// Copyright 2014, ARM Limited
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of ARM Limited nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "examples.h"
#include "custom-disassembler.h"
#define BUF_SIZE (4096)
#define __ masm->
// We override this method to specify how register names should be disassembled.
void CustomDisassembler::AppendRegisterNameToOutput(
const Instruction* instr,
const CPURegister& reg) {
USE(instr);
if (reg.IsRegister()) {
switch (reg.code()) {
case 16:
AppendToOutput(reg.Is64Bits() ? "ip0" : "wip0");
return;
case 17:
AppendToOutput(reg.Is64Bits() ? "ip1" : "wip1");
return;
case 30:
AppendToOutput(reg.Is64Bits() ? "lr" : "w30");
return;
case kSPRegInternalCode:
AppendToOutput(reg.Is64Bits() ? "x_stack_pointer" : "w_stack_pointer");
return;
case 31:
AppendToOutput(reg.Is64Bits() ? "x_zero_reg" : "w_zero_reg");
return;
default:
// Fall through.
break;
}
}
// Print other register names as usual.
Disassembler::AppendRegisterNameToOutput(instr, reg);
}
static const char* FakeLookupTargetDescription(const void* address) {
USE(address);
// We fake looking up the address.
static int i = 0;
const char* desc = NULL;
if (i == 0) {
desc = "label: somewhere";
} else if (i == 2) {
desc = "label: somewhere else";
}
i++;
return desc;
}
// We override this method to add a description to addresses that we know about.
// In this example we fake looking up a description, but in practice one could
// for example use a table mapping addresses to function names.
void CustomDisassembler::AppendCodeRelativeCodeAddressToOutput(
const Instruction* instr, const void* addr) {
USE(instr);
// Print the address.
int64_t rel_addr = CodeRelativeAddress(addr);
if (rel_addr >= 0) {
AppendToOutput("(addr 0x%" PRIx64, rel_addr);
} else {
AppendToOutput("(addr -0x%" PRIx64, -rel_addr);
}
// If available, print a description of the address.
const char* address_desc = FakeLookupTargetDescription(addr);
if (address_desc != NULL) {
Disassembler::AppendToOutput(" ; %s", address_desc);
}
AppendToOutput(")");
}
// We override this method to add a comment to this type of instruction. Helpers
// from the vixl::Instruction class can be used to analyse the instruction being
// disasssembled.
void CustomDisassembler::VisitAddSubShifted(const Instruction* instr) {
vixl::Disassembler::VisitAddSubShifted(instr);
if (instr->Rd() == 10) {
AppendToOutput(" // add/sub to x10");
}
ProcessOutput(instr);
}
void GenerateCustomDisassemblerTestCode(MacroAssembler* masm) {
// Generate some code to illustrate how the modified disassembler changes the
// disassembly output.
Label begin, end;
__ Bind(&begin);
__ Add(x10, x16, x17);
__ Cbz(x10, &end);
__ Add(x11, ip0, ip1);
__ Add(w5, w6, w30);
__ Tbz(x10, 2, &begin);
__ Tbnz(x10, 3, &begin);
__ Br(x30);
__ Br(lr);
__ Fadd(d30, d16, d17);
__ Push(xzr, xzr);
__ Pop(x16, x20);
__ Bind(&end);
}
void TestCustomDisassembler() {
// Create and initialize the assembler.
byte assm_buf[BUF_SIZE];
MacroAssembler masm(assm_buf, BUF_SIZE);
// Generate the code.
Label code_start, code_end;
masm.Bind(&code_start);
GenerateCustomDisassemblerTestCode(&masm);
masm.Bind(&code_end);
masm.FinalizeCode();
Instruction* instr_start = masm.GetLabelAddress<Instruction*>(&code_start);
Instruction* instr_end = masm.GetLabelAddress<Instruction*>(&code_end);
// Instantiate a standard disassembler, our custom disassembler, and register
// them with a decoder.
Decoder decoder;
Disassembler disasm;
CustomDisassembler custom_disasm;
decoder.AppendVisitor(&disasm);
decoder.AppendVisitor(&custom_disasm);
// In our custom disassembler, disassemble as if the base address was -0x8.
// Note that this can also be achieved with
// custom_disasm.MapCodeAddress(0x0, instr_start + 2 * kInstructionSize);
// Users may generally want to map the start address to 0x0. Mapping to a
// negative offset can be used to focus on the section of the
// disassembly at address 0x0.
custom_disasm.MapCodeAddress(-0x8, instr_start);
// Iterate through the instructions to show the difference in the disassembly.
Instruction* instr;
for (instr = instr_start; instr < instr_end; instr += kInstructionSize) {
decoder.Decode(instr);
printf("\n");
printf("VIXL disasm\t %p:\t%s\n",
reinterpret_cast<void*>(instr), disasm.GetOutput());
int64_t rel_addr =
custom_disasm.CodeRelativeAddress(reinterpret_cast<void*>(instr));
char rel_addr_sign_char = rel_addr < 0 ? '-' : ' ';
rel_addr = labs(rel_addr);
printf("custom disasm\t%c0x%" PRIx64 ":\t%s\n",
rel_addr_sign_char,
rel_addr,
custom_disasm.GetOutput());
}
}
#ifndef TEST_EXAMPLES
int main() {
TestCustomDisassembler();
return 0;
}
#endif