// Copyright 2013 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdlib.h>
#include <iostream> // NOLINT(readability/streams)
#include "src/base/utils/random-number-generator.h"
#include "src/macro-assembler.h"
#include "src/mips/macro-assembler-mips.h"
#include "src/mips/simulator-mips.h"
#include "src/v8.h"
#include "test/cctest/cctest.h"
using namespace v8::internal;
typedef void* (*F)(int x, int y, int p2, int p3, int p4);
typedef Object* (*F1)(int x, int p1, int p2, int p3, int p4);
typedef Object* (*F3)(void* p, int p1, int p2, int p3, int p4);
#define __ masm->
static byte to_non_zero(int n) {
return static_cast<unsigned>(n) % 255 + 1;
}
static bool all_zeroes(const byte* beg, const byte* end) {
CHECK(beg);
CHECK(beg <= end);
while (beg < end) {
if (*beg++ != 0)
return false;
}
return true;
}
TEST(BYTESWAP) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
struct T {
int32_t r1;
int32_t r2;
int32_t r3;
int32_t r4;
int32_t r5;
};
T t;
MacroAssembler assembler(isolate, NULL, 0,
v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
__ lw(a2, MemOperand(a0, offsetof(T, r1)));
__ nop();
__ ByteSwapSigned(a2, 4);
__ sw(a2, MemOperand(a0, offsetof(T, r1)));
__ lw(a2, MemOperand(a0, offsetof(T, r2)));
__ nop();
__ ByteSwapSigned(a2, 2);
__ sw(a2, MemOperand(a0, offsetof(T, r2)));
__ lw(a2, MemOperand(a0, offsetof(T, r3)));
__ nop();
__ ByteSwapSigned(a2, 1);
__ sw(a2, MemOperand(a0, offsetof(T, r3)));
__ lw(a2, MemOperand(a0, offsetof(T, r4)));
__ nop();
__ ByteSwapUnsigned(a2, 1);
__ sw(a2, MemOperand(a0, offsetof(T, r4)));
__ lw(a2, MemOperand(a0, offsetof(T, r5)));
__ nop();
__ ByteSwapUnsigned(a2, 2);
__ sw(a2, MemOperand(a0, offsetof(T, r5)));
__ jr(ra);
__ nop();
CodeDesc desc;
masm->GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
::F3 f = FUNCTION_CAST<::F3>(code->entry());
t.r1 = 0x781A15C3;
t.r2 = 0x2CDE;
t.r3 = 0x9F;
t.r4 = 0x9F;
t.r5 = 0x2CDE;
Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
USE(dummy);
CHECK_EQ(static_cast<int32_t>(0xC3151A78), t.r1);
CHECK_EQ(static_cast<int32_t>(0xDE2C0000), t.r2);
CHECK_EQ(static_cast<int32_t>(0x9FFFFFFF), t.r3);
CHECK_EQ(static_cast<int32_t>(0x9F000000), t.r4);
CHECK_EQ(static_cast<int32_t>(0xDE2C0000), t.r5);
}
TEST(CopyBytes) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
const int data_size = 1 * KB;
size_t act_size;
// Allocate two blocks to copy data between.
byte* src_buffer =
static_cast<byte*>(v8::base::OS::Allocate(data_size, &act_size, 0));
CHECK(src_buffer);
CHECK(act_size >= static_cast<size_t>(data_size));
byte* dest_buffer =
static_cast<byte*>(v8::base::OS::Allocate(data_size, &act_size, 0));
CHECK(dest_buffer);
CHECK(act_size >= static_cast<size_t>(data_size));
// Storage for a0 and a1.
byte* a0_;
byte* a1_;
MacroAssembler assembler(isolate, NULL, 0,
v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
// Code to be generated: The stuff in CopyBytes followed by a store of a0 and
// a1, respectively.
__ CopyBytes(a0, a1, a2, a3);
__ li(a2, Operand(reinterpret_cast<int>(&a0_)));
__ li(a3, Operand(reinterpret_cast<int>(&a1_)));
__ sw(a0, MemOperand(a2));
__ jr(ra);
__ sw(a1, MemOperand(a3));
CodeDesc desc;
masm->GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
::F f = FUNCTION_CAST< ::F>(code->entry());
// Initialise source data with non-zero bytes.
for (int i = 0; i < data_size; i++) {
src_buffer[i] = to_non_zero(i);
}
const int fuzz = 11;
for (int size = 0; size < 600; size++) {
for (const byte* src = src_buffer; src < src_buffer + fuzz; src++) {
for (byte* dest = dest_buffer; dest < dest_buffer + fuzz; dest++) {
memset(dest_buffer, 0, data_size);
CHECK(dest + size < dest_buffer + data_size);
(void)CALL_GENERATED_CODE(isolate, f, reinterpret_cast<int>(src),
reinterpret_cast<int>(dest), size, 0, 0);
// a0 and a1 should point at the first byte after the copied data.
CHECK_EQ(src + size, a0_);
CHECK_EQ(dest + size, a1_);
// Check that we haven't written outside the target area.
CHECK(all_zeroes(dest_buffer, dest));
CHECK(all_zeroes(dest + size, dest_buffer + data_size));
// Check the target area.
CHECK_EQ(0, memcmp(src, dest, size));
}
}
}
// Check that the source data hasn't been clobbered.
for (int i = 0; i < data_size; i++) {
CHECK(src_buffer[i] == to_non_zero(i));
}
}
static void TestNaN(const char *code) {
// NaN value is different on MIPS and x86 architectures, and TEST(NaNx)
// tests checks the case where a x86 NaN value is serialized into the
// snapshot on the simulator during cross compilation.
v8::HandleScope scope(CcTest::isolate());
v8::Local<v8::Context> context = CcTest::NewContext(PRINT_EXTENSION);
v8::Context::Scope context_scope(context);
v8::Local<v8::Script> script =
v8::Script::Compile(context, v8_str(code)).ToLocalChecked();
v8::Local<v8::Object> result =
v8::Local<v8::Object>::Cast(script->Run(context).ToLocalChecked());
i::Handle<i::JSReceiver> o = v8::Utils::OpenHandle(*result);
i::Handle<i::JSArray> array1(reinterpret_cast<i::JSArray*>(*o));
i::FixedDoubleArray* a = i::FixedDoubleArray::cast(array1->elements());
double value = a->get_scalar(0);
CHECK(std::isnan(value) &&
bit_cast<uint64_t>(value) ==
bit_cast<uint64_t>(std::numeric_limits<double>::quiet_NaN()));
}
TEST(NaN0) {
TestNaN(
"var result;"
"for (var i = 0; i < 2; i++) {"
" result = new Array(Number.NaN, Number.POSITIVE_INFINITY);"
"}"
"result;");
}
TEST(NaN1) {
TestNaN(
"var result;"
"for (var i = 0; i < 2; i++) {"
" result = [NaN];"
"}"
"result;");
}
TEST(jump_tables4) {
// Similar to test-assembler-mips jump_tables1, with extra test for branch
// trampoline required before emission of the dd table (where trampolines are
// blocked), and proper transition to long-branch mode.
// Regression test for v8:4294.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
const int kNumCases = 512;
int values[kNumCases];
isolate->random_number_generator()->NextBytes(values, sizeof(values));
Label labels[kNumCases];
Label near_start, end, done;
__ Push(ra);
__ mov(v0, zero_reg);
__ Branch(&end);
__ bind(&near_start);
// Generate slightly less than 32K instructions, which will soon require
// trampoline for branch distance fixup.
for (int i = 0; i < 32768 - 256; ++i) {
__ addiu(v0, v0, 1);
}
__ GenerateSwitchTable(a0, kNumCases,
[&labels](size_t i) { return labels + i; });
for (int i = 0; i < kNumCases; ++i) {
__ bind(&labels[i]);
__ li(v0, values[i]);
__ Branch(&done);
}
__ bind(&done);
__ Pop(ra);
__ jr(ra);
__ nop();
__ bind(&end);
__ Branch(&near_start);
CodeDesc desc;
masm->GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
F1 f = FUNCTION_CAST<F1>(code->entry());
for (int i = 0; i < kNumCases; ++i) {
int res =
reinterpret_cast<int>(CALL_GENERATED_CODE(isolate, f, i, 0, 0, 0, 0));
::printf("f(%d) = %d\n", i, res);
CHECK_EQ(values[i], res);
}
}
TEST(jump_tables5) {
if (!IsMipsArchVariant(kMips32r6)) return;
// Similar to test-assembler-mips jump_tables1, with extra test for emitting a
// compact branch instruction before emission of the dd table.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
const int kNumCases = 512;
int values[kNumCases];
isolate->random_number_generator()->NextBytes(values, sizeof(values));
Label labels[kNumCases];
Label done;
__ Push(ra);
{
__ BlockTrampolinePoolFor(kNumCases + 6 + 1);
PredictableCodeSizeScope predictable(
masm, kNumCases * kPointerSize + ((6 + 1) * Assembler::kInstrSize));
__ addiupc(at, 6 + 1);
__ Lsa(at, at, a0, 2);
__ lw(at, MemOperand(at));
__ jalr(at);
__ nop(); // Branch delay slot nop.
__ bc(&done);
// A nop instruction must be generated by the forbidden slot guard
// (Assembler::dd(Label*)).
for (int i = 0; i < kNumCases; ++i) {
__ dd(&labels[i]);
}
}
for (int i = 0; i < kNumCases; ++i) {
__ bind(&labels[i]);
__ li(v0, values[i]);
__ jr(ra);
__ nop();
}
__ bind(&done);
__ Pop(ra);
__ jr(ra);
__ nop();
CodeDesc desc;
masm->GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
F1 f = FUNCTION_CAST<F1>(code->entry());
for (int i = 0; i < kNumCases; ++i) {
int32_t res = reinterpret_cast<int32_t>(
CALL_GENERATED_CODE(isolate, f, i, 0, 0, 0, 0));
::printf("f(%d) = %d\n", i, res);
CHECK_EQ(values[i], res);
}
}
static uint32_t run_lsa(uint32_t rt, uint32_t rs, int8_t sa) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
__ Lsa(v0, a0, a1, sa);
__ jr(ra);
__ nop();
CodeDesc desc;
assembler.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F1 f = FUNCTION_CAST<F1>(code->entry());
uint32_t res = reinterpret_cast<uint32_t>(
CALL_GENERATED_CODE(isolate, f, rt, rs, 0, 0, 0));
return res;
}
TEST(Lsa) {
CcTest::InitializeVM();
struct TestCaseLsa {
int32_t rt;
int32_t rs;
uint8_t sa;
uint32_t expected_res;
};
struct TestCaseLsa tc[] = {// rt, rs, sa, expected_res
{0x4, 0x1, 1, 0x6},
{0x4, 0x1, 2, 0x8},
{0x4, 0x1, 3, 0xc},
{0x4, 0x1, 4, 0x14},
{0x4, 0x1, 5, 0x24},
{0x0, 0x1, 1, 0x2},
{0x0, 0x1, 2, 0x4},
{0x0, 0x1, 3, 0x8},
{0x0, 0x1, 4, 0x10},
{0x0, 0x1, 5, 0x20},
{0x4, 0x0, 1, 0x4},
{0x4, 0x0, 2, 0x4},
{0x4, 0x0, 3, 0x4},
{0x4, 0x0, 4, 0x4},
{0x4, 0x0, 5, 0x4},
// Shift overflow.
{0x4, INT32_MAX, 1, 0x2},
{0x4, INT32_MAX >> 1, 2, 0x0},
{0x4, INT32_MAX >> 2, 3, 0xfffffffc},
{0x4, INT32_MAX >> 3, 4, 0xfffffff4},
{0x4, INT32_MAX >> 4, 5, 0xffffffe4},
// Signed addition overflow.
{INT32_MAX - 1, 0x1, 1, 0x80000000},
{INT32_MAX - 3, 0x1, 2, 0x80000000},
{INT32_MAX - 7, 0x1, 3, 0x80000000},
{INT32_MAX - 15, 0x1, 4, 0x80000000},
{INT32_MAX - 31, 0x1, 5, 0x80000000},
// Addition overflow.
{-2, 0x1, 1, 0x0},
{-4, 0x1, 2, 0x0},
{-8, 0x1, 3, 0x0},
{-16, 0x1, 4, 0x0},
{-32, 0x1, 5, 0x0}};
size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseLsa);
for (size_t i = 0; i < nr_test_cases; ++i) {
uint32_t res = run_lsa(tc[i].rt, tc[i].rs, tc[i].sa);
PrintF("0x%x =? 0x%x == lsa(v0, %x, %x, %hhu)\n", tc[i].expected_res, res,
tc[i].rt, tc[i].rs, tc[i].sa);
CHECK_EQ(tc[i].expected_res, res);
}
}
static const std::vector<uint32_t> cvt_trunc_uint32_test_values() {
static const uint32_t kValues[] = {0x00000000, 0x00000001, 0x00ffff00,
0x7fffffff, 0x80000000, 0x80000001,
0x80ffff00, 0x8fffffff, 0xffffffff};
return std::vector<uint32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}
static const std::vector<int32_t> cvt_trunc_int32_test_values() {
static const int32_t kValues[] = {
static_cast<int32_t>(0x00000000), static_cast<int32_t>(0x00000001),
static_cast<int32_t>(0x00ffff00), static_cast<int32_t>(0x7fffffff),
static_cast<int32_t>(0x80000000), static_cast<int32_t>(0x80000001),
static_cast<int32_t>(0x80ffff00), static_cast<int32_t>(0x8fffffff),
static_cast<int32_t>(0xffffffff)};
return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}
// Helper macros that can be used in FOR_INT32_INPUTS(i) { ... *i ... }
#define FOR_INPUTS(ctype, itype, var, test_vector) \
std::vector<ctype> var##_vec = test_vector(); \
for (std::vector<ctype>::iterator var = var##_vec.begin(); \
var != var##_vec.end(); ++var)
#define FOR_INPUTS2(ctype, itype, var, var2, test_vector) \
std::vector<ctype> var##_vec = test_vector(); \
std::vector<ctype>::iterator var; \
std::vector<ctype>::reverse_iterator var2; \
for (var = var##_vec.begin(), var2 = var##_vec.rbegin(); \
var != var##_vec.end(); ++var, ++var2)
#define FOR_ENUM_INPUTS(var, type, test_vector) \
FOR_INPUTS(enum type, type, var, test_vector)
#define FOR_STRUCT_INPUTS(var, type, test_vector) \
FOR_INPUTS(struct type, type, var, test_vector)
#define FOR_UINT32_INPUTS(var, test_vector) \
FOR_INPUTS(uint32_t, uint32, var, test_vector)
#define FOR_INT32_INPUTS(var, test_vector) \
FOR_INPUTS(int32_t, int32, var, test_vector)
#define FOR_INT32_INPUTS2(var, var2, test_vector) \
FOR_INPUTS2(int32_t, int32, var, var2, test_vector)
#define FOR_UINT64_INPUTS(var, test_vector) \
FOR_INPUTS(uint64_t, uint32, var, test_vector)
template <typename RET_TYPE, typename IN_TYPE, typename Func>
RET_TYPE run_Cvt(IN_TYPE x, Func GenerateConvertInstructionFunc) {
typedef RET_TYPE (*F_CVT)(IN_TYPE x0, int x1, int x2, int x3, int x4);
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assm;
__ mtc1(a0, f4);
GenerateConvertInstructionFunc(masm);
__ mfc1(v0, f2);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F_CVT f = FUNCTION_CAST<F_CVT>(code->entry());
return reinterpret_cast<RET_TYPE>(
CALL_GENERATED_CODE(isolate, f, x, 0, 0, 0, 0));
}
TEST(cvt_s_w_Trunc_uw_s) {
CcTest::InitializeVM();
FOR_UINT32_INPUTS(i, cvt_trunc_uint32_test_values) {
uint32_t input = *i;
CHECK_EQ(static_cast<float>(input),
run_Cvt<uint32_t>(input, [](MacroAssembler* masm) {
__ cvt_s_w(f0, f4);
__ Trunc_uw_s(f2, f0, f1);
}));
}
}
TEST(cvt_d_w_Trunc_w_d) {
CcTest::InitializeVM();
FOR_INT32_INPUTS(i, cvt_trunc_int32_test_values) {
int32_t input = *i;
CHECK_EQ(static_cast<double>(input),
run_Cvt<int32_t>(input, [](MacroAssembler* masm) {
__ cvt_d_w(f0, f4);
__ Trunc_w_d(f2, f0);
}));
}
}
static const std::vector<int32_t> overflow_int32_test_values() {
static const int32_t kValues[] = {
static_cast<int32_t>(0xf0000000), static_cast<int32_t>(0x00000001),
static_cast<int32_t>(0xff000000), static_cast<int32_t>(0x0000f000),
static_cast<int32_t>(0x0f000000), static_cast<int32_t>(0x991234ab),
static_cast<int32_t>(0xb0ffff01), static_cast<int32_t>(0x00006fff),
static_cast<int32_t>(0xffffffff)};
return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}
enum OverflowBranchType {
kAddBranchOverflow,
kSubBranchOverflow,
};
struct OverflowRegisterCombination {
Register dst;
Register left;
Register right;
Register scratch;
};
static const std::vector<enum OverflowBranchType> overflow_branch_type() {
static const enum OverflowBranchType kValues[] = {kAddBranchOverflow,
kSubBranchOverflow};
return std::vector<enum OverflowBranchType>(&kValues[0],
&kValues[arraysize(kValues)]);
}
static const std::vector<struct OverflowRegisterCombination>
overflow_register_combination() {
static const struct OverflowRegisterCombination kValues[] = {
{t0, t1, t2, t3}, {t0, t0, t2, t3}, {t0, t1, t0, t3}, {t0, t1, t1, t3}};
return std::vector<struct OverflowRegisterCombination>(
&kValues[0], &kValues[arraysize(kValues)]);
}
template <typename T>
static bool IsAddOverflow(T x, T y) {
DCHECK(std::numeric_limits<T>::is_integer);
T max = std::numeric_limits<T>::max();
T min = std::numeric_limits<T>::min();
return (x > 0 && y > (max - x)) || (x < 0 && y < (min - x));
}
template <typename T>
static bool IsSubOverflow(T x, T y) {
DCHECK(std::numeric_limits<T>::is_integer);
T max = std::numeric_limits<T>::max();
T min = std::numeric_limits<T>::min();
return (y > 0 && x < (min + y)) || (y < 0 && x > (max + y));
}
template <typename IN_TYPE, typename Func>
static bool runOverflow(IN_TYPE valLeft, IN_TYPE valRight,
Func GenerateOverflowInstructions) {
typedef int32_t (*F_CVT)(char* x0, int x1, int x2, int x3, int x4);
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assm;
GenerateOverflowInstructions(masm, valLeft, valRight);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F_CVT f = FUNCTION_CAST<F_CVT>(code->entry());
int32_t r =
reinterpret_cast<int32_t>(CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
DCHECK(r == 0 || r == 1);
return r;
}
TEST(BranchOverflowInt32BothLabels) {
FOR_INT32_INPUTS(i, overflow_int32_test_values) {
FOR_INT32_INPUTS(j, overflow_int32_test_values) {
FOR_ENUM_INPUTS(br, OverflowBranchType, overflow_branch_type) {
FOR_STRUCT_INPUTS(regComb, OverflowRegisterCombination,
overflow_register_combination) {
int32_t ii = *i;
int32_t jj = *j;
enum OverflowBranchType branchType = *br;
struct OverflowRegisterCombination rc = *regComb;
// If left and right register are same then left and right
// test values must also be same, otherwise we skip the test
if (rc.left.code() == rc.right.code()) {
if (ii != jj) {
continue;
}
}
bool res1 = runOverflow<int32_t>(
ii, jj, [branchType, rc](MacroAssembler* masm, int32_t valLeft,
int32_t valRight) {
Label overflow, no_overflow, end;
__ li(rc.left, valLeft);
__ li(rc.right, valRight);
switch (branchType) {
case kAddBranchOverflow:
__ AddBranchOvf(rc.dst, rc.left, rc.right, &overflow,
&no_overflow, rc.scratch);
break;
case kSubBranchOverflow:
__ SubBranchOvf(rc.dst, rc.left, rc.right, &overflow,
&no_overflow, rc.scratch);
break;
}
__ li(v0, 2);
__ Branch(&end);
__ bind(&overflow);
__ li(v0, 1);
__ Branch(&end);
__ bind(&no_overflow);
__ li(v0, 0);
__ bind(&end);
});
bool res2 = runOverflow<int32_t>(
ii, jj, [branchType, rc](MacroAssembler* masm, int32_t valLeft,
int32_t valRight) {
Label overflow, no_overflow, end;
__ li(rc.left, valLeft);
switch (branchType) {
case kAddBranchOverflow:
__ AddBranchOvf(rc.dst, rc.left, Operand(valRight),
&overflow, &no_overflow, rc.scratch);
break;
case kSubBranchOverflow:
__ SubBranchOvf(rc.dst, rc.left, Operand(valRight),
&overflow, &no_overflow, rc.scratch);
break;
}
__ li(v0, 2);
__ Branch(&end);
__ bind(&overflow);
__ li(v0, 1);
__ Branch(&end);
__ bind(&no_overflow);
__ li(v0, 0);
__ bind(&end);
});
switch (branchType) {
case kAddBranchOverflow:
CHECK_EQ(IsAddOverflow<int32_t>(ii, jj), res1);
CHECK_EQ(IsAddOverflow<int32_t>(ii, jj), res2);
break;
case kSubBranchOverflow:
CHECK_EQ(IsSubOverflow<int32_t>(ii, jj), res1);
CHECK_EQ(IsSubOverflow<int32_t>(ii, jj), res2);
break;
default:
UNREACHABLE();
}
}
}
}
}
}
TEST(BranchOverflowInt32LeftLabel) {
FOR_INT32_INPUTS(i, overflow_int32_test_values) {
FOR_INT32_INPUTS(j, overflow_int32_test_values) {
FOR_ENUM_INPUTS(br, OverflowBranchType, overflow_branch_type) {
FOR_STRUCT_INPUTS(regComb, OverflowRegisterCombination,
overflow_register_combination) {
int32_t ii = *i;
int32_t jj = *j;
enum OverflowBranchType branchType = *br;
struct OverflowRegisterCombination rc = *regComb;
// If left and right register are same then left and right
// test values must also be same, otherwise we skip the test
if (rc.left.code() == rc.right.code()) {
if (ii != jj) {
continue;
}
}
bool res1 = runOverflow<int32_t>(
ii, jj, [branchType, rc](MacroAssembler* masm, int32_t valLeft,
int32_t valRight) {
Label overflow, end;
__ li(rc.left, valLeft);
__ li(rc.right, valRight);
switch (branchType) {
case kAddBranchOverflow:
__ AddBranchOvf(rc.dst, rc.left, rc.right, &overflow, NULL,
rc.scratch);
break;
case kSubBranchOverflow:
__ SubBranchOvf(rc.dst, rc.left, rc.right, &overflow, NULL,
rc.scratch);
break;
}
__ li(v0, 0);
__ Branch(&end);
__ bind(&overflow);
__ li(v0, 1);
__ bind(&end);
});
bool res2 = runOverflow<int32_t>(
ii, jj, [branchType, rc](MacroAssembler* masm, int32_t valLeft,
int32_t valRight) {
Label overflow, end;
__ li(rc.left, valLeft);
switch (branchType) {
case kAddBranchOverflow:
__ AddBranchOvf(rc.dst, rc.left, Operand(valRight),
&overflow, NULL, rc.scratch);
break;
case kSubBranchOverflow:
__ SubBranchOvf(rc.dst, rc.left, Operand(valRight),
&overflow, NULL, rc.scratch);
break;
}
__ li(v0, 0);
__ Branch(&end);
__ bind(&overflow);
__ li(v0, 1);
__ bind(&end);
});
switch (branchType) {
case kAddBranchOverflow:
CHECK_EQ(IsAddOverflow<int32_t>(ii, jj), res1);
CHECK_EQ(IsAddOverflow<int32_t>(ii, jj), res2);
break;
case kSubBranchOverflow:
CHECK_EQ(IsSubOverflow<int32_t>(ii, jj), res1);
CHECK_EQ(IsSubOverflow<int32_t>(ii, jj), res2);
break;
default:
UNREACHABLE();
}
}
}
}
}
}
TEST(BranchOverflowInt32RightLabel) {
FOR_INT32_INPUTS(i, overflow_int32_test_values) {
FOR_INT32_INPUTS(j, overflow_int32_test_values) {
FOR_ENUM_INPUTS(br, OverflowBranchType, overflow_branch_type) {
FOR_STRUCT_INPUTS(regComb, OverflowRegisterCombination,
overflow_register_combination) {
int32_t ii = *i;
int32_t jj = *j;
enum OverflowBranchType branchType = *br;
struct OverflowRegisterCombination rc = *regComb;
// If left and right register are same then left and right
// test values must also be same, otherwise we skip the test
if (rc.left.code() == rc.right.code()) {
if (ii != jj) {
continue;
}
}
bool res1 = runOverflow<int32_t>(
ii, jj, [branchType, rc](MacroAssembler* masm, int32_t valLeft,
int32_t valRight) {
Label no_overflow, end;
__ li(rc.left, valLeft);
__ li(rc.right, valRight);
switch (branchType) {
case kAddBranchOverflow:
__ AddBranchOvf(rc.dst, rc.left, rc.right, NULL,
&no_overflow, rc.scratch);
break;
case kSubBranchOverflow:
__ SubBranchOvf(rc.dst, rc.left, rc.right, NULL,
&no_overflow, rc.scratch);
break;
}
__ li(v0, 1);
__ Branch(&end);
__ bind(&no_overflow);
__ li(v0, 0);
__ bind(&end);
});
bool res2 = runOverflow<int32_t>(
ii, jj, [branchType, rc](MacroAssembler* masm, int32_t valLeft,
int32_t valRight) {
Label no_overflow, end;
__ li(rc.left, valLeft);
switch (branchType) {
case kAddBranchOverflow:
__ AddBranchOvf(rc.dst, rc.left, Operand(valRight), NULL,
&no_overflow, rc.scratch);
break;
case kSubBranchOverflow:
__ SubBranchOvf(rc.dst, rc.left, Operand(valRight), NULL,
&no_overflow, rc.scratch);
break;
}
__ li(v0, 1);
__ Branch(&end);
__ bind(&no_overflow);
__ li(v0, 0);
__ bind(&end);
});
switch (branchType) {
case kAddBranchOverflow:
CHECK_EQ(IsAddOverflow<int32_t>(ii, jj), res1);
CHECK_EQ(IsAddOverflow<int32_t>(ii, jj), res2);
break;
case kSubBranchOverflow:
CHECK_EQ(IsSubOverflow<int32_t>(ii, jj), res1);
CHECK_EQ(IsSubOverflow<int32_t>(ii, jj), res2);
break;
default:
UNREACHABLE();
}
}
}
}
}
}
TEST(min_max_nan) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
struct TestFloat {
double a;
double b;
double c;
double d;
float e;
float f;
float g;
float h;
};
TestFloat test;
const double dnan = std::numeric_limits<double>::quiet_NaN();
const double dinf = std::numeric_limits<double>::infinity();
const double dminf = -std::numeric_limits<double>::infinity();
const float fnan = std::numeric_limits<float>::quiet_NaN();
const float finf = std::numeric_limits<float>::infinity();
const float fminf = std::numeric_limits<float>::infinity();
const int kTableLength = 13;
double inputsa[kTableLength] = {2.0, 3.0, -0.0, 0.0, 42.0, dinf, dminf,
dinf, dnan, 3.0, dinf, dnan, dnan};
double inputsb[kTableLength] = {3.0, 2.0, 0.0, -0.0, dinf, 42.0, dinf,
dminf, 3.0, dnan, dnan, dinf, dnan};
double outputsdmin[kTableLength] = {2.0, 2.0, -0.0, -0.0, 42.0,
42.0, dminf, dminf, dnan, dnan,
dnan, dnan, dnan};
double outputsdmax[kTableLength] = {3.0, 3.0, 0.0, 0.0, dinf, dinf, dinf,
dinf, dnan, dnan, dnan, dnan, dnan};
float inputse[kTableLength] = {2.0, 3.0, -0.0, 0.0, 42.0, finf, fminf,
finf, fnan, 3.0, finf, fnan, fnan};
float inputsf[kTableLength] = {3.0, 2.0, 0.0, -0.0, finf, 42.0, finf,
fminf, 3.0, fnan, fnan, finf, fnan};
float outputsfmin[kTableLength] = {2.0, 2.0, -0.0, -0.0, 42.0, 42.0, fminf,
fminf, fnan, fnan, fnan, fnan, fnan};
float outputsfmax[kTableLength] = {3.0, 3.0, 0.0, 0.0, finf, finf, finf,
finf, fnan, fnan, fnan, fnan, fnan};
auto handle_dnan = [masm](FPURegister dst, Label* nan, Label* back) {
__ bind(nan);
__ LoadRoot(at, Heap::kNanValueRootIndex);
__ ldc1(dst, FieldMemOperand(at, HeapNumber::kValueOffset));
__ Branch(back);
};
auto handle_snan = [masm, fnan](FPURegister dst, Label* nan, Label* back) {
__ bind(nan);
__ Move(dst, fnan);
__ Branch(back);
};
Label handle_mind_nan, handle_maxd_nan, handle_mins_nan, handle_maxs_nan;
Label back_mind_nan, back_maxd_nan, back_mins_nan, back_maxs_nan;
__ push(s6);
__ InitializeRootRegister();
__ ldc1(f4, MemOperand(a0, offsetof(TestFloat, a)));
__ ldc1(f8, MemOperand(a0, offsetof(TestFloat, b)));
__ lwc1(f2, MemOperand(a0, offsetof(TestFloat, e)));
__ lwc1(f6, MemOperand(a0, offsetof(TestFloat, f)));
__ MinNaNCheck_d(f10, f4, f8, &handle_mind_nan);
__ bind(&back_mind_nan);
__ MaxNaNCheck_d(f12, f4, f8, &handle_maxd_nan);
__ bind(&back_maxd_nan);
__ MinNaNCheck_s(f14, f2, f6, &handle_mins_nan);
__ bind(&back_mins_nan);
__ MaxNaNCheck_s(f16, f2, f6, &handle_maxs_nan);
__ bind(&back_maxs_nan);
__ sdc1(f10, MemOperand(a0, offsetof(TestFloat, c)));
__ sdc1(f12, MemOperand(a0, offsetof(TestFloat, d)));
__ swc1(f14, MemOperand(a0, offsetof(TestFloat, g)));
__ swc1(f16, MemOperand(a0, offsetof(TestFloat, h)));
__ pop(s6);
__ jr(ra);
__ nop();
handle_dnan(f10, &handle_mind_nan, &back_mind_nan);
handle_dnan(f12, &handle_maxd_nan, &back_maxd_nan);
handle_snan(f14, &handle_mins_nan, &back_mins_nan);
handle_snan(f16, &handle_maxs_nan, &back_maxs_nan);
CodeDesc desc;
masm->GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
::F3 f = FUNCTION_CAST<::F3>(code->entry());
for (int i = 0; i < kTableLength; i++) {
test.a = inputsa[i];
test.b = inputsb[i];
test.e = inputse[i];
test.f = inputsf[i];
CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0);
CHECK_EQ(0, memcmp(&test.c, &outputsdmin[i], sizeof(test.c)));
CHECK_EQ(0, memcmp(&test.d, &outputsdmax[i], sizeof(test.d)));
CHECK_EQ(0, memcmp(&test.g, &outputsfmin[i], sizeof(test.g)));
CHECK_EQ(0, memcmp(&test.h, &outputsfmax[i], sizeof(test.h)));
}
}
template <typename IN_TYPE, typename Func>
bool run_Unaligned(char* memory_buffer, int32_t in_offset, int32_t out_offset,
IN_TYPE value, Func GenerateUnalignedInstructionFunc) {
typedef int32_t (*F_CVT)(char* x0, int x1, int x2, int x3, int x4);
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assm;
IN_TYPE res;
GenerateUnalignedInstructionFunc(masm, in_offset, out_offset);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F_CVT f = FUNCTION_CAST<F_CVT>(code->entry());
MemCopy(memory_buffer + in_offset, &value, sizeof(IN_TYPE));
CALL_GENERATED_CODE(isolate, f, memory_buffer, 0, 0, 0, 0);
MemCopy(&res, memory_buffer + out_offset, sizeof(IN_TYPE));
return res == value;
}
static const std::vector<uint64_t> unsigned_test_values() {
static const uint64_t kValues[] = {
0x2180f18a06384414, 0x000a714532102277, 0xbc1acccf180649f0,
0x8000000080008000, 0x0000000000000001, 0xffffffffffffffff,
};
return std::vector<uint64_t>(&kValues[0], &kValues[arraysize(kValues)]);
}
static const std::vector<int32_t> unsigned_test_offset() {
static const int32_t kValues[] = {// value, offset
-132 * KB, -21 * KB, 0, 19 * KB, 135 * KB};
return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}
static const std::vector<int32_t> unsigned_test_offset_increment() {
static const int32_t kValues[] = {-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5};
return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}
TEST(Ulh) {
CcTest::InitializeVM();
static const int kBufferSize = 300 * KB;
char memory_buffer[kBufferSize];
char* buffer_middle = memory_buffer + (kBufferSize / 2);
FOR_UINT64_INPUTS(i, unsigned_test_values) {
FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
uint16_t value = static_cast<uint64_t>(*i & 0xFFFF);
int32_t in_offset = *j1 + *k1;
int32_t out_offset = *j2 + *k2;
CHECK_EQ(true, run_Unaligned<uint16_t>(
buffer_middle, in_offset, out_offset, value,
[](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
__ Ulh(v0, MemOperand(a0, in_offset));
__ Ush(v0, MemOperand(a0, out_offset), v0);
}));
CHECK_EQ(true, run_Unaligned<uint16_t>(
buffer_middle, in_offset, out_offset, value,
[](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
__ mov(t0, a0);
__ Ulh(a0, MemOperand(a0, in_offset));
__ Ush(a0, MemOperand(t0, out_offset), v0);
}));
CHECK_EQ(true, run_Unaligned<uint16_t>(
buffer_middle, in_offset, out_offset, value,
[](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
__ mov(t0, a0);
__ Ulhu(a0, MemOperand(a0, in_offset));
__ Ush(a0, MemOperand(t0, out_offset), t1);
}));
CHECK_EQ(true, run_Unaligned<uint16_t>(
buffer_middle, in_offset, out_offset, value,
[](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
__ Ulhu(v0, MemOperand(a0, in_offset));
__ Ush(v0, MemOperand(a0, out_offset), t1);
}));
}
}
}
}
TEST(Ulh_bitextension) {
CcTest::InitializeVM();
static const int kBufferSize = 300 * KB;
char memory_buffer[kBufferSize];
char* buffer_middle = memory_buffer + (kBufferSize / 2);
FOR_UINT64_INPUTS(i, unsigned_test_values) {
FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
uint16_t value = static_cast<uint64_t>(*i & 0xFFFF);
int32_t in_offset = *j1 + *k1;
int32_t out_offset = *j2 + *k2;
CHECK_EQ(true, run_Unaligned<uint16_t>(
buffer_middle, in_offset, out_offset, value,
[](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
Label success, fail, end, different;
__ Ulh(t0, MemOperand(a0, in_offset));
__ Ulhu(t1, MemOperand(a0, in_offset));
__ Branch(&different, ne, t0, Operand(t1));
// If signed and unsigned values are same, check
// the upper bits to see if they are zero
__ sra(t0, t0, 15);
__ Branch(&success, eq, t0, Operand(zero_reg));
__ Branch(&fail);
// If signed and unsigned values are different,
// check that the upper bits are complementary
__ bind(&different);
__ sra(t1, t1, 15);
__ Branch(&fail, ne, t1, Operand(1));
__ sra(t0, t0, 15);
__ addiu(t0, t0, 1);
__ Branch(&fail, ne, t0, Operand(zero_reg));
// Fall through to success
__ bind(&success);
__ Ulh(t0, MemOperand(a0, in_offset));
__ Ush(t0, MemOperand(a0, out_offset), v0);
__ Branch(&end);
__ bind(&fail);
__ Ush(zero_reg, MemOperand(a0, out_offset), v0);
__ bind(&end);
}));
}
}
}
}
TEST(Ulw) {
CcTest::InitializeVM();
static const int kBufferSize = 300 * KB;
char memory_buffer[kBufferSize];
char* buffer_middle = memory_buffer + (kBufferSize / 2);
FOR_UINT64_INPUTS(i, unsigned_test_values) {
FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
uint32_t value = static_cast<uint32_t>(*i & 0xFFFFFFFF);
int32_t in_offset = *j1 + *k1;
int32_t out_offset = *j2 + *k2;
CHECK_EQ(true, run_Unaligned<uint32_t>(
buffer_middle, in_offset, out_offset, value,
[](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
__ Ulw(v0, MemOperand(a0, in_offset));
__ Usw(v0, MemOperand(a0, out_offset));
}));
CHECK_EQ(true,
run_Unaligned<uint32_t>(
buffer_middle, in_offset, out_offset, (uint32_t)value,
[](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
__ mov(t0, a0);
__ Ulw(a0, MemOperand(a0, in_offset));
__ Usw(a0, MemOperand(t0, out_offset));
}));
}
}
}
}
TEST(Ulwc1) {
CcTest::InitializeVM();
static const int kBufferSize = 300 * KB;
char memory_buffer[kBufferSize];
char* buffer_middle = memory_buffer + (kBufferSize / 2);
FOR_UINT64_INPUTS(i, unsigned_test_values) {
FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
float value = static_cast<float>(*i & 0xFFFFFFFF);
int32_t in_offset = *j1 + *k1;
int32_t out_offset = *j2 + *k2;
CHECK_EQ(true, run_Unaligned<float>(
buffer_middle, in_offset, out_offset, value,
[](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
__ Ulwc1(f0, MemOperand(a0, in_offset), t0);
__ Uswc1(f0, MemOperand(a0, out_offset), t0);
}));
}
}
}
}
TEST(Uldc1) {
CcTest::InitializeVM();
static const int kBufferSize = 300 * KB;
char memory_buffer[kBufferSize];
char* buffer_middle = memory_buffer + (kBufferSize / 2);
FOR_UINT64_INPUTS(i, unsigned_test_values) {
FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
double value = static_cast<double>(*i);
int32_t in_offset = *j1 + *k1;
int32_t out_offset = *j2 + *k2;
CHECK_EQ(true, run_Unaligned<double>(
buffer_middle, in_offset, out_offset, value,
[](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
__ Uldc1(f0, MemOperand(a0, in_offset), t0);
__ Usdc1(f0, MemOperand(a0, out_offset), t0);
}));
}
}
}
}
#undef __