len, num_elem, addr, len,
mac, 16);
}
int hmac_md5(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
u8 *mac)
{
return hmac_md5_vector(key, key_len, 1, &data, &data_len, mac);
}
#endif /* CONFIG_FIPS */
int pbkdf2_sha1(const char *passphrase, const u8 *ssid, size_t ssid_len,
int iterations, u8 *buf, size_t buflen)
{
if (PKCS5_PBKDF2_HMAC_SHA1(passphrase, os_strlen(passphrase), ssid,
ssid_len, iterations, buflen, buf) != 1)
return -1;
return 0;
}
int hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem,
const u8 *addr[], const size_t *len, u8 *mac)
{
return openssl_hmac_vector(EVP_sha1(), key, key_len, num_elem, addr,
len, mac, 20);
}
int hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
u8 *mac)
{
return hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac);
}
#ifdef CONFIG_SHA256
int hmac_sha256_vector(const u8 *key, size_t key_len, size_t num_elem,
const u8 *addr[], const size_t *len, u8 *mac)
{
return openssl_hmac_vector(EVP_sha256(), key, key_len, num_elem, addr,
len, mac, 32);
}
int hmac_sha256(const u8 *key, size_t key_len, const u8 *data,
size_t data_len, u8 *mac)
{
return hmac_sha256_vector(key, key_len, 1, &data, &data_len, mac);
}
#endif /* CONFIG_SHA256 */
#ifdef CONFIG_SHA384
int hmac_sha384_vector(const u8 *key, size_t key_len, size_t num_elem,
const u8 *addr[], const size_t *len, u8 *mac)
{
return openssl_hmac_vector(EVP_sha384(), key, key_len, num_elem, addr,
len, mac, 32);
}
int hmac_sha384(const u8 *key, size_t key_len, const u8 *data,
size_t data_len, u8 *mac)
{
return hmac_sha384_vector(key, key_len, 1, &data, &data_len, mac);
}
#endif /* CONFIG_SHA384 */
int crypto_get_random(void *buf, size_t len)
{
if (RAND_bytes(buf, len) != 1)
return -1;
return 0;
}
#ifdef CONFIG_OPENSSL_CMAC
int omac1_aes_vector(const u8 *key, size_t key_len, size_t num_elem,
const u8 *addr[], const size_t *len, u8 *mac)
{
CMAC_CTX *ctx;
int ret = -1;
size_t outlen, i;
if (TEST_FAIL())
return -1;
ctx = CMAC_CTX_new();
if (ctx == NULL)
return -1;
if (key_len == 32) {
if (!CMAC_Init(ctx, key, 32, EVP_aes_256_cbc(), NULL))
goto fail;
} else if (key_len == 16) {
if (!CMAC_Init(ctx, key, 16, EVP_aes_128_cbc(), NULL))
goto fail;
} else {
goto fail;
}
for (i = 0; i < num_elem; i++) {
if (!CMAC_Update(ctx, addr[i], len[i]))
goto fail;
}
if (!CMAC_Final(ctx, mac, &outlen) || outlen != 16)
goto fail;
ret = 0;
fail:
CMAC_CTX_free(ctx);
return ret;
}
int omac1_aes_128_vector(const u8 *key, size_t num_elem,
const u8 *addr[], const size_t *len, u8 *mac)
{
return omac1_aes_vector(key, 16, num_elem, addr, len, mac);
}
int omac1_aes_128(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
{
return omac1_aes_128_vector(key, 1, &data, &data_len, mac);
}
int omac1_aes_256(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
{
return omac1_aes_vector(key, 32, 1, &data, &data_len, mac);
}
#endif /* CONFIG_OPENSSL_CMAC */
struct crypto_bignum * crypto_bignum_init(void)
{
if (TEST_FAIL())
return NULL;
return (struct crypto_bignum *) BN_new();
}
struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len)
{
BIGNUM *bn;
if (TEST_FAIL())
return NULL;
bn = BN_bin2bn(buf, len, NULL);
return (struct crypto_bignum *) bn;
}
void crypto_bignum_deinit(struct crypto_bignum *n, int clear)
{
if (clear)
BN_clear_free((BIGNUM *) n);
else
BN_free((BIGNUM *) n);
}
int crypto_bignum_to_bin(const struct crypto_bignum *a,
u8 *buf, size_t buflen, size_t padlen)
{
int num_bytes, offset;
if (TEST_FAIL())
return -1;
if (padlen > buflen)
return -1;
num_bytes = BN_num_bytes((const BIGNUM *) a);
if ((size_t) num_bytes > buflen)
return -1;
if (padlen > (size_t) num_bytes)
offset = padlen - num_bytes;
else
offset = 0;
os_memset(buf, 0, offset);
BN_bn2bin((const BIGNUM *) a, buf + offset);
return num_bytes + offset;
}
int crypto_bignum_add(const struct crypto_bignum *a,
const struct crypto_bignum *b,
struct crypto_bignum *c)
{
return BN_add((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ?
0 : -1;
}
int crypto_bignum_mod(const struct crypto_bignum *a,
const struct crypto_bignum *b,
struct crypto_bignum *c)
{
int res;
BN_CTX *bnctx;
bnctx = BN_CTX_new();
if (bnctx == NULL)
return -1;
res = BN_mod((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b,
bnctx);
BN_CTX_free(bnctx);
return res ? 0 : -1;
}
int crypto_bignum_exptmod(const struct crypto_bignum *a,
const struct crypto_bignum *b,
const struct crypto_bignum *c,
struct crypto_bignum *d)
{
int res;
BN_CTX *bnctx;
if (TEST_FAIL())
return -1;
bnctx = BN_CTX_new();
if (bnctx == NULL)
return -1;
res = BN_mod_exp((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b,
(const BIGNUM *) c, bnctx);
BN_CTX_free(bnctx);
return res ? 0 : -1;
}
int crypto_bignum_inverse(const struct crypto_bignum *a,
const struct crypto_bignum *b,
struct crypto_bignum *c)
{
BIGNUM *res;
BN_CTX *bnctx;
if (TEST_FAIL())
return -1;
bnctx = BN_CTX_new();
if (bnctx == NULL)
return -1;
res = BN_mod_inverse((BIGNUM *) c, (const BIGNUM *) a,
(const BIGNUM *) b, bnctx);
BN_CTX_free(bnctx);
return res ? 0 : -1;
}
int crypto_bignum_sub(const struct crypto_bignum *a,
const struct crypto_bignum *b,
struct crypto_bignum *c)
{
if (TEST_FAIL())
return -1;
return BN_sub((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ?
0 : -1;
}
int crypto_bignum_div(const struct crypto_bignum *a,
const struct crypto_bignum *b,
struct crypto_bignum *c)
{
int res;
BN_CTX *bnctx;
if (TEST_FAIL())
return -1;
bnctx = BN_CTX_new();
if (bnctx == NULL)
return -1;
res = BN_div((BIGNUM *) c, NULL, (const BIGNUM *) a,
(const BIGNUM *) b, bnctx);
BN_CTX_free(bnctx);
return res ? 0 : -1;
}
int crypto_bignum_mulmod(const struct crypto_bignum *a,
const struct crypto_bignum *b,
const struct crypto_bignum *c,
struct crypto_bignum *d)
{
int res;
BN_CTX *bnctx;
if (TEST_FAIL())
return -1;
bnctx = BN_CTX_new();
if (bnctx == NULL)
return -1;
res = BN_mod_mul((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b,
(const BIGNUM *) c, bnctx);
BN_CTX_free(bnctx);
return res ? 0 : -1;
}
int crypto_bignum_cmp(const struct crypto_bignum *a,
const struct crypto_bignum *b)
{
return BN_cmp((const BIGNUM *) a, (const BIGNUM *) b);
}
int crypto_bignum_bits(const struct crypto_bignum *a)
{
return BN_num_bits((const BIGNUM *) a);
}
int crypto_bignum_is_zero(const struct crypto_bignum *a)
{
return BN_is_zero((const BIGNUM *) a);
}
int crypto_bignum_is_one(const struct crypto_bignum *a)
{
return BN_is_one((const BIGNUM *) a);
}
int crypto_bignum_legendre(const struct crypto_bignum *a,
const struct crypto_bignum *p)
{
BN_CTX *bnctx;
BIGNUM *exp = NULL, *tmp = NULL;
int res = -2;
if (TEST_FAIL())
return -2;
bnctx = BN_CTX_new();
if (bnctx == NULL)
return -2;
exp = BN_new();
tmp = BN_new();
if (!exp || !tmp ||
/* exp = (p-1) / 2 */
!BN_sub(exp, (const BIGNUM *) p, BN_value_one()) ||
!BN_rshift1(exp, exp) ||
!BN_mod_exp(tmp, (const BIGNUM *) a, exp, (const BIGNUM *) p,
bnctx))
goto fail;
if (BN_is_word(tmp, 1))
res = 1;
else if (BN_is_zero(tmp))
res = 0;
else
res = -1;
fail:
BN_clear_free(tmp);
BN_clear_free(exp);
BN_CTX_free(bnctx);
return res;
}
#ifdef CONFIG_ECC
struct crypto_ec {
EC_GROUP *group;
BN_CTX *bnctx;
BIGNUM *prime;
BIGNUM *order;
BIGNUM *a;
BIGNUM *b;
};
struct crypto_ec * crypto_ec_init(int group)
{
struct crypto_ec *e;
int nid;
/* Map from IANA registry for IKE D-H groups to OpenSSL NID */
switch (group) {
case 19:
nid = NID_X9_62_prime256v1;
break;
case 20:
nid = NID_secp384r1;
break;
case 21:
nid = NID_secp521r1;
break;
case 25:
nid = NID_X9_62_prime192v1;
break;
case 26:
nid = NID_secp224r1;
break;
#ifdef NID_brainpoolP224r1
case 27:
nid = NID_brainpoolP224r1;
break;
#endif /* NID_brainpoolP224r1 */
#ifdef NID_brainpoolP256r1
case 28:
nid = NID_brainpoolP256r1;
break;
#endif /* NID_brainpoolP256r1 */
#ifdef NID_brainpoolP384r1
case 29:
nid = NID_brainpoolP384r1;
break;
#endif /* NID_brainpoolP384r1 */
#ifdef NID_brainpoolP512r1
case 30:
nid = NID_brainpoolP512r1;
break;
#endif /* NID_brainpoolP512r1 */
default:
return NULL;
}
e = os_zalloc(sizeof(*e));
if (e == NULL)
return NULL;
e->bnctx = BN_CTX_new();
e->group = EC_GROUP_new_by_curve_name(nid);
e->prime = BN_new();
e->order = BN_new();
e->a = BN_new();
e->b = BN_new();
if (e->group == NULL || e->bnctx == NULL || e->prime == NULL ||
e->order == NULL || e->a == NULL || e->b == NULL ||
!EC_GROUP_get_curve_GFp(e->group, e->prime, e->a, e->b, e->bnctx) ||
!EC_GROUP_get_order(e->group, e->order, e->bnctx)) {
crypto_ec_deinit(e);
e = NULL;
}
return e;
}
void crypto_ec_deinit(struct crypto_ec *e)
{
if (e == NULL)
return;
BN_clear_free(e->b);
BN_clear_free(e->a);
BN_clear_free(e->order);
BN_clear_free(e->prime);
EC_GROUP_free(e->group);
BN_CTX_free(e->bnctx);
os_free(e);
}
struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e)
{
if (TEST_FAIL())
return NULL;
if (e == NULL)
return NULL;
return (struct crypto_ec_point *) EC_POINT_new(e->group);
}
size_t crypto_ec_prime_len(struct crypto_ec *e)
{
return BN_num_bytes(e->prime);
}
size_t crypto_ec_prime_len_bits(struct crypto_ec *e)
{
return BN_num_bits(e->prime);
}
const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e)
{
return (const struct crypto_bignum *) e->prime;
}
const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e)
{
return (const struct crypto_bignum *) e->order;
}
void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear)
{
if (clear)
EC_POINT_clear_free((EC_POINT *) p);
else
EC_POINT_free((EC_POINT *) p);
}
int crypto_ec_point_to_bin(struct crypto_ec *e,
const struct crypto_ec_point *point, u8 *x, u8 *y)
{
BIGNUM *x_bn, *y_bn;
int ret = -1;
int len = BN_num_bytes(e->prime);
if (TEST_FAIL())
return -1;
x_bn = BN_new();
y_bn = BN_new();
if (x_bn && y_bn &&
EC_POINT_get_affine_coordinates_GFp(e->group, (EC_POINT *) point,
x_bn, y_bn, e->bnctx)) {
if (x) {
crypto_bignum_to_bin((struct crypto_bignum *) x_bn,
x, len, len);
}
if (y) {
crypto_bignum_to_bin((struct crypto_bignum *) y_bn,
y, len, len);
}
ret = 0;
}
BN_clear_free(x_bn);
BN_clear_free(y_bn);
return ret;
}
struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e,
const u8 *val)
{
BIGNUM *x, *y;
EC_POINT *elem;
int len = BN_num_bytes(e->prime);
if (TEST_FAIL())
return NULL;
x = BN_bin2bn(val, len, NULL);
y = BN_bin2bn(val + len, len, NULL);
elem = EC_POINT_new(e->group);
if (x == NULL || y == NULL || elem == NULL) {
BN_clear_free(x);
BN_clear_free(y);
EC_POINT_clear_free(elem);
return NULL;
}
if (!EC_POINT_set_affine_coordinates_GFp(e->group, elem, x, y,
e->bnctx)) {
EC_POINT_clear_free(elem);
elem = NULL;
}
BN_clear_free(x);
BN_clear_free(y);
return (struct crypto_ec_point *) elem;
}
int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a,
const struct crypto_ec_point *b,
struct crypto_ec_point *c)
{
if (TEST_FAIL())
return -1;
return EC_POINT_add(e->group, (EC_POINT *) c, (const EC_POINT *) a,
(const EC_POINT *) b, e->bnctx) ? 0 : -1;
}
int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p,
const struct crypto_bignum *b,
struct crypto_ec_point *res)
{
if (TEST_FAIL())
return -1;
return EC_POINT_mul(e->group, (EC_POINT *) res, NULL,
(const EC_POINT *) p, (const BIGNUM *) b, e->bnctx)
? 0 : -1;
}
int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p)
{
if (TEST_FAIL())
return -1;
return EC_POINT_invert(e->group, (EC_POINT *) p, e->bnctx) ? 0 : -1;
}
int crypto_ec_point_solve_y_coord(struct crypto_ec *e,
struct crypto_ec_point *p,
const struct crypto_bignum *x, int y_bit)
{
if (TEST_FAIL())
return -1;
if (!EC_POINT_set_compressed_coordinates_GFp(e->group, (EC_POINT *) p,
(const BIGNUM *) x, y_bit,
e->bnctx) ||
!EC_POINT_is_on_curve(e->group, (EC_POINT *) p, e->bnctx))
return -1;
return 0;
}
struct crypto_bignum *
crypto_ec_point_compute_y_sqr(struct crypto_ec *e,
const struct crypto_bignum *x)
{
BIGNUM *tmp, *tmp2, *y_sqr = NULL;
if (TEST_FAIL())
return NULL;
tmp = BN_new();
tmp2 = BN_new();
/* y^2 = x^3 + ax + b */
if (tmp && tmp2 &&
BN_mod_sqr(tmp, (const BIGNUM *) x, e->prime, e->bnctx) &&
BN_mod_mul(tmp, tmp, (const BIGNUM *) x, e->prime, e->bnctx) &&
BN_mod_mul(tmp2, e->a, (const BIGNUM *) x, e->prime, e->bnctx) &&
BN_mod_add_quick(tmp2, tmp2, tmp, e->prime) &&
BN_mod_add_quick(tmp2, tmp2, e->b, e->prime)) {
y_sqr = tmp2;
tmp2 = NULL;
}
BN_clear_free(tmp);
BN_clear_free(tmp2);
return (struct crypto_bignum *) y_sqr;
}
int crypto_ec_point_is_at_infinity(struct crypto_ec *e,
const struct crypto_ec_point *p)
{
return EC_POINT_is_at_infinity(e->group, (const EC_POINT *) p);
}
int crypto_ec_point_is_on_curve(struct crypto_ec *e,
const struct crypto_ec_point *p)
{
return EC_POINT_is_on_curve(e->group, (const EC_POINT *) p,
e->bnctx) == 1;
}
int crypto_ec_point_cmp(const struct crypto_ec *e,
const struct crypto_ec_point *a,
const struct crypto_ec_point *b)
{
return EC_POINT_cmp(e->group, (const EC_POINT *) a,
(const EC_POINT *) b, e->bnctx);
}
#endif /* CONFIG_ECC */