C++程序  |  299行  |  11.86 KB

// Copyright 2014 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Utilities for processing transparent channel.
//
// Author: Skal (pascal.massimino@gmail.com)

#include "./dsp.h"

#if defined(WEBP_USE_SSE2)
#include <emmintrin.h>

//------------------------------------------------------------------------------

static int DispatchAlpha(const uint8_t* alpha, int alpha_stride,
                         int width, int height,
                         uint8_t* dst, int dst_stride) {
  // alpha_and stores an 'and' operation of all the alpha[] values. The final
  // value is not 0xff if any of the alpha[] is not equal to 0xff.
  uint32_t alpha_and = 0xff;
  int i, j;
  const __m128i zero = _mm_setzero_si128();
  const __m128i rgb_mask = _mm_set1_epi32(0xffffff00u);  // to preserve RGB
  const __m128i all_0xff = _mm_set_epi32(0, 0, ~0u, ~0u);
  __m128i all_alphas = all_0xff;

  // We must be able to access 3 extra bytes after the last written byte
  // 'dst[4 * width - 4]', because we don't know if alpha is the first or the
  // last byte of the quadruplet.
  const int limit = (width - 1) & ~7;

  for (j = 0; j < height; ++j) {
    __m128i* out = (__m128i*)dst;
    for (i = 0; i < limit; i += 8) {
      // load 8 alpha bytes
      const __m128i a0 = _mm_loadl_epi64((const __m128i*)&alpha[i]);
      const __m128i a1 = _mm_unpacklo_epi8(a0, zero);
      const __m128i a2_lo = _mm_unpacklo_epi16(a1, zero);
      const __m128i a2_hi = _mm_unpackhi_epi16(a1, zero);
      // load 8 dst pixels (32 bytes)
      const __m128i b0_lo = _mm_loadu_si128(out + 0);
      const __m128i b0_hi = _mm_loadu_si128(out + 1);
      // mask dst alpha values
      const __m128i b1_lo = _mm_and_si128(b0_lo, rgb_mask);
      const __m128i b1_hi = _mm_and_si128(b0_hi, rgb_mask);
      // combine
      const __m128i b2_lo = _mm_or_si128(b1_lo, a2_lo);
      const __m128i b2_hi = _mm_or_si128(b1_hi, a2_hi);
      // store
      _mm_storeu_si128(out + 0, b2_lo);
      _mm_storeu_si128(out + 1, b2_hi);
      // accumulate eight alpha 'and' in parallel
      all_alphas = _mm_and_si128(all_alphas, a0);
      out += 2;
    }
    for (; i < width; ++i) {
      const uint32_t alpha_value = alpha[i];
      dst[4 * i] = alpha_value;
      alpha_and &= alpha_value;
    }
    alpha += alpha_stride;
    dst += dst_stride;
  }
  // Combine the eight alpha 'and' into a 8-bit mask.
  alpha_and &= _mm_movemask_epi8(_mm_cmpeq_epi8(all_alphas, all_0xff));
  return (alpha_and != 0xff);
}

static void DispatchAlphaToGreen(const uint8_t* alpha, int alpha_stride,
                                 int width, int height,
                                 uint32_t* dst, int dst_stride) {
  int i, j;
  const __m128i zero = _mm_setzero_si128();
  const int limit = width & ~15;
  for (j = 0; j < height; ++j) {
    for (i = 0; i < limit; i += 16) {   // process 16 alpha bytes
      const __m128i a0 = _mm_loadu_si128((const __m128i*)&alpha[i]);
      const __m128i a1 = _mm_unpacklo_epi8(zero, a0);  // note the 'zero' first!
      const __m128i b1 = _mm_unpackhi_epi8(zero, a0);
      const __m128i a2_lo = _mm_unpacklo_epi16(a1, zero);
      const __m128i b2_lo = _mm_unpacklo_epi16(b1, zero);
      const __m128i a2_hi = _mm_unpackhi_epi16(a1, zero);
      const __m128i b2_hi = _mm_unpackhi_epi16(b1, zero);
      _mm_storeu_si128((__m128i*)&dst[i +  0], a2_lo);
      _mm_storeu_si128((__m128i*)&dst[i +  4], a2_hi);
      _mm_storeu_si128((__m128i*)&dst[i +  8], b2_lo);
      _mm_storeu_si128((__m128i*)&dst[i + 12], b2_hi);
    }
    for (; i < width; ++i) dst[i] = alpha[i] << 8;
    alpha += alpha_stride;
    dst += dst_stride;
  }
}

static int ExtractAlpha(const uint8_t* argb, int argb_stride,
                        int width, int height,
                        uint8_t* alpha, int alpha_stride) {
  // alpha_and stores an 'and' operation of all the alpha[] values. The final
  // value is not 0xff if any of the alpha[] is not equal to 0xff.
  uint32_t alpha_and = 0xff;
  int i, j;
  const __m128i a_mask = _mm_set1_epi32(0xffu);  // to preserve alpha
  const __m128i all_0xff = _mm_set_epi32(0, 0, ~0u, ~0u);
  __m128i all_alphas = all_0xff;

  // We must be able to access 3 extra bytes after the last written byte
  // 'src[4 * width - 4]', because we don't know if alpha is the first or the
  // last byte of the quadruplet.
  const int limit = (width - 1) & ~7;

  for (j = 0; j < height; ++j) {
    const __m128i* src = (const __m128i*)argb;
    for (i = 0; i < limit; i += 8) {
      // load 32 argb bytes
      const __m128i a0 = _mm_loadu_si128(src + 0);
      const __m128i a1 = _mm_loadu_si128(src + 1);
      const __m128i b0 = _mm_and_si128(a0, a_mask);
      const __m128i b1 = _mm_and_si128(a1, a_mask);
      const __m128i c0 = _mm_packs_epi32(b0, b1);
      const __m128i d0 = _mm_packus_epi16(c0, c0);
      // store
      _mm_storel_epi64((__m128i*)&alpha[i], d0);
      // accumulate eight alpha 'and' in parallel
      all_alphas = _mm_and_si128(all_alphas, d0);
      src += 2;
    }
    for (; i < width; ++i) {
      const uint32_t alpha_value = argb[4 * i];
      alpha[i] = alpha_value;
      alpha_and &= alpha_value;
    }
    argb += argb_stride;
    alpha += alpha_stride;
  }
  // Combine the eight alpha 'and' into a 8-bit mask.
  alpha_and &= _mm_movemask_epi8(_mm_cmpeq_epi8(all_alphas, all_0xff));
  return (alpha_and == 0xff);
}

//------------------------------------------------------------------------------
// Non-dither premultiplied modes

#define MULTIPLIER(a)   ((a) * 0x8081)
#define PREMULTIPLY(x, m) (((x) * (m)) >> 23)

// We can't use a 'const int' for the SHUFFLE value, because it has to be an
// immediate in the _mm_shufflexx_epi16() instruction. We really a macro here.
#define APPLY_ALPHA(RGBX, SHUFFLE, MASK, MULT) do {             \
  const __m128i argb0 = _mm_loadl_epi64((__m128i*)&(RGBX));     \
  const __m128i argb1 = _mm_unpacklo_epi8(argb0, zero);         \
  const __m128i alpha0 = _mm_and_si128(argb1, MASK);            \
  const __m128i alpha1 = _mm_shufflelo_epi16(alpha0, SHUFFLE);  \
  const __m128i alpha2 = _mm_shufflehi_epi16(alpha1, SHUFFLE);  \
  /* alpha2 = [0 a0 a0 a0][0 a1 a1 a1] */                       \
  const __m128i scale0 = _mm_mullo_epi16(alpha2, MULT);         \
  const __m128i scale1 = _mm_mulhi_epu16(alpha2, MULT);         \
  const __m128i argb2 = _mm_mulhi_epu16(argb1, scale0);         \
  const __m128i argb3 = _mm_mullo_epi16(argb1, scale1);         \
  const __m128i argb4 = _mm_adds_epu16(argb2, argb3);           \
  const __m128i argb5 = _mm_srli_epi16(argb4, 7);               \
  const __m128i argb6 = _mm_or_si128(argb5, alpha0);            \
  const __m128i argb7 = _mm_packus_epi16(argb6, zero);          \
  _mm_storel_epi64((__m128i*)&(RGBX), argb7);                   \
} while (0)

static void ApplyAlphaMultiply(uint8_t* rgba, int alpha_first,
                               int w, int h, int stride) {
  const __m128i zero = _mm_setzero_si128();
  const int kSpan = 2;
  const int w2 = w & ~(kSpan - 1);
  while (h-- > 0) {
    uint32_t* const rgbx = (uint32_t*)rgba;
    int i;
    if (!alpha_first) {
      const __m128i kMask = _mm_set_epi16(0xff, 0, 0, 0, 0xff, 0, 0, 0);
      const __m128i kMult =
          _mm_set_epi16(0, 0x8081, 0x8081, 0x8081, 0, 0x8081, 0x8081, 0x8081);
      for (i = 0; i < w2; i += kSpan) {
        APPLY_ALPHA(rgbx[i], _MM_SHUFFLE(0, 3, 3, 3), kMask, kMult);
      }
    } else {
      const __m128i kMask = _mm_set_epi16(0, 0, 0, 0xff, 0, 0, 0, 0xff);
      const __m128i kMult =
          _mm_set_epi16(0x8081, 0x8081, 0x8081, 0, 0x8081, 0x8081, 0x8081, 0);
      for (i = 0; i < w2; i += kSpan) {
        APPLY_ALPHA(rgbx[i], _MM_SHUFFLE(0, 0, 0, 3), kMask, kMult);
      }
    }
    // Finish with left-overs.
    for (; i < w; ++i) {
      uint8_t* const rgb = rgba + (alpha_first ? 1 : 0);
      const uint8_t* const alpha = rgba + (alpha_first ? 0 : 3);
      const uint32_t a = alpha[4 * i];
      if (a != 0xff) {
        const uint32_t mult = MULTIPLIER(a);
        rgb[4 * i + 0] = PREMULTIPLY(rgb[4 * i + 0], mult);
        rgb[4 * i + 1] = PREMULTIPLY(rgb[4 * i + 1], mult);
        rgb[4 * i + 2] = PREMULTIPLY(rgb[4 * i + 2], mult);
      }
    }
    rgba += stride;
  }
}
#undef MULTIPLIER
#undef PREMULTIPLY

// -----------------------------------------------------------------------------
// Apply alpha value to rows

// We use: kINV255 = (1 << 24) / 255 = 0x010101
// So: a * kINV255 = (a << 16) | [(a << 8) | a]
// -> _mm_mulhi_epu16() takes care of the (a<<16) part,
// and _mm_mullo_epu16(a * 0x0101,...) takes care of the "(a << 8) | a" one.

static void MultARGBRow(uint32_t* const ptr, int width, int inverse) {
  int x = 0;
  if (!inverse) {
    const int kSpan = 2;
    const __m128i zero = _mm_setzero_si128();
    const __m128i kRound =
        _mm_set_epi16(0, 1 << 7, 1 << 7, 1 << 7, 0, 1 << 7, 1 << 7, 1 << 7);
    const __m128i kMult =
        _mm_set_epi16(0, 0x0101, 0x0101, 0x0101, 0, 0x0101, 0x0101, 0x0101);
    const __m128i kOne64 = _mm_set_epi16(1u << 8, 0, 0, 0, 1u << 8, 0, 0, 0);
    const int w2 = width & ~(kSpan - 1);
    for (x = 0; x < w2; x += kSpan) {
      const __m128i argb0 = _mm_loadl_epi64((__m128i*)&ptr[x]);
      const __m128i argb1 = _mm_unpacklo_epi8(argb0, zero);
      const __m128i tmp0 = _mm_shufflelo_epi16(argb1, _MM_SHUFFLE(3, 3, 3, 3));
      const __m128i tmp1 = _mm_shufflehi_epi16(tmp0, _MM_SHUFFLE(3, 3, 3, 3));
      const __m128i tmp2 = _mm_srli_epi64(tmp1, 16);
      const __m128i scale0 = _mm_mullo_epi16(tmp1, kMult);
      const __m128i scale1 = _mm_or_si128(tmp2, kOne64);
      const __m128i argb2 = _mm_mulhi_epu16(argb1, scale0);
      const __m128i argb3 = _mm_mullo_epi16(argb1, scale1);
      const __m128i argb4 = _mm_adds_epu16(argb2, argb3);
      const __m128i argb5 = _mm_adds_epu16(argb4, kRound);
      const __m128i argb6 = _mm_srli_epi16(argb5, 8);
      const __m128i argb7 = _mm_packus_epi16(argb6, zero);
      _mm_storel_epi64((__m128i*)&ptr[x], argb7);
    }
  }
  width -= x;
  if (width > 0) WebPMultARGBRowC(ptr + x, width, inverse);
}

static void MultRow(uint8_t* const ptr, const uint8_t* const alpha,
                    int width, int inverse) {
  int x = 0;
  if (!inverse) {
    const int kSpan = 8;
    const __m128i zero = _mm_setzero_si128();
    const __m128i kRound = _mm_set1_epi16(1 << 7);
    const int w2 = width & ~(kSpan - 1);
    for (x = 0; x < w2; x += kSpan) {
      const __m128i v0 = _mm_loadl_epi64((__m128i*)&ptr[x]);
      const __m128i v1 = _mm_unpacklo_epi8(v0, zero);
      const __m128i alpha0 = _mm_loadl_epi64((const __m128i*)&alpha[x]);
      const __m128i alpha1 = _mm_unpacklo_epi8(alpha0, zero);
      const __m128i alpha2 = _mm_unpacklo_epi8(alpha0, alpha0);
      const __m128i v2 = _mm_mulhi_epu16(v1, alpha2);
      const __m128i v3 = _mm_mullo_epi16(v1, alpha1);
      const __m128i v4 = _mm_adds_epu16(v2, v3);
      const __m128i v5 = _mm_adds_epu16(v4, kRound);
      const __m128i v6 = _mm_srli_epi16(v5, 8);
      const __m128i v7 = _mm_packus_epi16(v6, zero);
      _mm_storel_epi64((__m128i*)&ptr[x], v7);
    }
  }
  width -= x;
  if (width > 0) WebPMultRowC(ptr + x, alpha + x, width, inverse);
}

//------------------------------------------------------------------------------
// Entry point

extern void WebPInitAlphaProcessingSSE2(void);

WEBP_TSAN_IGNORE_FUNCTION void WebPInitAlphaProcessingSSE2(void) {
  WebPMultARGBRow = MultARGBRow;
  WebPMultRow = MultRow;
  WebPApplyAlphaMultiply = ApplyAlphaMultiply;
  WebPDispatchAlpha = DispatchAlpha;
  WebPDispatchAlphaToGreen = DispatchAlphaToGreen;
  WebPExtractAlpha = ExtractAlpha;
}

#else  // !WEBP_USE_SSE2

WEBP_DSP_INIT_STUB(WebPInitAlphaProcessingSSE2)

#endif  // WEBP_USE_SSE2