// Copyright 2010 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// YUV->RGB conversion functions
//
// Author: Skal (pascal.massimino@gmail.com)
#include "./yuv.h"
#if defined(WEBP_YUV_USE_TABLE)
static int done = 0;
static WEBP_INLINE uint8_t clip(int v, int max_value) {
return v < 0 ? 0 : v > max_value ? max_value : v;
}
int16_t VP8kVToR[256], VP8kUToB[256];
int32_t VP8kVToG[256], VP8kUToG[256];
uint8_t VP8kClip[YUV_RANGE_MAX - YUV_RANGE_MIN];
uint8_t VP8kClip4Bits[YUV_RANGE_MAX - YUV_RANGE_MIN];
WEBP_TSAN_IGNORE_FUNCTION void VP8YUVInit(void) {
int i;
if (done) {
return;
}
#ifndef USE_YUVj
for (i = 0; i < 256; ++i) {
VP8kVToR[i] = (89858 * (i - 128) + YUV_HALF) >> YUV_FIX;
VP8kUToG[i] = -22014 * (i - 128) + YUV_HALF;
VP8kVToG[i] = -45773 * (i - 128);
VP8kUToB[i] = (113618 * (i - 128) + YUV_HALF) >> YUV_FIX;
}
for (i = YUV_RANGE_MIN; i < YUV_RANGE_MAX; ++i) {
const int k = ((i - 16) * 76283 + YUV_HALF) >> YUV_FIX;
VP8kClip[i - YUV_RANGE_MIN] = clip(k, 255);
VP8kClip4Bits[i - YUV_RANGE_MIN] = clip((k + 8) >> 4, 15);
}
#else
for (i = 0; i < 256; ++i) {
VP8kVToR[i] = (91881 * (i - 128) + YUV_HALF) >> YUV_FIX;
VP8kUToG[i] = -22554 * (i - 128) + YUV_HALF;
VP8kVToG[i] = -46802 * (i - 128);
VP8kUToB[i] = (116130 * (i - 128) + YUV_HALF) >> YUV_FIX;
}
for (i = YUV_RANGE_MIN; i < YUV_RANGE_MAX; ++i) {
const int k = i;
VP8kClip[i - YUV_RANGE_MIN] = clip(k, 255);
VP8kClip4Bits[i - YUV_RANGE_MIN] = clip((k + 8) >> 4, 15);
}
#endif
done = 1;
}
#else
WEBP_TSAN_IGNORE_FUNCTION void VP8YUVInit(void) {}
#endif // WEBP_YUV_USE_TABLE
//-----------------------------------------------------------------------------
// Plain-C version
#define ROW_FUNC(FUNC_NAME, FUNC, XSTEP) \
static void FUNC_NAME(const uint8_t* y, \
const uint8_t* u, const uint8_t* v, \
uint8_t* dst, int len) { \
const uint8_t* const end = dst + (len & ~1) * XSTEP; \
while (dst != end) { \
FUNC(y[0], u[0], v[0], dst); \
FUNC(y[1], u[0], v[0], dst + XSTEP); \
y += 2; \
++u; \
++v; \
dst += 2 * XSTEP; \
} \
if (len & 1) { \
FUNC(y[0], u[0], v[0], dst); \
} \
} \
// All variants implemented.
ROW_FUNC(YuvToRgbRow, VP8YuvToRgb, 3)
ROW_FUNC(YuvToBgrRow, VP8YuvToBgr, 3)
ROW_FUNC(YuvToRgbaRow, VP8YuvToRgba, 4)
ROW_FUNC(YuvToBgraRow, VP8YuvToBgra, 4)
ROW_FUNC(YuvToArgbRow, VP8YuvToArgb, 4)
ROW_FUNC(YuvToRgba4444Row, VP8YuvToRgba4444, 2)
ROW_FUNC(YuvToRgb565Row, VP8YuvToRgb565, 2)
#undef ROW_FUNC
// Main call for processing a plane with a WebPSamplerRowFunc function:
void WebPSamplerProcessPlane(const uint8_t* y, int y_stride,
const uint8_t* u, const uint8_t* v, int uv_stride,
uint8_t* dst, int dst_stride,
int width, int height, WebPSamplerRowFunc func) {
int j;
for (j = 0; j < height; ++j) {
func(y, u, v, dst, width);
y += y_stride;
if (j & 1) {
u += uv_stride;
v += uv_stride;
}
dst += dst_stride;
}
}
//-----------------------------------------------------------------------------
// Main call
WebPSamplerRowFunc WebPSamplers[MODE_LAST];
extern void WebPInitSamplersSSE2(void);
extern void WebPInitSamplersMIPS32(void);
extern void WebPInitSamplersMIPSdspR2(void);
static volatile VP8CPUInfo yuv_last_cpuinfo_used =
(VP8CPUInfo)&yuv_last_cpuinfo_used;
WEBP_TSAN_IGNORE_FUNCTION void WebPInitSamplers(void) {
if (yuv_last_cpuinfo_used == VP8GetCPUInfo) return;
WebPSamplers[MODE_RGB] = YuvToRgbRow;
WebPSamplers[MODE_RGBA] = YuvToRgbaRow;
WebPSamplers[MODE_BGR] = YuvToBgrRow;
WebPSamplers[MODE_BGRA] = YuvToBgraRow;
WebPSamplers[MODE_ARGB] = YuvToArgbRow;
WebPSamplers[MODE_RGBA_4444] = YuvToRgba4444Row;
WebPSamplers[MODE_RGB_565] = YuvToRgb565Row;
WebPSamplers[MODE_rgbA] = YuvToRgbaRow;
WebPSamplers[MODE_bgrA] = YuvToBgraRow;
WebPSamplers[MODE_Argb] = YuvToArgbRow;
WebPSamplers[MODE_rgbA_4444] = YuvToRgba4444Row;
// If defined, use CPUInfo() to overwrite some pointers with faster versions.
if (VP8GetCPUInfo != NULL) {
#if defined(WEBP_USE_SSE2)
if (VP8GetCPUInfo(kSSE2)) {
WebPInitSamplersSSE2();
}
#endif // WEBP_USE_SSE2
#if defined(WEBP_USE_MIPS32)
if (VP8GetCPUInfo(kMIPS32)) {
WebPInitSamplersMIPS32();
}
#endif // WEBP_USE_MIPS32
#if defined(WEBP_USE_MIPS_DSP_R2)
if (VP8GetCPUInfo(kMIPSdspR2)) {
WebPInitSamplersMIPSdspR2();
}
#endif // WEBP_USE_MIPS_DSP_R2
}
yuv_last_cpuinfo_used = VP8GetCPUInfo;
}
//-----------------------------------------------------------------------------
// ARGB -> YUV converters
static void ConvertARGBToY(const uint32_t* argb, uint8_t* y, int width) {
int i;
for (i = 0; i < width; ++i) {
const uint32_t p = argb[i];
y[i] = VP8RGBToY((p >> 16) & 0xff, (p >> 8) & 0xff, (p >> 0) & 0xff,
YUV_HALF);
}
}
void WebPConvertARGBToUV_C(const uint32_t* argb, uint8_t* u, uint8_t* v,
int src_width, int do_store) {
// No rounding. Last pixel is dealt with separately.
const int uv_width = src_width >> 1;
int i;
for (i = 0; i < uv_width; ++i) {
const uint32_t v0 = argb[2 * i + 0];
const uint32_t v1 = argb[2 * i + 1];
// VP8RGBToU/V expects four accumulated pixels. Hence we need to
// scale r/g/b value by a factor 2. We just shift v0/v1 one bit less.
const int r = ((v0 >> 15) & 0x1fe) + ((v1 >> 15) & 0x1fe);
const int g = ((v0 >> 7) & 0x1fe) + ((v1 >> 7) & 0x1fe);
const int b = ((v0 << 1) & 0x1fe) + ((v1 << 1) & 0x1fe);
const int tmp_u = VP8RGBToU(r, g, b, YUV_HALF << 2);
const int tmp_v = VP8RGBToV(r, g, b, YUV_HALF << 2);
if (do_store) {
u[i] = tmp_u;
v[i] = tmp_v;
} else {
// Approximated average-of-four. But it's an acceptable diff.
u[i] = (u[i] + tmp_u + 1) >> 1;
v[i] = (v[i] + tmp_v + 1) >> 1;
}
}
if (src_width & 1) { // last pixel
const uint32_t v0 = argb[2 * i + 0];
const int r = (v0 >> 14) & 0x3fc;
const int g = (v0 >> 6) & 0x3fc;
const int b = (v0 << 2) & 0x3fc;
const int tmp_u = VP8RGBToU(r, g, b, YUV_HALF << 2);
const int tmp_v = VP8RGBToV(r, g, b, YUV_HALF << 2);
if (do_store) {
u[i] = tmp_u;
v[i] = tmp_v;
} else {
u[i] = (u[i] + tmp_u + 1) >> 1;
v[i] = (v[i] + tmp_v + 1) >> 1;
}
}
}
//-----------------------------------------------------------------------------
static void ConvertRGB24ToY(const uint8_t* rgb, uint8_t* y, int width) {
int i;
for (i = 0; i < width; ++i, rgb += 3) {
y[i] = VP8RGBToY(rgb[0], rgb[1], rgb[2], YUV_HALF);
}
}
static void ConvertBGR24ToY(const uint8_t* bgr, uint8_t* y, int width) {
int i;
for (i = 0; i < width; ++i, bgr += 3) {
y[i] = VP8RGBToY(bgr[2], bgr[1], bgr[0], YUV_HALF);
}
}
void WebPConvertRGBA32ToUV_C(const uint16_t* rgb,
uint8_t* u, uint8_t* v, int width) {
int i;
for (i = 0; i < width; i += 1, rgb += 4) {
const int r = rgb[0], g = rgb[1], b = rgb[2];
u[i] = VP8RGBToU(r, g, b, YUV_HALF << 2);
v[i] = VP8RGBToV(r, g, b, YUV_HALF << 2);
}
}
//-----------------------------------------------------------------------------
void (*WebPConvertRGB24ToY)(const uint8_t* rgb, uint8_t* y, int width);
void (*WebPConvertBGR24ToY)(const uint8_t* bgr, uint8_t* y, int width);
void (*WebPConvertRGBA32ToUV)(const uint16_t* rgb,
uint8_t* u, uint8_t* v, int width);
void (*WebPConvertARGBToY)(const uint32_t* argb, uint8_t* y, int width);
void (*WebPConvertARGBToUV)(const uint32_t* argb, uint8_t* u, uint8_t* v,
int src_width, int do_store);
static volatile VP8CPUInfo rgba_to_yuv_last_cpuinfo_used =
(VP8CPUInfo)&rgba_to_yuv_last_cpuinfo_used;
extern void WebPInitConvertARGBToYUVSSE2(void);
WEBP_TSAN_IGNORE_FUNCTION void WebPInitConvertARGBToYUV(void) {
if (rgba_to_yuv_last_cpuinfo_used == VP8GetCPUInfo) return;
WebPConvertARGBToY = ConvertARGBToY;
WebPConvertARGBToUV = WebPConvertARGBToUV_C;
WebPConvertRGB24ToY = ConvertRGB24ToY;
WebPConvertBGR24ToY = ConvertBGR24ToY;
WebPConvertRGBA32ToUV = WebPConvertRGBA32ToUV_C;
if (VP8GetCPUInfo != NULL) {
#if defined(WEBP_USE_SSE2)
if (VP8GetCPUInfo(kSSE2)) {
WebPInitConvertARGBToYUVSSE2();
}
#endif // WEBP_USE_SSE2
}
rgba_to_yuv_last_cpuinfo_used = VP8GetCPUInfo;
}