普通文本  |  5390行  |  159.29 KB

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include <iostream>  // NOLINT(readability/streams)

#include "src/v8.h"

#include "src/base/utils/random-number-generator.h"
#include "src/disassembler.h"
#include "src/factory.h"
#include "src/macro-assembler.h"
#include "src/mips/macro-assembler-mips.h"
#include "src/mips/simulator-mips.h"

#include "test/cctest/cctest.h"


using namespace v8::internal;


// Define these function prototypes to match JSEntryFunction in execution.cc.
typedef Object* (*F1)(int x, int p1, int p2, int p3, int p4);
typedef Object* (*F2)(int x, int y, int p2, int p3, int p4);
typedef Object* (*F3)(void* p, int p1, int p2, int p3, int p4);


#define __ assm.

TEST(MIPS0) {
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);

  MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);

  // Addition.
  __ addu(v0, a0, a1);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
  F2 f = FUNCTION_CAST<F2>(code->entry());
  int res = reinterpret_cast<int>(
      CALL_GENERATED_CODE(isolate, f, 0xab0, 0xc, 0, 0, 0));
  CHECK_EQ(static_cast<int32_t>(0xabc), res);
}


TEST(MIPS1) {
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);

  MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
  Label L, C;

  __ mov(a1, a0);
  __ li(v0, 0);
  __ b(&C);
  __ nop();

  __ bind(&L);
  __ addu(v0, v0, a1);
  __ addiu(a1, a1, -1);

  __ bind(&C);
  __ xori(v1, a1, 0);
  __ Branch(&L, ne, v1, Operand(0));
  __ nop();

  __ jr(ra);
  __ nop();

  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
  F1 f = FUNCTION_CAST<F1>(code->entry());
  int res = reinterpret_cast<int>(
      CALL_GENERATED_CODE(isolate, f, 50, 0, 0, 0, 0));
  CHECK_EQ(1275, res);
}


TEST(MIPS2) {
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);

  MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);

  Label exit, error;

  // ----- Test all instructions.

  // Test lui, ori, and addiu, used in the li pseudo-instruction.
  // This way we can then safely load registers with chosen values.

  __ ori(t0, zero_reg, 0);
  __ lui(t0, 0x1234);
  __ ori(t0, t0, 0);
  __ ori(t0, t0, 0x0f0f);
  __ ori(t0, t0, 0xf0f0);
  __ addiu(t1, t0, 1);
  __ addiu(t2, t1, -0x10);

  // Load values in temporary registers.
  __ li(t0, 0x00000004);
  __ li(t1, 0x00001234);
  __ li(t2, 0x12345678);
  __ li(t3, 0x7fffffff);
  __ li(t4, 0xfffffffc);
  __ li(t5, 0xffffedcc);
  __ li(t6, 0xedcba988);
  __ li(t7, 0x80000000);

  // SPECIAL class.
  __ srl(v0, t2, 8);    // 0x00123456
  __ sll(v0, v0, 11);   // 0x91a2b000
  __ sra(v0, v0, 3);    // 0xf2345600
  __ srav(v0, v0, t0);  // 0xff234560
  __ sllv(v0, v0, t0);  // 0xf2345600
  __ srlv(v0, v0, t0);  // 0x0f234560
  __ Branch(&error, ne, v0, Operand(0x0f234560));
  __ nop();

  __ addu(v0, t0, t1);   // 0x00001238
  __ subu(v0, v0, t0);  // 0x00001234
  __ Branch(&error, ne, v0, Operand(0x00001234));
  __ nop();
  __ addu(v1, t3, t0);
  __ Branch(&error, ne, v1, Operand(0x80000003));
  __ nop();
  __ subu(v1, t7, t0);  // 0x7ffffffc
  __ Branch(&error, ne, v1, Operand(0x7ffffffc));
  __ nop();

  __ and_(v0, t1, t2);  // 0x00001230
  __ or_(v0, v0, t1);   // 0x00001234
  __ xor_(v0, v0, t2);  // 0x1234444c
  __ nor(v0, v0, t2);   // 0xedcba987
  __ Branch(&error, ne, v0, Operand(0xedcba983));
  __ nop();

  __ slt(v0, t7, t3);
  __ Branch(&error, ne, v0, Operand(0x1));
  __ nop();
  __ sltu(v0, t7, t3);
  __ Branch(&error, ne, v0, Operand(zero_reg));
  __ nop();
  // End of SPECIAL class.

  __ addiu(v0, zero_reg, 0x7421);  // 0x00007421
  __ addiu(v0, v0, -0x1);  // 0x00007420
  __ addiu(v0, v0, -0x20);  // 0x00007400
  __ Branch(&error, ne, v0, Operand(0x00007400));
  __ nop();
  __ addiu(v1, t3, 0x1);  // 0x80000000
  __ Branch(&error, ne, v1, Operand(0x80000000));
  __ nop();

  __ slti(v0, t1, 0x00002000);  // 0x1
  __ slti(v0, v0, 0xffff8000);  // 0x0
  __ Branch(&error, ne, v0, Operand(zero_reg));
  __ nop();
  __ sltiu(v0, t1, 0x00002000);  // 0x1
  __ sltiu(v0, v0, 0x00008000);  // 0x1
  __ Branch(&error, ne, v0, Operand(0x1));
  __ nop();

  __ andi(v0, t1, 0xf0f0);  // 0x00001030
  __ ori(v0, v0, 0x8a00);  // 0x00009a30
  __ xori(v0, v0, 0x83cc);  // 0x000019fc
  __ Branch(&error, ne, v0, Operand(0x000019fc));
  __ nop();
  __ lui(v1, 0x8123);  // 0x81230000
  __ Branch(&error, ne, v1, Operand(0x81230000));
  __ nop();

  // Bit twiddling instructions & conditional moves.
  // Uses t0-t7 as set above.
  __ Clz(v0, t0);       // 29
  __ Clz(v1, t1);       // 19
  __ addu(v0, v0, v1);  // 48
  __ Clz(v1, t2);       // 3
  __ addu(v0, v0, v1);  // 51
  __ Clz(v1, t7);       // 0
  __ addu(v0, v0, v1);  // 51
  __ Branch(&error, ne, v0, Operand(51));
  __ Movn(a0, t3, t0);  // Move a0<-t3 (t0 is NOT 0).
  __ Ins(a0, t1, 12, 8);  // 0x7ff34fff
  __ Branch(&error, ne, a0, Operand(0x7ff34fff));
  __ Movz(a0, t6, t7);    // a0 not updated (t7 is NOT 0).
  __ Ext(a1, a0, 8, 12);  // 0x34f
  __ Branch(&error, ne, a1, Operand(0x34f));
  __ Movz(a0, t6, v1);    // a0<-t6, v0 is 0, from 8 instr back.
  __ Branch(&error, ne, a0, Operand(t6));

  // Everything was correctly executed. Load the expected result.
  __ li(v0, 0x31415926);
  __ b(&exit);
  __ nop();

  __ bind(&error);
  // Got an error. Return a wrong result.
  __ li(v0, 666);

  __ bind(&exit);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
  F2 f = FUNCTION_CAST<F2>(code->entry());
  int res = reinterpret_cast<int>(
      CALL_GENERATED_CODE(isolate, f, 0xab0, 0xc, 0, 0, 0));
  CHECK_EQ(static_cast<int32_t>(0x31415926), res);
}


TEST(MIPS3) {
  // Test floating point instructions.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);

  typedef struct {
    double a;
    double b;
    double c;
    double d;
    double e;
    double f;
    double g;
    double h;
    double i;
    float fa;
    float fb;
    float fc;
    float fd;
    float fe;
    float ff;
    float fg;
  } T;
  T t;

  // Create a function that accepts &t, and loads, manipulates, and stores
  // the doubles t.a ... t.f.
  MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
  Label L, C;

  // Double precision floating point instructions.
  __ ldc1(f4, MemOperand(a0, offsetof(T, a)) );
  __ ldc1(f6, MemOperand(a0, offsetof(T, b)) );
  __ add_d(f8, f4, f6);
  __ sdc1(f8, MemOperand(a0, offsetof(T, c)) );  // c = a + b.

  __ mov_d(f10, f8);  // c
  __ neg_d(f12, f6);  // -b
  __ sub_d(f10, f10, f12);
  __ sdc1(f10, MemOperand(a0, offsetof(T, d)) );  // d = c - (-b).

  __ sdc1(f4, MemOperand(a0, offsetof(T, b)) );   // b = a.

  __ li(t0, 120);
  __ mtc1(t0, f14);
  __ cvt_d_w(f14, f14);   // f14 = 120.0.
  __ mul_d(f10, f10, f14);
  __ sdc1(f10, MemOperand(a0, offsetof(T, e)) );  // e = d * 120 = 1.8066e16.

  __ div_d(f12, f10, f4);
  __ sdc1(f12, MemOperand(a0, offsetof(T, f)) );  // f = e / a = 120.44.

  __ sqrt_d(f14, f12);
  __ sdc1(f14, MemOperand(a0, offsetof(T, g)) );
  // g = sqrt(f) = 10.97451593465515908537

  if (IsMipsArchVariant(kMips32r2)) {
    __ ldc1(f4, MemOperand(a0, offsetof(T, h)) );
    __ ldc1(f6, MemOperand(a0, offsetof(T, i)) );
    __ madd_d(f14, f6, f4, f6);
    __ sdc1(f14, MemOperand(a0, offsetof(T, h)) );
  }

  // Single precision floating point instructions.
  __ lwc1(f4, MemOperand(a0, offsetof(T, fa)) );
  __ lwc1(f6, MemOperand(a0, offsetof(T, fb)) );
  __ add_s(f8, f4, f6);
  __ swc1(f8, MemOperand(a0, offsetof(T, fc)) );  // fc = fa + fb.

  __ neg_s(f10, f6);  // -fb
  __ sub_s(f10, f8, f10);
  __ swc1(f10, MemOperand(a0, offsetof(T, fd)) );  // fd = fc - (-fb).

  __ swc1(f4, MemOperand(a0, offsetof(T, fb)) );   // fb = fa.

  __ li(t0, 120);
  __ mtc1(t0, f14);
  __ cvt_s_w(f14, f14);   // f14 = 120.0.
  __ mul_s(f10, f10, f14);
  __ swc1(f10, MemOperand(a0, offsetof(T, fe)) );  // fe = fd * 120

  __ div_s(f12, f10, f4);
  __ swc1(f12, MemOperand(a0, offsetof(T, ff)) );  // ff = fe / fa

  __ sqrt_s(f14, f12);
  __ swc1(f14, MemOperand(a0, offsetof(T, fg)) );

  __ jr(ra);
  __ nop();

  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
  F3 f = FUNCTION_CAST<F3>(code->entry());
  // Double test values.
  t.a = 1.5e14;
  t.b = 2.75e11;
  t.c = 0.0;
  t.d = 0.0;
  t.e = 0.0;
  t.f = 0.0;
  t.h = 1.5;
  t.i = 2.75;
  // Single test values.
  t.fa = 1.5e6;
  t.fb = 2.75e4;
  t.fc = 0.0;
  t.fd = 0.0;
  t.fe = 0.0;
  t.ff = 0.0;
  Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
  USE(dummy);
  // Expected double results.
  CHECK_EQ(1.5e14, t.a);
  CHECK_EQ(1.5e14, t.b);
  CHECK_EQ(1.50275e14, t.c);
  CHECK_EQ(1.50550e14, t.d);
  CHECK_EQ(1.8066e16, t.e);
  CHECK_EQ(120.44, t.f);
  CHECK_EQ(10.97451593465515908537, t.g);
  if (IsMipsArchVariant(kMips32r2)) {
    CHECK_EQ(6.875, t.h);
  }
  // Expected single results.
  CHECK_EQ(1.5e6, t.fa);
  CHECK_EQ(1.5e6, t.fb);
  CHECK_EQ(1.5275e06, t.fc);
  CHECK_EQ(1.5550e06, t.fd);
  CHECK_EQ(1.866e08, t.fe);
  CHECK_EQ(124.40000152587890625, t.ff);
  CHECK_EQ(11.1534748077392578125, t.fg);
}


TEST(MIPS4) {
  // Exchange between GP anf FP registers is done through memory
  // on FPXX compiled binaries and architectures that do not support
  // MTHC1 and MTFC1. If this is the case, skipping this test.
  if (IsFpxxMode() &&
      (IsMipsArchVariant(kMips32r1) || IsMipsArchVariant(kLoongson))) {
    return;
  }

  // Test moves between floating point and integer registers.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);

  typedef struct {
    double a;
    double b;
    double c;
  } T;
  T t;

  Assembler assm(isolate, NULL, 0);
  Label L, C;

  __ ldc1(f4, MemOperand(a0, offsetof(T, a)) );
  __ ldc1(f6, MemOperand(a0, offsetof(T, b)) );

  // Swap f4 and f6, by using four integer registers, t0-t3.
  if (IsFp32Mode()) {
    __ mfc1(t0, f4);
    __ mfc1(t1, f5);
    __ mfc1(t2, f6);
    __ mfc1(t3, f7);

    __ mtc1(t0, f6);
    __ mtc1(t1, f7);
    __ mtc1(t2, f4);
    __ mtc1(t3, f5);
  } else {
    CHECK(!IsMipsArchVariant(kMips32r1) && !IsMipsArchVariant(kLoongson));
    DCHECK(IsFp64Mode() || IsFpxxMode());
    __ mfc1(t0, f4);
    __ mfhc1(t1, f4);
    __ mfc1(t2, f6);
    __ mfhc1(t3, f6);

    __ mtc1(t0, f6);
    __ mthc1(t1, f6);
    __ mtc1(t2, f4);
    __ mthc1(t3, f4);
  }

  // Store the swapped f4 and f5 back to memory.
  __ sdc1(f4, MemOperand(a0, offsetof(T, a)) );
  __ sdc1(f6, MemOperand(a0, offsetof(T, c)) );

  __ jr(ra);
  __ nop();

  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
  F3 f = FUNCTION_CAST<F3>(code->entry());
  t.a = 1.5e22;
  t.b = 2.75e11;
  t.c = 17.17;
  Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
  USE(dummy);

  CHECK_EQ(2.75e11, t.a);
  CHECK_EQ(2.75e11, t.b);
  CHECK_EQ(1.5e22, t.c);
}


TEST(MIPS5) {
  // Test conversions between doubles and integers.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);

  typedef struct {
    double a;
    double b;
    int i;
    int j;
  } T;
  T t;

  Assembler assm(isolate, NULL, 0);
  Label L, C;

  // Load all structure elements to registers.
  __ ldc1(f4, MemOperand(a0, offsetof(T, a)) );
  __ ldc1(f6, MemOperand(a0, offsetof(T, b)) );
  __ lw(t0, MemOperand(a0, offsetof(T, i)) );
  __ lw(t1, MemOperand(a0, offsetof(T, j)) );

  // Convert double in f4 to int in element i.
  __ cvt_w_d(f8, f4);
  __ mfc1(t2, f8);
  __ sw(t2, MemOperand(a0, offsetof(T, i)) );

  // Convert double in f6 to int in element j.
  __ cvt_w_d(f10, f6);
  __ mfc1(t3, f10);
  __ sw(t3, MemOperand(a0, offsetof(T, j)) );

  // Convert int in original i (t0) to double in a.
  __ mtc1(t0, f12);
  __ cvt_d_w(f0, f12);
  __ sdc1(f0, MemOperand(a0, offsetof(T, a)) );

  // Convert int in original j (t1) to double in b.
  __ mtc1(t1, f14);
  __ cvt_d_w(f2, f14);
  __ sdc1(f2, MemOperand(a0, offsetof(T, b)) );

  __ jr(ra);
  __ nop();

  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
  F3 f = FUNCTION_CAST<F3>(code->entry());
  t.a = 1.5e4;
  t.b = 2.75e8;
  t.i = 12345678;
  t.j = -100000;
  Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
  USE(dummy);

  CHECK_EQ(12345678.0, t.a);
  CHECK_EQ(-100000.0, t.b);
  CHECK_EQ(15000, t.i);
  CHECK_EQ(275000000, t.j);
}


TEST(MIPS6) {
  // Test simple memory loads and stores.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);

  typedef struct {
    uint32_t ui;
    int32_t si;
    int32_t r1;
    int32_t r2;
    int32_t r3;
    int32_t r4;
    int32_t r5;
    int32_t r6;
  } T;
  T t;

  Assembler assm(isolate, NULL, 0);
  Label L, C;

  // Basic word load/store.
  __ lw(t0, MemOperand(a0, offsetof(T, ui)) );
  __ sw(t0, MemOperand(a0, offsetof(T, r1)) );

  // lh with positive data.
  __ lh(t1, MemOperand(a0, offsetof(T, ui)) );
  __ sw(t1, MemOperand(a0, offsetof(T, r2)) );

  // lh with negative data.
  __ lh(t2, MemOperand(a0, offsetof(T, si)) );
  __ sw(t2, MemOperand(a0, offsetof(T, r3)) );

  // lhu with negative data.
  __ lhu(t3, MemOperand(a0, offsetof(T, si)) );
  __ sw(t3, MemOperand(a0, offsetof(T, r4)) );

  // lb with negative data.
  __ lb(t4, MemOperand(a0, offsetof(T, si)) );
  __ sw(t4, MemOperand(a0, offsetof(T, r5)) );

  // sh writes only 1/2 of word.
  __ lui(t5, 0x3333);
  __ ori(t5, t5, 0x3333);
  __ sw(t5, MemOperand(a0, offsetof(T, r6)) );
  __ lhu(t5, MemOperand(a0, offsetof(T, si)) );
  __ sh(t5, MemOperand(a0, offsetof(T, r6)) );

  __ jr(ra);
  __ nop();

  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
  F3 f = FUNCTION_CAST<F3>(code->entry());
  t.ui = 0x11223344;
  t.si = 0x99aabbcc;
  Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
  USE(dummy);

  CHECK_EQ(static_cast<int32_t>(0x11223344), t.r1);
#if __BYTE_ORDER == __LITTLE_ENDIAN
  CHECK_EQ(static_cast<int32_t>(0x3344), t.r2);
  CHECK_EQ(static_cast<int32_t>(0xffffbbcc), t.r3);
  CHECK_EQ(static_cast<int32_t>(0x0000bbcc), t.r4);
  CHECK_EQ(static_cast<int32_t>(0xffffffcc), t.r5);
  CHECK_EQ(static_cast<int32_t>(0x3333bbcc), t.r6);
#elif __BYTE_ORDER == __BIG_ENDIAN
  CHECK_EQ(static_cast<int32_t>(0x1122), t.r2);
  CHECK_EQ(static_cast<int32_t>(0xffff99aa), t.r3);
  CHECK_EQ(static_cast<int32_t>(0x000099aa), t.r4);
  CHECK_EQ(static_cast<int32_t>(0xffffff99), t.r5);
  CHECK_EQ(static_cast<int32_t>(0x99aa3333), t.r6);
#else
#error Unknown endianness
#endif
}


TEST(MIPS7) {
  // Test floating point compare and branch instructions.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);

  typedef struct {
    double a;
    double b;
    double c;
    double d;
    double e;
    double f;
    int32_t result;
  } T;
  T t;

  // Create a function that accepts &t, and loads, manipulates, and stores
  // the doubles t.a ... t.f.
  MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
  Label neither_is_nan, less_than, outa_here;

  __ ldc1(f4, MemOperand(a0, offsetof(T, a)) );
  __ ldc1(f6, MemOperand(a0, offsetof(T, b)) );
  if (!IsMipsArchVariant(kMips32r6)) {
  __ c(UN, D, f4, f6);
  __ bc1f(&neither_is_nan);
  } else {
    __ cmp(UN, L, f2, f4, f6);
    __ bc1eqz(&neither_is_nan, f2);
  }
  __ nop();
  __ sw(zero_reg, MemOperand(a0, offsetof(T, result)) );
  __ Branch(&outa_here);

  __ bind(&neither_is_nan);

  if (IsMipsArchVariant(kLoongson)) {
    __ c(OLT, D, f6, f4);
    __ bc1t(&less_than);
  } else if (IsMipsArchVariant(kMips32r6)) {
    __ cmp(OLT, L, f2, f6, f4);
    __ bc1nez(&less_than, f2);
  } else {
    __ c(OLT, D, f6, f4, 2);
    __ bc1t(&less_than, 2);
  }

  __ nop();
  __ sw(zero_reg, MemOperand(a0, offsetof(T, result)) );
  __ Branch(&outa_here);

  __ bind(&less_than);
  __ Addu(t0, zero_reg, Operand(1));
  __ sw(t0, MemOperand(a0, offsetof(T, result)) );  // Set true.


  // This test-case should have additional tests.

  __ bind(&outa_here);

  __ jr(ra);
  __ nop();

  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
  F3 f = FUNCTION_CAST<F3>(code->entry());
  t.a = 1.5e14;
  t.b = 2.75e11;
  t.c = 2.0;
  t.d = -4.0;
  t.e = 0.0;
  t.f = 0.0;
  t.result = 0;
  Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
  USE(dummy);
  CHECK_EQ(1.5e14, t.a);
  CHECK_EQ(2.75e11, t.b);
  CHECK_EQ(1, t.result);
}


TEST(MIPS8) {
  // Test ROTR and ROTRV instructions.
  if (IsMipsArchVariant(kMips32r2)) {
    CcTest::InitializeVM();
    Isolate* isolate = CcTest::i_isolate();
    HandleScope scope(isolate);

    typedef struct {
      int32_t input;
      int32_t result_rotr_4;
      int32_t result_rotr_8;
      int32_t result_rotr_12;
      int32_t result_rotr_16;
      int32_t result_rotr_20;
      int32_t result_rotr_24;
      int32_t result_rotr_28;
      int32_t result_rotrv_4;
      int32_t result_rotrv_8;
      int32_t result_rotrv_12;
      int32_t result_rotrv_16;
      int32_t result_rotrv_20;
      int32_t result_rotrv_24;
      int32_t result_rotrv_28;
    } T;
    T t;

    MacroAssembler assm(isolate, NULL, 0,
                        v8::internal::CodeObjectRequired::kYes);

    // Basic word load.
    __ lw(t0, MemOperand(a0, offsetof(T, input)) );

    // ROTR instruction (called through the Ror macro).
    __ Ror(t1, t0, 0x0004);
    __ Ror(t2, t0, 0x0008);
    __ Ror(t3, t0, 0x000c);
    __ Ror(t4, t0, 0x0010);
    __ Ror(t5, t0, 0x0014);
    __ Ror(t6, t0, 0x0018);
    __ Ror(t7, t0, 0x001c);

    // Basic word store.
    __ sw(t1, MemOperand(a0, offsetof(T, result_rotr_4)) );
    __ sw(t2, MemOperand(a0, offsetof(T, result_rotr_8)) );
    __ sw(t3, MemOperand(a0, offsetof(T, result_rotr_12)) );
    __ sw(t4, MemOperand(a0, offsetof(T, result_rotr_16)) );
    __ sw(t5, MemOperand(a0, offsetof(T, result_rotr_20)) );
    __ sw(t6, MemOperand(a0, offsetof(T, result_rotr_24)) );
    __ sw(t7, MemOperand(a0, offsetof(T, result_rotr_28)) );

    // ROTRV instruction (called through the Ror macro).
    __ li(t7, 0x0004);
    __ Ror(t1, t0, t7);
    __ li(t7, 0x0008);
    __ Ror(t2, t0, t7);
    __ li(t7, 0x000C);
    __ Ror(t3, t0, t7);
    __ li(t7, 0x0010);
    __ Ror(t4, t0, t7);
    __ li(t7, 0x0014);
    __ Ror(t5, t0, t7);
    __ li(t7, 0x0018);
    __ Ror(t6, t0, t7);
    __ li(t7, 0x001C);
    __ Ror(t7, t0, t7);

    // Basic word store.
    __ sw(t1, MemOperand(a0, offsetof(T, result_rotrv_4)) );
    __ sw(t2, MemOperand(a0, offsetof(T, result_rotrv_8)) );
    __ sw(t3, MemOperand(a0, offsetof(T, result_rotrv_12)) );
    __ sw(t4, MemOperand(a0, offsetof(T, result_rotrv_16)) );
    __ sw(t5, MemOperand(a0, offsetof(T, result_rotrv_20)) );
    __ sw(t6, MemOperand(a0, offsetof(T, result_rotrv_24)) );
    __ sw(t7, MemOperand(a0, offsetof(T, result_rotrv_28)) );

    __ jr(ra);
    __ nop();

    CodeDesc desc;
    assm.GetCode(&desc);
    Handle<Code> code = isolate->factory()->NewCode(
        desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
    F3 f = FUNCTION_CAST<F3>(code->entry());
    t.input = 0x12345678;
    Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0x0, 0, 0, 0);
    USE(dummy);
    CHECK_EQ(static_cast<int32_t>(0x81234567), t.result_rotr_4);
    CHECK_EQ(static_cast<int32_t>(0x78123456), t.result_rotr_8);
    CHECK_EQ(static_cast<int32_t>(0x67812345), t.result_rotr_12);
    CHECK_EQ(static_cast<int32_t>(0x56781234), t.result_rotr_16);
    CHECK_EQ(static_cast<int32_t>(0x45678123), t.result_rotr_20);
    CHECK_EQ(static_cast<int32_t>(0x34567812), t.result_rotr_24);
    CHECK_EQ(static_cast<int32_t>(0x23456781), t.result_rotr_28);

    CHECK_EQ(static_cast<int32_t>(0x81234567), t.result_rotrv_4);
    CHECK_EQ(static_cast<int32_t>(0x78123456), t.result_rotrv_8);
    CHECK_EQ(static_cast<int32_t>(0x67812345), t.result_rotrv_12);
    CHECK_EQ(static_cast<int32_t>(0x56781234), t.result_rotrv_16);
    CHECK_EQ(static_cast<int32_t>(0x45678123), t.result_rotrv_20);
    CHECK_EQ(static_cast<int32_t>(0x34567812), t.result_rotrv_24);
    CHECK_EQ(static_cast<int32_t>(0x23456781), t.result_rotrv_28);
  }
}


TEST(MIPS9) {
  // Test BRANCH improvements.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);

  MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
  Label exit, exit2, exit3;

  __ Branch(&exit, ge, a0, Operand(zero_reg));
  __ Branch(&exit2, ge, a0, Operand(0x00001FFF));
  __ Branch(&exit3, ge, a0, Operand(0x0001FFFF));

  __ bind(&exit);
  __ bind(&exit2);
  __ bind(&exit3);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
  assm.GetCode(&desc);
  isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
}


TEST(MIPS10) {
  // Test conversions between doubles and words.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);

  typedef struct {
    double a;
    double b;
    int32_t dbl_mant;
    int32_t dbl_exp;
    int32_t word;
    int32_t b_word;
  } T;
  T t;

  Assembler assm(isolate, NULL, 0);
  Label L, C;

  if (IsMipsArchVariant(kMips32r1) || IsMipsArchVariant(kLoongson)) return;

  // Load all structure elements to registers.
  // (f0, f1) = a (fp32), f0 = a (fp64)
  __ ldc1(f0, MemOperand(a0, offsetof(T, a)));

  __ mfc1(t0, f0);   // t0 = f0(31..0)
  __ mfhc1(t1, f0);  // t1 = sign_extend(f0(63..32))
  __ sw(t0, MemOperand(a0, offsetof(T, dbl_mant)));  // dbl_mant = t0
  __ sw(t1, MemOperand(a0, offsetof(T, dbl_exp)));   // dbl_exp = t1

  // Convert double in f0 to word, save hi/lo parts.
  __ cvt_w_d(f0, f0);  // a_word = (word)a
  __ mfc1(t0, f0);  // f0 has a 32-bits word. t0 = a_word
  __ sw(t0, MemOperand(a0, offsetof(T, word)));  // word = a_word

  // Convert the b word to double b.
  __ lw(t0, MemOperand(a0, offsetof(T, b_word)));
  __ mtc1(t0, f8);  // f8 has a 32-bits word.
  __ cvt_d_w(f10, f8);
  __ sdc1(f10, MemOperand(a0, offsetof(T, b)));

  __ jr(ra);
  __ nop();

  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
  F3 f = FUNCTION_CAST<F3>(code->entry());
  t.a = 2.147483646e+09;       // 0x7FFFFFFE -> 0xFF80000041DFFFFF as double.
  t.b_word = 0x0ff00ff0;       // 0x0FF00FF0 -> 0x as double.
  Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
  USE(dummy);
  CHECK_EQ(static_cast<int32_t>(0x41DFFFFF), t.dbl_exp);
  CHECK_EQ(static_cast<int32_t>(0xFF800000), t.dbl_mant);
  CHECK_EQ(static_cast<int32_t>(0x7FFFFFFE), t.word);
  // 0x0FF00FF0 -> 2.6739096+e08
  CHECK_EQ(2.6739096e08, t.b);
}


TEST(MIPS11) {
  // Do not run test on MIPS32r6, as these instructions are removed.
  if (IsMipsArchVariant(kMips32r6)) return;
  // Test LWL, LWR, SWL and SWR instructions.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);

  typedef struct {
    int32_t reg_init;
    int32_t mem_init;
    int32_t lwl_0;
    int32_t lwl_1;
    int32_t lwl_2;
    int32_t lwl_3;
    int32_t lwr_0;
    int32_t lwr_1;
    int32_t lwr_2;
    int32_t lwr_3;
    int32_t swl_0;
    int32_t swl_1;
    int32_t swl_2;
    int32_t swl_3;
    int32_t swr_0;
    int32_t swr_1;
    int32_t swr_2;
    int32_t swr_3;
  } T;
  T t;

  Assembler assm(isolate, NULL, 0);

  // Test all combinations of LWL and vAddr.
  __ lw(t0, MemOperand(a0, offsetof(T, reg_init)) );
  __ lwl(t0, MemOperand(a0, offsetof(T, mem_init)) );
  __ sw(t0, MemOperand(a0, offsetof(T, lwl_0)) );

  __ lw(t1, MemOperand(a0, offsetof(T, reg_init)) );
  __ lwl(t1, MemOperand(a0, offsetof(T, mem_init) + 1) );
  __ sw(t1, MemOperand(a0, offsetof(T, lwl_1)) );

  __ lw(t2, MemOperand(a0, offsetof(T, reg_init)) );
  __ lwl(t2, MemOperand(a0, offsetof(T, mem_init) + 2) );
  __ sw(t2, MemOperand(a0, offsetof(T, lwl_2)) );

  __ lw(t3, MemOperand(a0, offsetof(T, reg_init)) );
  __ lwl(t3, MemOperand(a0, offsetof(T, mem_init) + 3) );
  __ sw(t3, MemOperand(a0, offsetof(T, lwl_3)) );

  // Test all combinations of LWR and vAddr.
  __ lw(t0, MemOperand(a0, offsetof(T, reg_init)) );
  __ lwr(t0, MemOperand(a0, offsetof(T, mem_init)) );
  __ sw(t0, MemOperand(a0, offsetof(T, lwr_0)) );

  __ lw(t1, MemOperand(a0, offsetof(T, reg_init)) );
  __ lwr(t1, MemOperand(a0, offsetof(T, mem_init) + 1) );
  __ sw(t1, MemOperand(a0, offsetof(T, lwr_1)) );

  __ lw(t2, MemOperand(a0, offsetof(T, reg_init)) );
  __ lwr(t2, MemOperand(a0, offsetof(T, mem_init) + 2) );
  __ sw(t2, MemOperand(a0, offsetof(T, lwr_2)) );

  __ lw(t3, MemOperand(a0, offsetof(T, reg_init)) );
  __ lwr(t3, MemOperand(a0, offsetof(T, mem_init) + 3) );
  __ sw(t3, MemOperand(a0, offsetof(T, lwr_3)) );

  // Test all combinations of SWL and vAddr.
  __ lw(t0, MemOperand(a0, offsetof(T, mem_init)) );
  __ sw(t0, MemOperand(a0, offsetof(T, swl_0)) );
  __ lw(t0, MemOperand(a0, offsetof(T, reg_init)) );
  __ swl(t0, MemOperand(a0, offsetof(T, swl_0)) );

  __ lw(t1, MemOperand(a0, offsetof(T, mem_init)) );
  __ sw(t1, MemOperand(a0, offsetof(T, swl_1)) );
  __ lw(t1, MemOperand(a0, offsetof(T, reg_init)) );
  __ swl(t1, MemOperand(a0, offsetof(T, swl_1) + 1) );

  __ lw(t2, MemOperand(a0, offsetof(T, mem_init)) );
  __ sw(t2, MemOperand(a0, offsetof(T, swl_2)) );
  __ lw(t2, MemOperand(a0, offsetof(T, reg_init)) );
  __ swl(t2, MemOperand(a0, offsetof(T, swl_2) + 2) );

  __ lw(t3, MemOperand(a0, offsetof(T, mem_init)) );
  __ sw(t3, MemOperand(a0, offsetof(T, swl_3)) );
  __ lw(t3, MemOperand(a0, offsetof(T, reg_init)) );
  __ swl(t3, MemOperand(a0, offsetof(T, swl_3) + 3) );

  // Test all combinations of SWR and vAddr.
  __ lw(t0, MemOperand(a0, offsetof(T, mem_init)) );
  __ sw(t0, MemOperand(a0, offsetof(T, swr_0)) );
  __ lw(t0, MemOperand(a0, offsetof(T, reg_init)) );
  __ swr(t0, MemOperand(a0, offsetof(T, swr_0)) );

  __ lw(t1, MemOperand(a0, offsetof(T, mem_init)) );
  __ sw(t1, MemOperand(a0, offsetof(T, swr_1)) );
  __ lw(t1, MemOperand(a0, offsetof(T, reg_init)) );
  __ swr(t1, MemOperand(a0, offsetof(T, swr_1) + 1) );

  __ lw(t2, MemOperand(a0, offsetof(T, mem_init)) );
  __ sw(t2, MemOperand(a0, offsetof(T, swr_2)) );
  __ lw(t2, MemOperand(a0, offsetof(T, reg_init)) );
  __ swr(t2, MemOperand(a0, offsetof(T, swr_2) + 2) );

  __ lw(t3, MemOperand(a0, offsetof(T, mem_init)) );
  __ sw(t3, MemOperand(a0, offsetof(T, swr_3)) );
  __ lw(t3, MemOperand(a0, offsetof(T, reg_init)) );
  __ swr(t3, MemOperand(a0, offsetof(T, swr_3) + 3) );

  __ jr(ra);
  __ nop();

  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
  F3 f = FUNCTION_CAST<F3>(code->entry());
  t.reg_init = 0xaabbccdd;
  t.mem_init = 0x11223344;

  Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
  USE(dummy);

#if __BYTE_ORDER == __LITTLE_ENDIAN
  CHECK_EQ(static_cast<int32_t>(0x44bbccdd), t.lwl_0);
  CHECK_EQ(static_cast<int32_t>(0x3344ccdd), t.lwl_1);
  CHECK_EQ(static_cast<int32_t>(0x223344dd), t.lwl_2);
  CHECK_EQ(static_cast<int32_t>(0x11223344), t.lwl_3);

  CHECK_EQ(static_cast<int32_t>(0x11223344), t.lwr_0);
  CHECK_EQ(static_cast<int32_t>(0xaa112233), t.lwr_1);
  CHECK_EQ(static_cast<int32_t>(0xaabb1122), t.lwr_2);
  CHECK_EQ(static_cast<int32_t>(0xaabbcc11), t.lwr_3);

  CHECK_EQ(static_cast<int32_t>(0x112233aa), t.swl_0);
  CHECK_EQ(static_cast<int32_t>(0x1122aabb), t.swl_1);
  CHECK_EQ(static_cast<int32_t>(0x11aabbcc), t.swl_2);
  CHECK_EQ(static_cast<int32_t>(0xaabbccdd), t.swl_3);

  CHECK_EQ(static_cast<int32_t>(0xaabbccdd), t.swr_0);
  CHECK_EQ(static_cast<int32_t>(0xbbccdd44), t.swr_1);
  CHECK_EQ(static_cast<int32_t>(0xccdd3344), t.swr_2);
  CHECK_EQ(static_cast<int32_t>(0xdd223344), t.swr_3);
#elif __BYTE_ORDER == __BIG_ENDIAN
  CHECK_EQ(static_cast<int32_t>(0x11223344), t.lwl_0);
  CHECK_EQ(static_cast<int32_t>(0x223344dd), t.lwl_1);
  CHECK_EQ(static_cast<int32_t>(0x3344ccdd), t.lwl_2);
  CHECK_EQ(static_cast<int32_t>(0x44bbccdd), t.lwl_3);

  CHECK_EQ(static_cast<int32_t>(0xaabbcc11), t.lwr_0);
  CHECK_EQ(static_cast<int32_t>(0xaabb1122), t.lwr_1);
  CHECK_EQ(static_cast<int32_t>(0xaa112233), t.lwr_2);
  CHECK_EQ(static_cast<int32_t>(0x11223344), t.lwr_3);

  CHECK_EQ(static_cast<int32_t>(0xaabbccdd), t.swl_0);
  CHECK_EQ(static_cast<int32_t>(0x11aabbcc), t.swl_1);
  CHECK_EQ(static_cast<int32_t>(0x1122aabb), t.swl_2);
  CHECK_EQ(static_cast<int32_t>(0x112233aa), t.swl_3);

  CHECK_EQ(static_cast<int32_t>(0xdd223344), t.swr_0);
  CHECK_EQ(static_cast<int32_t>(0xccdd3344), t.swr_1);
  CHECK_EQ(static_cast<int32_t>(0xbbccdd44), t.swr_2);
  CHECK_EQ(static_cast<int32_t>(0xaabbccdd), t.swr_3);
#else
#error Unknown endianness
#endif
}


TEST(MIPS12) {
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);

  typedef struct {
      int32_t  x;
      int32_t  y;
      int32_t  y1;
      int32_t  y2;
      int32_t  y3;
      int32_t  y4;
  } T;
  T t;

  MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);

  __ mov(t6, fp);  // Save frame pointer.
  __ mov(fp, a0);  // Access struct T by fp.
  __ lw(t0, MemOperand(a0, offsetof(T, y)) );
  __ lw(t3, MemOperand(a0, offsetof(T, y4)) );

  __ addu(t1, t0, t3);
  __ subu(t4, t0, t3);
  __ nop();
  __ push(t0);  // These instructions disappear after opt.
  __ Pop();
  __ addu(t0, t0, t0);
  __ nop();
  __ Pop();     // These instructions disappear after opt.
  __ push(t3);
  __ nop();
  __ push(t3);  // These instructions disappear after opt.
  __ pop(t3);
  __ nop();
  __ push(t3);
  __ pop(t4);
  __ nop();
  __ sw(t0, MemOperand(fp, offsetof(T, y)) );
  __ lw(t0, MemOperand(fp, offsetof(T, y)) );
  __ nop();
  __ sw(t0, MemOperand(fp, offsetof(T, y)) );
  __ lw(t1, MemOperand(fp, offsetof(T, y)) );
  __ nop();
  __ push(t1);
  __ lw(t1, MemOperand(fp, offsetof(T, y)) );
  __ pop(t1);
  __ nop();
  __ push(t1);
  __ lw(t2, MemOperand(fp, offsetof(T, y)) );
  __ pop(t1);
  __ nop();
  __ push(t1);
  __ lw(t2, MemOperand(fp, offsetof(T, y)) );
  __ pop(t2);
  __ nop();
  __ push(t2);
  __ lw(t2, MemOperand(fp, offsetof(T, y)) );
  __ pop(t1);
  __ nop();
  __ push(t1);
  __ lw(t2, MemOperand(fp, offsetof(T, y)) );
  __ pop(t3);
  __ nop();

  __ mov(fp, t6);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
  F3 f = FUNCTION_CAST<F3>(code->entry());
  t.x = 1;
  t.y = 2;
  t.y1 = 3;
  t.y2 = 4;
  t.y3 = 0XBABA;
  t.y4 = 0xDEDA;

  Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
  USE(dummy);

  CHECK_EQ(3, t.y1);
}


TEST(MIPS13) {
  // Test Cvt_d_uw and Trunc_uw_d macros.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);

  typedef struct {
    double cvt_big_out;
    double cvt_small_out;
    uint32_t trunc_big_out;
    uint32_t trunc_small_out;
    uint32_t cvt_big_in;
    uint32_t cvt_small_in;
  } T;
  T t;

  MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);

  __ sw(t0, MemOperand(a0, offsetof(T, cvt_small_in)));
  __ Cvt_d_uw(f10, t0, f4);
  __ sdc1(f10, MemOperand(a0, offsetof(T, cvt_small_out)));

  __ Trunc_uw_d(f10, f10, f4);
  __ swc1(f10, MemOperand(a0, offsetof(T, trunc_small_out)));

  __ sw(t0, MemOperand(a0, offsetof(T, cvt_big_in)));
  __ Cvt_d_uw(f8, t0, f4);
  __ sdc1(f8, MemOperand(a0, offsetof(T, cvt_big_out)));

  __ Trunc_uw_d(f8, f8, f4);
  __ swc1(f8, MemOperand(a0, offsetof(T, trunc_big_out)));

  __ jr(ra);
  __ nop();

  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
  F3 f = FUNCTION_CAST<F3>(code->entry());

  t.cvt_big_in = 0xFFFFFFFF;
  t.cvt_small_in  = 333;

  Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
  USE(dummy);

  CHECK_EQ(t.cvt_big_out, static_cast<double>(t.cvt_big_in));
  CHECK_EQ(t.cvt_small_out, static_cast<double>(t.cvt_small_in));

  CHECK_EQ(static_cast<int>(t.trunc_big_out), static_cast<int>(t.cvt_big_in));
  CHECK_EQ(static_cast<int>(t.trunc_small_out),
           static_cast<int>(t.cvt_small_in));
}


TEST(MIPS14) {
  // Test round, floor, ceil, trunc, cvt.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);

#define ROUND_STRUCT_ELEMENT(x) \
  uint32_t x##_isNaN2008; \
  int32_t x##_up_out; \
  int32_t x##_down_out; \
  int32_t neg_##x##_up_out; \
  int32_t neg_##x##_down_out; \
  uint32_t x##_err1_out; \
  uint32_t x##_err2_out; \
  uint32_t x##_err3_out; \
  uint32_t x##_err4_out; \
  int32_t x##_invalid_result;

  typedef struct {
    double round_up_in;
    double round_down_in;
    double neg_round_up_in;
    double neg_round_down_in;
    double err1_in;
    double err2_in;
    double err3_in;
    double err4_in;

    ROUND_STRUCT_ELEMENT(round)
    ROUND_STRUCT_ELEMENT(floor)
    ROUND_STRUCT_ELEMENT(ceil)
    ROUND_STRUCT_ELEMENT(trunc)
    ROUND_STRUCT_ELEMENT(cvt)
  } T;
  T t;

#undef ROUND_STRUCT_ELEMENT

  MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);

  // Save FCSR.
  __ cfc1(a1, FCSR);
  // Disable FPU exceptions.
  __ ctc1(zero_reg, FCSR);
#define RUN_ROUND_TEST(x) \
  __ cfc1(t0, FCSR);\
  __ sw(t0, MemOperand(a0, offsetof(T, x##_isNaN2008))); \
  __ ldc1(f0, MemOperand(a0, offsetof(T, round_up_in))); \
  __ x##_w_d(f0, f0); \
  __ swc1(f0, MemOperand(a0, offsetof(T, x##_up_out))); \
  \
  __ ldc1(f0, MemOperand(a0, offsetof(T, round_down_in))); \
  __ x##_w_d(f0, f0); \
  __ swc1(f0, MemOperand(a0, offsetof(T, x##_down_out))); \
  \
  __ ldc1(f0, MemOperand(a0, offsetof(T, neg_round_up_in))); \
  __ x##_w_d(f0, f0); \
  __ swc1(f0, MemOperand(a0, offsetof(T, neg_##x##_up_out))); \
  \
  __ ldc1(f0, MemOperand(a0, offsetof(T, neg_round_down_in))); \
  __ x##_w_d(f0, f0); \
  __ swc1(f0, MemOperand(a0, offsetof(T, neg_##x##_down_out))); \
  \
  __ ldc1(f0, MemOperand(a0, offsetof(T, err1_in))); \
  __ ctc1(zero_reg, FCSR); \
  __ x##_w_d(f0, f0); \
  __ cfc1(a2, FCSR); \
  __ sw(a2, MemOperand(a0, offsetof(T, x##_err1_out))); \
  \
  __ ldc1(f0, MemOperand(a0, offsetof(T, err2_in))); \
  __ ctc1(zero_reg, FCSR); \
  __ x##_w_d(f0, f0); \
  __ cfc1(a2, FCSR); \
  __ sw(a2, MemOperand(a0, offsetof(T, x##_err2_out))); \
  \
  __ ldc1(f0, MemOperand(a0, offsetof(T, err3_in))); \
  __ ctc1(zero_reg, FCSR); \
  __ x##_w_d(f0, f0); \
  __ cfc1(a2, FCSR); \
  __ sw(a2, MemOperand(a0, offsetof(T, x##_err3_out))); \
  \
  __ ldc1(f0, MemOperand(a0, offsetof(T, err4_in))); \
  __ ctc1(zero_reg, FCSR); \
  __ x##_w_d(f0, f0); \
  __ cfc1(a2, FCSR); \
  __ sw(a2, MemOperand(a0, offsetof(T, x##_err4_out))); \
  __ swc1(f0, MemOperand(a0, offsetof(T, x##_invalid_result)));

  RUN_ROUND_TEST(round)
  RUN_ROUND_TEST(floor)
  RUN_ROUND_TEST(ceil)
  RUN_ROUND_TEST(trunc)
  RUN_ROUND_TEST(cvt)

  // Restore FCSR.
  __ ctc1(a1, FCSR);

  __ jr(ra);
  __ nop();

  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
  F3 f = FUNCTION_CAST<F3>(code->entry());

  t.round_up_in = 123.51;
  t.round_down_in = 123.49;
  t.neg_round_up_in = -123.5;
  t.neg_round_down_in = -123.49;
  t.err1_in = 123.51;
  t.err2_in = 1;
  t.err3_in = static_cast<double>(1) + 0xFFFFFFFF;
  t.err4_in = NAN;

  Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
  USE(dummy);

#define GET_FPU_ERR(x) (static_cast<int>(x & kFCSRFlagMask))
#define CHECK_NAN2008(x) (x & kFCSRNaN2008FlagMask)
#define CHECK_ROUND_RESULT(type)                                  \
  CHECK(GET_FPU_ERR(t.type##_err1_out) & kFCSRInexactFlagMask);   \
  CHECK_EQ(0, GET_FPU_ERR(t.type##_err2_out));                    \
  CHECK(GET_FPU_ERR(t.type##_err3_out) & kFCSRInvalidOpFlagMask); \
  CHECK(GET_FPU_ERR(t.type##_err4_out) & kFCSRInvalidOpFlagMask); \
  if (CHECK_NAN2008(t.type##_isNaN2008) && kArchVariant == kMips32r6) {\
    CHECK_EQ(static_cast<int32_t>(0), t.type##_invalid_result);\
  } else {\
    CHECK_EQ(static_cast<int32_t>(kFPUInvalidResult), t.type##_invalid_result);\
  }


  CHECK_ROUND_RESULT(round);
  CHECK_ROUND_RESULT(floor);
  CHECK_ROUND_RESULT(ceil);
  CHECK_ROUND_RESULT(cvt);
}


TEST(MIPS15) {
  // Test chaining of label usages within instructions (issue 1644).
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
  Assembler assm(isolate, NULL, 0);

  Label target;
  __ beq(v0, v1, &target);
  __ nop();
  __ bne(v0, v1, &target);
  __ nop();
  __ bind(&target);
  __ nop();
}


// ----------------------mips32r6 specific tests----------------------
TEST(seleqz_selnez) {
  if (IsMipsArchVariant(kMips32r6)) {
    CcTest::InitializeVM();
    Isolate* isolate = CcTest::i_isolate();
    HandleScope scope(isolate);
    MacroAssembler assm(isolate, NULL, 0,
                        v8::internal::CodeObjectRequired::kYes);

    typedef struct test {
      int a;
      int b;
      int c;
      int d;
      double e;
      double f;
      double g;
      double h;
      float i;
      float j;
      float k;
      float l;
    } Test;

    Test test;
    // Integer part of test.
    __ addiu(t1, zero_reg, 1);                      // t1 = 1
    __ seleqz(t3, t1, zero_reg);                    // t3 = 1
    __ sw(t3, MemOperand(a0, offsetof(Test, a)));  // a = 1
    __ seleqz(t2, t1, t1);                          // t2 = 0
    __ sw(t2, MemOperand(a0, offsetof(Test, b)));  // b = 0
    __ selnez(t3, t1, zero_reg);                    // t3 = 1;
    __ sw(t3, MemOperand(a0, offsetof(Test, c)));  // c = 0
    __ selnez(t3, t1, t1);                          // t3 = 1
    __ sw(t3, MemOperand(a0, offsetof(Test, d)));  // d = 1
    // Floating point part of test.
    __ ldc1(f0, MemOperand(a0, offsetof(Test, e)) );  // src
    __ ldc1(f2, MemOperand(a0, offsetof(Test, f)) );  // test
    __ lwc1(f8, MemOperand(a0, offsetof(Test, i)) );  // src
    __ lwc1(f10, MemOperand(a0, offsetof(Test, j)) );  // test
    __ seleqz_d(f4, f0, f2);
    __ selnez_d(f6, f0, f2);
    __ seleqz_s(f12, f8, f10);
    __ selnez_s(f14, f8, f10);
    __ sdc1(f4, MemOperand(a0, offsetof(Test, g)) );  // src
    __ sdc1(f6, MemOperand(a0, offsetof(Test, h)) );  // src
    __ swc1(f12, MemOperand(a0, offsetof(Test, k)) );  // src
    __ swc1(f14, MemOperand(a0, offsetof(Test, l)) );  // src
    __ jr(ra);
    __ nop();
    CodeDesc desc;
    assm.GetCode(&desc);
    Handle<Code> code = isolate->factory()->NewCode(
        desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
    F3 f = FUNCTION_CAST<F3>(code->entry());

    (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));

    CHECK_EQ(test.a, 1);
    CHECK_EQ(test.b, 0);
    CHECK_EQ(test.c, 0);
    CHECK_EQ(test.d, 1);

    const int test_size = 3;
    const int input_size = 5;

    double inputs_D[input_size] = {0.0, 65.2, -70.32,
      18446744073709551621.0, -18446744073709551621.0};
    double outputs_D[input_size] = {0.0, 65.2, -70.32,
      18446744073709551621.0, -18446744073709551621.0};
    double tests_D[test_size*2] = {2.8, 2.9, -2.8, -2.9,
      18446744073709551616.0, 18446744073709555712.0};
    float inputs_S[input_size] = {0.0, 65.2, -70.32,
      18446744073709551621.0, -18446744073709551621.0};
    float outputs_S[input_size] = {0.0, 65.2, -70.32,
      18446744073709551621.0, -18446744073709551621.0};
    float tests_S[test_size*2] = {2.9, 2.8, -2.9, -2.8,
      18446744073709551616.0, 18446746272732807168.0};
    for (int j=0; j < test_size; j+=2) {
      for (int i=0; i < input_size; i++) {
        test.e = inputs_D[i];
        test.f = tests_D[j];
        test.i = inputs_S[i];
        test.j = tests_S[j];
        (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
        CHECK_EQ(test.g, outputs_D[i]);
        CHECK_EQ(test.h, 0);
        CHECK_EQ(test.k, outputs_S[i]);
        CHECK_EQ(test.l, 0);

        test.f = tests_D[j+1];
        test.j = tests_S[j+1];
        (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
        CHECK_EQ(test.g, 0);
        CHECK_EQ(test.h, outputs_D[i]);
        CHECK_EQ(test.k, 0);
        CHECK_EQ(test.l, outputs_S[i]);
      }
    }
  }
}


TEST(min_max) {
  if (IsMipsArchVariant(kMips32r6)) {
    CcTest::InitializeVM();
    Isolate* isolate = CcTest::i_isolate();
    HandleScope scope(isolate);
    MacroAssembler assm(isolate, nullptr, 0,
                        v8::internal::CodeObjectRequired::kYes);

    struct TestFloat {
      double a;
      double b;
      double c;
      double d;
      float e;
      float f;
      float g;
      float h;
    };

    TestFloat test;
    const double dnan = std::numeric_limits<double>::quiet_NaN();
    const double dinf = std::numeric_limits<double>::infinity();
    const double dminf = -std::numeric_limits<double>::infinity();
    const float fnan = std::numeric_limits<float>::quiet_NaN();
    const float finf = std::numeric_limits<float>::infinity();
    const float fminf = std::numeric_limits<float>::infinity();
    const int kTableLength = 13;
    double inputsa[kTableLength] = {2.0,  3.0,  dnan, 3.0,   -0.0, 0.0, dinf,
                                    dnan, 42.0, dinf, dminf, dinf, dnan};
    double inputsb[kTableLength] = {3.0,  2.0,  3.0,  dnan, 0.0,   -0.0, dnan,
                                    dinf, dinf, 42.0, dinf, dminf, dnan};
    double outputsdmin[kTableLength] = {2.0,   2.0,   3.0,  3.0,  -0.0,
                                        -0.0,  dinf,  dinf, 42.0, 42.0,
                                        dminf, dminf, dnan};
    double outputsdmax[kTableLength] = {3.0,  3.0,  3.0,  3.0,  0.0,  0.0, dinf,
                                        dinf, dinf, dinf, dinf, dinf, dnan};

    float inputse[kTableLength] = {2.0,  3.0,  fnan, 3.0,   -0.0, 0.0, finf,
                                   fnan, 42.0, finf, fminf, finf, fnan};
    float inputsf[kTableLength] = {3.0,  2.0,  3.0,  fnan, 0.0,   -0.0, fnan,
                                   finf, finf, 42.0, finf, fminf, fnan};
    float outputsfmin[kTableLength] = {2.0,   2.0,   3.0,  3.0,  -0.0,
                                       -0.0,  finf,  finf, 42.0, 42.0,
                                       fminf, fminf, fnan};
    float outputsfmax[kTableLength] = {3.0,  3.0,  3.0,  3.0,  0.0,  0.0, finf,
                                       finf, finf, finf, finf, finf, fnan};

    __ ldc1(f4, MemOperand(a0, offsetof(TestFloat, a)));
    __ ldc1(f8, MemOperand(a0, offsetof(TestFloat, b)));
    __ lwc1(f2, MemOperand(a0, offsetof(TestFloat, e)));
    __ lwc1(f6, MemOperand(a0, offsetof(TestFloat, f)));
    __ min_d(f10, f4, f8);
    __ max_d(f12, f4, f8);
    __ min_s(f14, f2, f6);
    __ max_s(f16, f2, f6);
    __ sdc1(f10, MemOperand(a0, offsetof(TestFloat, c)));
    __ sdc1(f12, MemOperand(a0, offsetof(TestFloat, d)));
    __ swc1(f14, MemOperand(a0, offsetof(TestFloat, g)));
    __ swc1(f16, MemOperand(a0, offsetof(TestFloat, h)));
    __ jr(ra);
    __ nop();

    CodeDesc desc;
    assm.GetCode(&desc);
    Handle<Code> code = isolate->factory()->NewCode(
        desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
    F3 f = FUNCTION_CAST<F3>(code->entry());
    for (int i = 0; i < kTableLength; i++) {
      test.a = inputsa[i];
      test.b = inputsb[i];
      test.e = inputse[i];
      test.f = inputsf[i];

      CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0);

      CHECK_EQ(0, memcmp(&test.c, &outputsdmin[i], sizeof(test.c)));
      CHECK_EQ(0, memcmp(&test.d, &outputsdmax[i], sizeof(test.d)));
      CHECK_EQ(0, memcmp(&test.g, &outputsfmin[i], sizeof(test.g)));
      CHECK_EQ(0, memcmp(&test.h, &outputsfmax[i], sizeof(test.h)));
    }
  }
}


TEST(rint_d)  {
  if (IsMipsArchVariant(kMips32r6)) {
    const int kTableLength = 30;
    CcTest::InitializeVM();
    Isolate* isolate = CcTest::i_isolate();
    HandleScope scope(isolate);
    MacroAssembler assm(isolate, NULL, 0,
                        v8::internal::CodeObjectRequired::kYes);

    typedef struct test_float {
      double a;
      double b;
      int fcsr;
    }TestFloat;

    TestFloat test;
    double inputs[kTableLength] = {18446744073709551617.0,
      4503599627370496.0, -4503599627370496.0,
      1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147,
      1.7976931348623157E+308, 6.27463370218383111104242366943E-307,
      309485009821345068724781056.89,
      2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
      -2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
      37778931862957161709568.0, 37778931862957161709569.0,
      37778931862957161709580.0, 37778931862957161709581.0,
      37778931862957161709582.0, 37778931862957161709583.0,
      37778931862957161709584.0, 37778931862957161709585.0,
      37778931862957161709586.0, 37778931862957161709587.0};
    double outputs_RN[kTableLength] = {18446744073709551617.0,
      4503599627370496.0, -4503599627370496.0,
      1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147,
      1.7976931348623157E308, 0,
      309485009821345068724781057.0,
      2.0, 3.0, 2.0, 3.0, 4.0, 4.0,
      -2.0, -3.0, -2.0, -3.0, -4.0, -4.0,
      37778931862957161709568.0, 37778931862957161709569.0,
      37778931862957161709580.0, 37778931862957161709581.0,
      37778931862957161709582.0, 37778931862957161709583.0,
      37778931862957161709584.0, 37778931862957161709585.0,
      37778931862957161709586.0, 37778931862957161709587.0};
    double outputs_RZ[kTableLength] = {18446744073709551617.0,
      4503599627370496.0, -4503599627370496.0,
      1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147,
      1.7976931348623157E308, 0,
      309485009821345068724781057.0,
      2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
      -2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
      37778931862957161709568.0, 37778931862957161709569.0,
      37778931862957161709580.0, 37778931862957161709581.0,
      37778931862957161709582.0, 37778931862957161709583.0,
      37778931862957161709584.0, 37778931862957161709585.0,
      37778931862957161709586.0, 37778931862957161709587.0};
    double outputs_RP[kTableLength] = {18446744073709551617.0,
      4503599627370496.0, -4503599627370496.0,
      1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147,
      1.7976931348623157E308, 1,
      309485009821345068724781057.0,
      3.0, 3.0, 3.0, 4.0, 4.0, 4.0,
      -2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
      37778931862957161709568.0, 37778931862957161709569.0,
      37778931862957161709580.0, 37778931862957161709581.0,
      37778931862957161709582.0, 37778931862957161709583.0,
      37778931862957161709584.0, 37778931862957161709585.0,
      37778931862957161709586.0, 37778931862957161709587.0};
    double outputs_RM[kTableLength] = {18446744073709551617.0,
      4503599627370496.0, -4503599627370496.0,
      1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147,
      1.7976931348623157E308, 0,
      309485009821345068724781057.0,
      2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
      -3.0, -3.0, -3.0, -4.0, -4.0, -4.0,
      37778931862957161709568.0, 37778931862957161709569.0,
      37778931862957161709580.0, 37778931862957161709581.0,
      37778931862957161709582.0, 37778931862957161709583.0,
      37778931862957161709584.0, 37778931862957161709585.0,
      37778931862957161709586.0, 37778931862957161709587.0};
    int fcsr_inputs[4] =
      {kRoundToNearest, kRoundToZero, kRoundToPlusInf, kRoundToMinusInf};
    double* outputs[4] = {outputs_RN, outputs_RZ, outputs_RP, outputs_RM};
    __ ldc1(f4, MemOperand(a0, offsetof(TestFloat, a)) );
    __ lw(t0, MemOperand(a0, offsetof(TestFloat, fcsr)) );
    __ cfc1(t1, FCSR);
    __ ctc1(t0, FCSR);
    __ rint_d(f8, f4);
    __ sdc1(f8, MemOperand(a0, offsetof(TestFloat, b)) );
    __ ctc1(t1, FCSR);
    __ jr(ra);
    __ nop();

    CodeDesc desc;
    assm.GetCode(&desc);
    Handle<Code> code = isolate->factory()->NewCode(
        desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
    F3 f = FUNCTION_CAST<F3>(code->entry());

    for (int j = 0; j < 4; j++) {
      test.fcsr = fcsr_inputs[j];
      for (int i = 0; i < kTableLength; i++) {
        test.a = inputs[i];
        (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
        CHECK_EQ(test.b, outputs[j][i]);
      }
    }
  }
}


TEST(sel) {
  if (IsMipsArchVariant(kMips32r6)) {
    CcTest::InitializeVM();
    Isolate* isolate = CcTest::i_isolate();
    HandleScope scope(isolate);
    MacroAssembler assm(isolate, NULL, 0,
                        v8::internal::CodeObjectRequired::kYes);

    typedef struct test {
      double dd;
      double ds;
      double dt;
      float fd;
      float fs;
      float ft;
    } Test;

    Test test;
    __ ldc1(f0, MemOperand(a0, offsetof(Test, dd)) );  // test
    __ ldc1(f2, MemOperand(a0, offsetof(Test, ds)) );  // src1
    __ ldc1(f4, MemOperand(a0, offsetof(Test, dt)) );  // src2
    __ lwc1(f6, MemOperand(a0, offsetof(Test, fd)) );  // test
    __ lwc1(f8, MemOperand(a0, offsetof(Test, fs)) );  // src1
    __ lwc1(f10, MemOperand(a0, offsetof(Test, ft)) );  // src2
    __ sel_d(f0, f2, f4);
    __ sel_s(f6, f8, f10);
    __ sdc1(f0, MemOperand(a0, offsetof(Test, dd)) );
    __ swc1(f6, MemOperand(a0, offsetof(Test, fd)) );
    __ jr(ra);
    __ nop();
    CodeDesc desc;
    assm.GetCode(&desc);
    Handle<Code> code = isolate->factory()->NewCode(
        desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
    F3 f = FUNCTION_CAST<F3>(code->entry());

    const int test_size = 3;
    const int input_size = 5;

    double inputs_dt[input_size] = {0.0, 65.2, -70.32,
      18446744073709551621.0, -18446744073709551621.0};
    double inputs_ds[input_size] = {0.1, 69.88, -91.325,
      18446744073709551625.0, -18446744073709551625.0};
    float inputs_ft[input_size] = {0.0, 65.2, -70.32,
      18446744073709551621.0, -18446744073709551621.0};
    float inputs_fs[input_size] = {0.1, 69.88, -91.325,
      18446744073709551625.0, -18446744073709551625.0};
    double tests_D[test_size*2] = {2.8, 2.9, -2.8, -2.9,
      18446744073709551616.0, 18446744073709555712.0};
    float tests_S[test_size*2] = {2.9, 2.8, -2.9, -2.8,
      18446744073709551616.0, 18446746272732807168.0};
    for (int j=0; j < test_size; j+=2) {
      for (int i=0; i < input_size; i++) {
        test.dt = inputs_dt[i];
        test.dd = tests_D[j];
        test.ds = inputs_ds[i];
        test.ft = inputs_ft[i];
        test.fd = tests_S[j];
        test.fs = inputs_fs[i];
        (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
        CHECK_EQ(test.dd, inputs_ds[i]);
        CHECK_EQ(test.fd, inputs_fs[i]);

        test.dd = tests_D[j+1];
        test.fd = tests_S[j+1];
        (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
        CHECK_EQ(test.dd, inputs_dt[i]);
        CHECK_EQ(test.fd, inputs_ft[i]);
      }
    }
  }
}


TEST(rint_s)  {
  if (IsMipsArchVariant(kMips32r6)) {
    const int kTableLength = 30;
    CcTest::InitializeVM();
    Isolate* isolate = CcTest::i_isolate();
    HandleScope scope(isolate);
    MacroAssembler assm(isolate, NULL, 0,
                        v8::internal::CodeObjectRequired::kYes);

    typedef struct test_float {
      float a;
      float b;
      int fcsr;
    }TestFloat;

    TestFloat test;
    float inputs[kTableLength] = {18446744073709551617.0,
      4503599627370496.0, -4503599627370496.0,
      1.26782468584154733584017312973E30, 1.44860108245951772690707170478E37,
      1.7976931348623157E+38, 6.27463370218383111104242366943E-37,
      309485009821345068724781056.89,
      2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
      -2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
      37778931862957161709568.0, 37778931862957161709569.0,
      37778931862957161709580.0, 37778931862957161709581.0,
      37778931862957161709582.0, 37778931862957161709583.0,
      37778931862957161709584.0, 37778931862957161709585.0,
      37778931862957161709586.0, 37778931862957161709587.0};
    float outputs_RN[kTableLength] = {18446744073709551617.0,
      4503599627370496.0, -4503599627370496.0,
      1.26782468584154733584017312973E30, 1.44860108245951772690707170478E37,
      1.7976931348623157E38, 0,
      309485009821345068724781057.0,
      2.0, 3.0, 2.0, 3.0, 4.0, 4.0,
      -2.0, -3.0, -2.0, -3.0, -4.0, -4.0,
      37778931862957161709568.0, 37778931862957161709569.0,
      37778931862957161709580.0, 37778931862957161709581.0,
      37778931862957161709582.0, 37778931862957161709583.0,
      37778931862957161709584.0, 37778931862957161709585.0,
      37778931862957161709586.0, 37778931862957161709587.0};
    float outputs_RZ[kTableLength] = {18446744073709551617.0,
      4503599627370496.0, -4503599627370496.0,
      1.26782468584154733584017312973E30, 1.44860108245951772690707170478E37,
      1.7976931348623157E38, 0,
      309485009821345068724781057.0,
      2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
      -2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
      37778931862957161709568.0, 37778931862957161709569.0,
      37778931862957161709580.0, 37778931862957161709581.0,
      37778931862957161709582.0, 37778931862957161709583.0,
      37778931862957161709584.0, 37778931862957161709585.0,
      37778931862957161709586.0, 37778931862957161709587.0};
    float outputs_RP[kTableLength] = {18446744073709551617.0,
      4503599627370496.0, -4503599627370496.0,
      1.26782468584154733584017312973E30, 1.44860108245951772690707170478E37,
      1.7976931348623157E38, 1,
      309485009821345068724781057.0,
      3.0, 3.0, 3.0, 4.0, 4.0, 4.0,
      -2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
      37778931862957161709568.0, 37778931862957161709569.0,
      37778931862957161709580.0, 37778931862957161709581.0,
      37778931862957161709582.0, 37778931862957161709583.0,
      37778931862957161709584.0, 37778931862957161709585.0,
      37778931862957161709586.0, 37778931862957161709587.0};
    float outputs_RM[kTableLength] = {18446744073709551617.0,
      4503599627370496.0, -4503599627370496.0,
      1.26782468584154733584017312973E30, 1.44860108245951772690707170478E37,
      1.7976931348623157E38, 0,
      309485009821345068724781057.0,
      2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
      -3.0, -3.0, -3.0, -4.0, -4.0, -4.0,
      37778931862957161709568.0, 37778931862957161709569.0,
      37778931862957161709580.0, 37778931862957161709581.0,
      37778931862957161709582.0, 37778931862957161709583.0,
      37778931862957161709584.0, 37778931862957161709585.0,
      37778931862957161709586.0, 37778931862957161709587.0};
    int fcsr_inputs[4] =
      {kRoundToNearest, kRoundToZero, kRoundToPlusInf, kRoundToMinusInf};
    float* outputs[4] = {outputs_RN, outputs_RZ, outputs_RP, outputs_RM};
    __ lwc1(f4, MemOperand(a0, offsetof(TestFloat, a)) );
    __ lw(t0, MemOperand(a0, offsetof(TestFloat, fcsr)) );
    __ cfc1(t1, FCSR);
    __ ctc1(t0, FCSR);
    __ rint_s(f8, f4);
    __ swc1(f8, MemOperand(a0, offsetof(TestFloat, b)) );
    __ ctc1(t1, FCSR);
    __ jr(ra);
    __ nop();

    CodeDesc desc;
    assm.GetCode(&desc);
    Handle<Code> code = isolate->factory()->NewCode(
        desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
    F3 f = FUNCTION_CAST<F3>(code->entry());

    for (int j = 0; j < 4; j++) {
      test.fcsr = fcsr_inputs[j];
      for (int i = 0; i < kTableLength; i++) {
        test.a = inputs[i];
        (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
        CHECK_EQ(test.b, outputs[j][i]);
      }
    }
  }
}


TEST(Cvt_d_uw) {
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
  MacroAssembler assm(isolate, NULL, 0,
                      v8::internal::CodeObjectRequired::kYes);

  typedef struct test_struct {
    unsigned input;
    uint64_t output;
  } TestStruct;

  unsigned inputs[] = {
    0x0, 0xffffffff, 0x80000000, 0x7fffffff
  };

  uint64_t outputs[] = {
    0x0, 0x41efffffffe00000,
    0x41e0000000000000, 0x41dfffffffc00000
  };

  int kTableLength = sizeof(inputs)/sizeof(inputs[0]);

  TestStruct test;

  __ lw(t1, MemOperand(a0, offsetof(TestStruct, input)));
  __ Cvt_d_uw(f4, t1, f6);
  __ sdc1(f4, MemOperand(a0, offsetof(TestStruct, output)));
  __ jr(ra);
  __ nop();

  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
  F3 f = FUNCTION_CAST<F3>(code->entry());
  for (int i = 0; i < kTableLength; i++) {
    test.input = inputs[i];
    (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
    // Check outputs
    CHECK_EQ(test.output, outputs[i]);
  }
}


TEST(mina_maxa) {
  if (IsMipsArchVariant(kMips32r6)) {
    const int kTableLength = 23;
    CcTest::InitializeVM();
    Isolate* isolate = CcTest::i_isolate();
    HandleScope scope(isolate);
    MacroAssembler assm(isolate, nullptr, 0,
                        v8::internal::CodeObjectRequired::kYes);
    const double dnan = std::numeric_limits<double>::quiet_NaN();
    const double dinf = std::numeric_limits<double>::infinity();
    const double dminf = -std::numeric_limits<double>::infinity();
    const float fnan = std::numeric_limits<float>::quiet_NaN();
    const float finf = std::numeric_limits<float>::infinity();
    const float fminf = std::numeric_limits<float>::infinity();

    struct TestFloat {
      double a;
      double b;
      double resd;
      double resd1;
      float c;
      float d;
      float resf;
      float resf1;
    };

    TestFloat test;
    double inputsa[kTableLength] = {
        5.3,  4.8, 6.1,  9.8, 9.8,  9.8,  -10.0, -8.9, -9.8,  -10.0, -8.9, -9.8,
        dnan, 3.0, -0.0, 0.0, dinf, dnan, 42.0,  dinf, dminf, dinf,  dnan};
    double inputsb[kTableLength] = {
        4.8, 5.3,  6.1, -10.0, -8.9, -9.8, 9.8,  9.8,  9.8,  -9.8,  -11.2, -9.8,
        3.0, dnan, 0.0, -0.0,  dnan, dinf, dinf, 42.0, dinf, dminf, dnan};
    double resd[kTableLength] = {
        4.8, 4.8, 6.1,  9.8,  -8.9, -9.8, 9.8,  -8.9, -9.8,  -9.8,  -8.9, -9.8,
        3.0, 3.0, -0.0, -0.0, dinf, dinf, 42.0, 42.0, dminf, dminf, dnan};
    double resd1[kTableLength] = {
        5.3, 5.3, 6.1, -10.0, 9.8,  9.8,  -10.0, 9.8,  9.8,  -10.0, -11.2, -9.8,
        3.0, 3.0, 0.0, 0.0,   dinf, dinf, dinf,  dinf, dinf, dinf,  dnan};
    float inputsc[kTableLength] = {
        5.3,  4.8, 6.1,  9.8, 9.8,  9.8,  -10.0, -8.9, -9.8,  -10.0, -8.9, -9.8,
        fnan, 3.0, -0.0, 0.0, finf, fnan, 42.0,  finf, fminf, finf,  fnan};
    float inputsd[kTableLength] = {4.8,  5.3,  6.1,  -10.0, -8.9,  -9.8,
                                   9.8,  9.8,  9.8,  -9.8,  -11.2, -9.8,
                                   3.0,  fnan, -0.0, 0.0,   fnan,  finf,
                                   finf, 42.0, finf, fminf, fnan};
    float resf[kTableLength] = {
        4.8, 4.8, 6.1,  9.8,  -8.9, -9.8, 9.8,  -8.9, -9.8,  -9.8,  -8.9, -9.8,
        3.0, 3.0, -0.0, -0.0, finf, finf, 42.0, 42.0, fminf, fminf, fnan};
    float resf1[kTableLength] = {
        5.3, 5.3, 6.1, -10.0, 9.8,  9.8,  -10.0, 9.8,  9.8,  -10.0, -11.2, -9.8,
        3.0, 3.0, 0.0, 0.0,   finf, finf, finf,  finf, finf, finf,  fnan};

    __ ldc1(f2, MemOperand(a0, offsetof(TestFloat, a)) );
    __ ldc1(f4, MemOperand(a0, offsetof(TestFloat, b)) );
    __ lwc1(f8, MemOperand(a0, offsetof(TestFloat, c)) );
    __ lwc1(f10, MemOperand(a0, offsetof(TestFloat, d)) );
    __ mina_d(f6, f2, f4);
    __ mina_s(f12, f8, f10);
    __ maxa_d(f14, f2, f4);
    __ maxa_s(f16, f8, f10);
    __ swc1(f12, MemOperand(a0, offsetof(TestFloat, resf)) );
    __ sdc1(f6, MemOperand(a0, offsetof(TestFloat, resd)) );
    __ swc1(f16, MemOperand(a0, offsetof(TestFloat, resf1)) );
    __ sdc1(f14, MemOperand(a0, offsetof(TestFloat, resd1)) );
    __ jr(ra);
    __ nop();

    CodeDesc desc;
    assm.GetCode(&desc);
    Handle<Code> code = isolate->factory()->NewCode(
        desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
    F3 f = FUNCTION_CAST<F3>(code->entry());
    for (int i = 0; i < kTableLength; i++) {
      test.a = inputsa[i];
      test.b = inputsb[i];
      test.c = inputsc[i];
      test.d = inputsd[i];
      (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
      if (i < kTableLength - 1) {
        CHECK_EQ(test.resd, resd[i]);
        CHECK_EQ(test.resf, resf[i]);
        CHECK_EQ(test.resd1, resd1[i]);
        CHECK_EQ(test.resf1, resf1[i]);
      } else {
        CHECK(std::isnan(test.resd));
        CHECK(std::isnan(test.resf));
        CHECK(std::isnan(test.resd1));
        CHECK(std::isnan(test.resf1));
      }
    }
  }
}


// ----------------------mips32r2 specific tests----------------------
TEST(trunc_l) {
  if (IsMipsArchVariant(kMips32r2) && IsFp64Mode()) {
    CcTest::InitializeVM();
    Isolate* isolate = CcTest::i_isolate();
    HandleScope scope(isolate);
    MacroAssembler assm(isolate, NULL, 0,
                        v8::internal::CodeObjectRequired::kYes);
    const double dFPU64InvalidResult = static_cast<double>(kFPU64InvalidResult);
    typedef struct test_float {
      uint32_t isNaN2008;
      double a;
      float b;
      int64_t c;  // a trunc result
      int64_t d;  // b trunc result
    }Test;
    const int kTableLength = 15;
    double inputs_D[kTableLength] = {
        2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
        -2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
        2147483648.0,
        std::numeric_limits<double>::quiet_NaN(),
        std::numeric_limits<double>::infinity()
        };
    float inputs_S[kTableLength] = {
        2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
        -2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
        2147483648.0,
        std::numeric_limits<float>::quiet_NaN(),
        std::numeric_limits<float>::infinity()
        };
    double outputs[kTableLength] = {
        2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
        -2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
        2147483648.0, dFPU64InvalidResult,
        dFPU64InvalidResult};
    double outputsNaN2008[kTableLength] = {
        2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
        -2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
        2147483648.0,
        0,
        dFPU64InvalidResult};

    __ cfc1(t1, FCSR);
    __ sw(t1, MemOperand(a0, offsetof(Test, isNaN2008)));
    __ ldc1(f4, MemOperand(a0, offsetof(Test, a)) );
    __ lwc1(f6, MemOperand(a0, offsetof(Test, b)) );
    __ trunc_l_d(f8, f4);
    __ trunc_l_s(f10, f6);
    __ sdc1(f8, MemOperand(a0, offsetof(Test, c)) );
    __ sdc1(f10, MemOperand(a0, offsetof(Test, d)) );
    __ jr(ra);
    __ nop();
    Test test;
    CodeDesc desc;
    assm.GetCode(&desc);
    Handle<Code> code = isolate->factory()->NewCode(
        desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
    F3 f = FUNCTION_CAST<F3>(code->entry());
    for (int i = 0; i < kTableLength; i++) {
      test.a = inputs_D[i];
      test.b = inputs_S[i];
      (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
      if ((test.isNaN2008 & kFCSRNaN2008FlagMask) &&
              kArchVariant == kMips32r6) {
        CHECK_EQ(test.c, outputsNaN2008[i]);
      } else {
        CHECK_EQ(test.c, outputs[i]);
      }
      CHECK_EQ(test.d, test.c);
    }
  }
}


TEST(movz_movn) {
  if (IsMipsArchVariant(kMips32r2)) {
    const int kTableLength = 4;
    CcTest::InitializeVM();
    Isolate* isolate = CcTest::i_isolate();
    HandleScope scope(isolate);
    MacroAssembler assm(isolate, NULL, 0,
                        v8::internal::CodeObjectRequired::kYes);

    typedef struct test_float {
      int32_t rt;
      double a;
      double b;
      double bold;
      double b1;
      double bold1;
      float c;
      float d;
      float dold;
      float d1;
      float dold1;
    }TestFloat;

    TestFloat test;
    double inputs_D[kTableLength] = {
      5.3, -5.3, 5.3, -2.9
    };
    double inputs_S[kTableLength] = {
      4.8, 4.8, -4.8, -0.29
    };

    float outputs_S[kTableLength] = {
      4.8, 4.8, -4.8, -0.29
    };
    double outputs_D[kTableLength] = {
      5.3, -5.3, 5.3, -2.9
    };

    __ ldc1(f2, MemOperand(a0, offsetof(TestFloat, a)) );
    __ lwc1(f6, MemOperand(a0, offsetof(TestFloat, c)) );
    __ lw(t0, MemOperand(a0, offsetof(TestFloat, rt)) );
    __ Move(f12, 0.0);
    __ Move(f10, 0.0);
    __ Move(f16, 0.0);
    __ Move(f14, 0.0);
    __ sdc1(f12, MemOperand(a0, offsetof(TestFloat, bold)) );
    __ swc1(f10, MemOperand(a0, offsetof(TestFloat, dold)) );
    __ sdc1(f16, MemOperand(a0, offsetof(TestFloat, bold1)) );
    __ swc1(f14, MemOperand(a0, offsetof(TestFloat, dold1)) );
    __ movz_s(f10, f6, t0);
    __ movz_d(f12, f2, t0);
    __ movn_s(f14, f6, t0);
    __ movn_d(f16, f2, t0);
    __ swc1(f10, MemOperand(a0, offsetof(TestFloat, d)) );
    __ sdc1(f12, MemOperand(a0, offsetof(TestFloat, b)) );
    __ swc1(f14, MemOperand(a0, offsetof(TestFloat, d1)) );
    __ sdc1(f16, MemOperand(a0, offsetof(TestFloat, b1)) );
    __ jr(ra);
    __ nop();

    CodeDesc desc;
    assm.GetCode(&desc);
    Handle<Code> code = isolate->factory()->NewCode(
        desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
    F3 f = FUNCTION_CAST<F3>(code->entry());
    for (int i = 0; i < kTableLength; i++) {
      test.a = inputs_D[i];
      test.c = inputs_S[i];

      test.rt = 1;
      (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
      CHECK_EQ(test.b, test.bold);
      CHECK_EQ(test.d, test.dold);
      CHECK_EQ(test.b1, outputs_D[i]);
      CHECK_EQ(test.d1, outputs_S[i]);

      test.rt = 0;
      (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
      CHECK_EQ(test.b, outputs_D[i]);
      CHECK_EQ(test.d, outputs_S[i]);
      CHECK_EQ(test.b1, test.bold1);
      CHECK_EQ(test.d1, test.dold1);
    }
  }
}


TEST(movt_movd) {
  if (IsMipsArchVariant(kMips32r2)) {
    const int kTableLength = 4;
    CcTest::InitializeVM();
    Isolate* isolate = CcTest::i_isolate();

    typedef struct test_float {
      double srcd;
      double dstd;
      double dstdold;
      double dstd1;
      double dstdold1;
      float srcf;
      float dstf;
      float dstfold;
      float dstf1;
      float dstfold1;
      int32_t cc;
      int32_t fcsr;
    }TestFloat;

    TestFloat test;
    double inputs_D[kTableLength] = {
      5.3, -5.3, 20.8, -2.9
    };
    double inputs_S[kTableLength] = {
      4.88, 4.8, -4.8, -0.29
    };

    float outputs_S[kTableLength] = {
      4.88, 4.8, -4.8, -0.29
    };
    double outputs_D[kTableLength] = {
      5.3, -5.3, 20.8, -2.9
    };
    int condition_flags[8] = {0, 1, 2, 3, 4, 5, 6, 7};

    for (int i = 0; i < kTableLength; i++) {
      test.srcd = inputs_D[i];
      test.srcf = inputs_S[i];

      for (int j = 0; j< 8; j++) {
        test.cc = condition_flags[j];
        if (test.cc == 0) {
          test.fcsr = 1 << 23;
        } else {
          test.fcsr = 1 << (24+condition_flags[j]);
        }
        HandleScope scope(isolate);
        MacroAssembler assm(isolate, NULL, 0,
                            v8::internal::CodeObjectRequired::kYes);
        __ ldc1(f2, MemOperand(a0, offsetof(TestFloat, srcd)) );
        __ lwc1(f4, MemOperand(a0, offsetof(TestFloat, srcf)) );
        __ lw(t1, MemOperand(a0, offsetof(TestFloat, fcsr)) );
        __ cfc1(t0, FCSR);
        __ ctc1(t1, FCSR);
        __ li(t2, 0x0);
        __ mtc1(t2, f12);
        __ mtc1(t2, f10);
        __ sdc1(f10, MemOperand(a0, offsetof(TestFloat, dstdold)) );
        __ swc1(f12, MemOperand(a0, offsetof(TestFloat, dstfold)) );
        __ movt_s(f12, f4, test.cc);
        __ movt_d(f10, f2, test.cc);
        __ swc1(f12, MemOperand(a0, offsetof(TestFloat, dstf)) );
        __ sdc1(f10, MemOperand(a0, offsetof(TestFloat, dstd)) );
        __ sdc1(f10, MemOperand(a0, offsetof(TestFloat, dstdold1)) );
        __ swc1(f12, MemOperand(a0, offsetof(TestFloat, dstfold1)) );
        __ movf_s(f12, f4, test.cc);
        __ movf_d(f10, f2, test.cc);
        __ swc1(f12, MemOperand(a0, offsetof(TestFloat, dstf1)) );
        __ sdc1(f10, MemOperand(a0, offsetof(TestFloat, dstd1)) );
        __ ctc1(t0, FCSR);
        __ jr(ra);
        __ nop();

        CodeDesc desc;
        assm.GetCode(&desc);
        Handle<Code> code = isolate->factory()->NewCode(
            desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
        F3 f = FUNCTION_CAST<F3>(code->entry());

        (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
        CHECK_EQ(test.dstf, outputs_S[i]);
        CHECK_EQ(test.dstd, outputs_D[i]);
        CHECK_EQ(test.dstf1, test.dstfold1);
        CHECK_EQ(test.dstd1, test.dstdold1);
        test.fcsr = 0;
        (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
        CHECK_EQ(test.dstf, test.dstfold);
        CHECK_EQ(test.dstd, test.dstdold);
        CHECK_EQ(test.dstf1, outputs_S[i]);
        CHECK_EQ(test.dstd1, outputs_D[i]);
      }
    }
  }
}


// ----------------------tests for all archs--------------------------
TEST(cvt_w_d) {
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
  MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);

  typedef struct test_float {
    double a;
    int32_t b;
    int32_t fcsr;
  }Test;
  const int kTableLength = 24;
  double inputs[kTableLength] = {
      2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
      -2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
      2147483637.0, 2147483638.0, 2147483639.0,
      2147483640.0, 2147483641.0, 2147483642.0,
      2147483643.0, 2147483644.0, 2147483645.0,
      2147483646.0, 2147483647.0, 2147483653.0
      };
  double outputs_RN[kTableLength] = {
      2.0, 3.0, 2.0, 3.0, 4.0, 4.0,
      -2.0, -3.0, -2.0, -3.0, -4.0, -4.0,
      2147483637.0, 2147483638.0, 2147483639.0,
      2147483640.0, 2147483641.0, 2147483642.0,
      2147483643.0, 2147483644.0, 2147483645.0,
      2147483646.0, 2147483647.0, kFPUInvalidResult};
  double outputs_RZ[kTableLength] = {
      2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
      -2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
      2147483637.0, 2147483638.0, 2147483639.0,
      2147483640.0, 2147483641.0, 2147483642.0,
      2147483643.0, 2147483644.0, 2147483645.0,
      2147483646.0, 2147483647.0, kFPUInvalidResult};
  double outputs_RP[kTableLength] = {
      3.0, 3.0, 3.0, 4.0, 4.0, 4.0,
      -2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
      2147483637.0, 2147483638.0, 2147483639.0,
      2147483640.0, 2147483641.0, 2147483642.0,
      2147483643.0, 2147483644.0, 2147483645.0,
      2147483646.0, 2147483647.0, kFPUInvalidResult};
  double outputs_RM[kTableLength] = {
      2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
      -3.0, -3.0, -3.0, -4.0, -4.0, -4.0,
      2147483637.0, 2147483638.0, 2147483639.0,
      2147483640.0, 2147483641.0, 2147483642.0,
      2147483643.0, 2147483644.0, 2147483645.0,
      2147483646.0, 2147483647.0, kFPUInvalidResult};
  int fcsr_inputs[4] =
      {kRoundToNearest, kRoundToZero, kRoundToPlusInf, kRoundToMinusInf};
  double* outputs[4] = {outputs_RN, outputs_RZ, outputs_RP, outputs_RM};
  __ ldc1(f4, MemOperand(a0, offsetof(Test, a)) );
  __ lw(t0, MemOperand(a0, offsetof(Test, fcsr)) );
  __ cfc1(t1, FCSR);
  __ ctc1(t0, FCSR);
  __ cvt_w_d(f8, f4);
  __ swc1(f8, MemOperand(a0, offsetof(Test, b)) );
  __ ctc1(t1, FCSR);
  __ jr(ra);
  __ nop();
  Test test;
  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
  F3 f = FUNCTION_CAST<F3>(code->entry());
  for (int j = 0; j < 4; j++) {
    test.fcsr = fcsr_inputs[j];
    for (int i = 0; i < kTableLength; i++) {
      test.a = inputs[i];
      (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
      CHECK_EQ(test.b, outputs[j][i]);
    }
  }
}


TEST(trunc_w) {
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
  MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);

  typedef struct test_float {
    uint32_t isNaN2008;
    double a;
    float b;
    int32_t c;  // a trunc result
    int32_t d;  // b trunc result
  }Test;
  const int kTableLength = 15;
  double inputs_D[kTableLength] = {
      2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
      -2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
      2147483648.0,
      std::numeric_limits<double>::quiet_NaN(),
      std::numeric_limits<double>::infinity()
      };
  float inputs_S[kTableLength] = {
      2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
      -2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
      2147483648.0,
      std::numeric_limits<float>::quiet_NaN(),
      std::numeric_limits<float>::infinity()
      };
  double outputs[kTableLength] = {
      2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
      -2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
      kFPUInvalidResult, kFPUInvalidResult,
      kFPUInvalidResult};
  double outputsNaN2008[kTableLength] = {
      2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
      -2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
      kFPUInvalidResult,
      0,
      kFPUInvalidResult};

  __ cfc1(t1, FCSR);
  __ sw(t1, MemOperand(a0, offsetof(Test, isNaN2008)));
  __ ldc1(f4, MemOperand(a0, offsetof(Test, a)) );
  __ lwc1(f6, MemOperand(a0, offsetof(Test, b)) );
  __ trunc_w_d(f8, f4);
  __ trunc_w_s(f10, f6);
  __ swc1(f8, MemOperand(a0, offsetof(Test, c)) );
  __ swc1(f10, MemOperand(a0, offsetof(Test, d)) );
  __ jr(ra);
  __ nop();
  Test test;
  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
  F3 f = FUNCTION_CAST<F3>(code->entry());
  for (int i = 0; i < kTableLength; i++) {
    test.a = inputs_D[i];
    test.b = inputs_S[i];
    (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
    if ((test.isNaN2008 & kFCSRNaN2008FlagMask) && kArchVariant == kMips32r6) {
      CHECK_EQ(test.c, outputsNaN2008[i]);
    } else {
      CHECK_EQ(test.c, outputs[i]);
    }
    CHECK_EQ(test.d, test.c);
  }
}


TEST(round_w) {
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
  MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);

  typedef struct test_float {
    uint32_t isNaN2008;
    double a;
    float b;
    int32_t c;  // a trunc result
    int32_t d;  // b trunc result
  }Test;
  const int kTableLength = 15;
  double inputs_D[kTableLength] = {
      2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
      -2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
      2147483648.0,
      std::numeric_limits<double>::quiet_NaN(),
      std::numeric_limits<double>::infinity()
      };
  float inputs_S[kTableLength] = {
      2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
      -2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
      2147483648.0,
      std::numeric_limits<float>::quiet_NaN(),
      std::numeric_limits<float>::infinity()
      };
  double outputs[kTableLength] = {
      2.0, 3.0, 2.0, 3.0, 4.0, 4.0,
      -2.0, -3.0, -2.0, -3.0, -4.0, -4.0,
      kFPUInvalidResult, kFPUInvalidResult,
      kFPUInvalidResult};
  double outputsNaN2008[kTableLength] = {
      2.0, 3.0, 2.0, 3.0, 4.0, 4.0,
      -2.0, -3.0, -2.0, -3.0, -4.0, -4.0,
      kFPUInvalidResult, 0,
      kFPUInvalidResult};

  __ cfc1(t1, FCSR);
  __ sw(t1, MemOperand(a0, offsetof(Test, isNaN2008)));
  __ ldc1(f4, MemOperand(a0, offsetof(Test, a)) );
  __ lwc1(f6, MemOperand(a0, offsetof(Test, b)) );
  __ round_w_d(f8, f4);
  __ round_w_s(f10, f6);
  __ swc1(f8, MemOperand(a0, offsetof(Test, c)) );
  __ swc1(f10, MemOperand(a0, offsetof(Test, d)) );
  __ jr(ra);
  __ nop();
  Test test;
  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
  F3 f = FUNCTION_CAST<F3>(code->entry());
  for (int i = 0; i < kTableLength; i++) {
    test.a = inputs_D[i];
    test.b = inputs_S[i];
    (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
    if ((test.isNaN2008 & kFCSRNaN2008FlagMask) && kArchVariant == kMips32r6) {
      CHECK_EQ(test.c, outputsNaN2008[i]);
    } else {
      CHECK_EQ(test.c, outputs[i]);
    }
    CHECK_EQ(test.d, test.c);
  }
}


TEST(round_l) {
  if (IsFp64Mode()) {
    CcTest::InitializeVM();
    Isolate* isolate = CcTest::i_isolate();
    HandleScope scope(isolate);
    MacroAssembler assm(isolate, NULL, 0,
                        v8::internal::CodeObjectRequired::kYes);
    const double dFPU64InvalidResult = static_cast<double>(kFPU64InvalidResult);
    typedef struct test_float {
      uint32_t isNaN2008;
      double a;
      float b;
      int64_t c;
      int64_t d;
    }Test;
    const int kTableLength = 15;
    double inputs_D[kTableLength] = {
        2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
        -2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
        2147483648.0,
        std::numeric_limits<double>::quiet_NaN(),
        std::numeric_limits<double>::infinity()
        };
    float inputs_S[kTableLength] = {
        2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
        -2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
        2147483648.0,
        std::numeric_limits<float>::quiet_NaN(),
        std::numeric_limits<float>::infinity()
        };
    double outputs[kTableLength] = {
        2.0, 3.0, 2.0, 3.0, 4.0, 4.0,
        -2.0, -3.0, -2.0, -3.0, -4.0, -4.0,
        2147483648.0, dFPU64InvalidResult,
        dFPU64InvalidResult};
    double outputsNaN2008[kTableLength] = {
        2.0, 3.0, 2.0, 3.0, 4.0, 4.0,
        -2.0, -3.0, -2.0, -3.0, -4.0, -4.0,
        2147483648.0,
        0,
        dFPU64InvalidResult};

    __ cfc1(t1, FCSR);
    __ sw(t1, MemOperand(a0, offsetof(Test, isNaN2008)));
    __ ldc1(f4, MemOperand(a0, offsetof(Test, a)) );
    __ lwc1(f6, MemOperand(a0, offsetof(Test, b)) );
    __ round_l_d(f8, f4);
    __ round_l_s(f10, f6);
    __ sdc1(f8, MemOperand(a0, offsetof(Test, c)) );
    __ sdc1(f10, MemOperand(a0, offsetof(Test, d)) );
    __ jr(ra);
    __ nop();
    Test test;
    CodeDesc desc;
    assm.GetCode(&desc);
    Handle<Code> code = isolate->factory()->NewCode(
        desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
    F3 f = FUNCTION_CAST<F3>(code->entry());
    for (int i = 0; i < kTableLength; i++) {
      test.a = inputs_D[i];
      test.b = inputs_S[i];
      (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
      if ((test.isNaN2008 & kFCSRNaN2008FlagMask) &&
              kArchVariant == kMips32r6) {
        CHECK_EQ(test.c, outputsNaN2008[i]);
      } else {
        CHECK_EQ(test.c, outputs[i]);
      }
      CHECK_EQ(test.d, test.c);
    }
  }
}


TEST(sub) {
  const int kTableLength = 12;
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
  MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);

  typedef struct test_float {
    float a;
    float b;
    float resultS;
    double c;
    double d;
    double resultD;
  }TestFloat;

  TestFloat test;
  double inputfs_D[kTableLength] = {
    5.3, 4.8, 2.9, -5.3, -4.8, -2.9,
    5.3, 4.8, 2.9, -5.3, -4.8, -2.9
  };
  double inputft_D[kTableLength] = {
    4.8, 5.3, 2.9, 4.8, 5.3, 2.9,
    -4.8, -5.3, -2.9, -4.8, -5.3, -2.9
  };
  double outputs_D[kTableLength] = {
    0.5, -0.5, 0.0, -10.1, -10.1, -5.8,
    10.1, 10.1, 5.8, -0.5, 0.5, 0.0
  };
  float inputfs_S[kTableLength] = {
    5.3, 4.8, 2.9, -5.3, -4.8, -2.9,
    5.3, 4.8, 2.9, -5.3, -4.8, -2.9
  };
  float inputft_S[kTableLength] = {
    4.8, 5.3, 2.9, 4.8, 5.3, 2.9,
    -4.8, -5.3, -2.9, -4.8, -5.3, -2.9
  };
  float outputs_S[kTableLength] = {
    0.5, -0.5, 0.0, -10.1, -10.1, -5.8,
    10.1, 10.1, 5.8, -0.5, 0.5, 0.0
  };
  __ lwc1(f2, MemOperand(a0, offsetof(TestFloat, a)) );
  __ lwc1(f4, MemOperand(a0, offsetof(TestFloat, b)) );
  __ ldc1(f8, MemOperand(a0, offsetof(TestFloat, c)) );
  __ ldc1(f10, MemOperand(a0, offsetof(TestFloat, d)) );
  __ sub_s(f6, f2, f4);
  __ sub_d(f12, f8, f10);
  __ swc1(f6, MemOperand(a0, offsetof(TestFloat, resultS)) );
  __ sdc1(f12, MemOperand(a0, offsetof(TestFloat, resultD)) );
  __ jr(ra);
  __ nop();

  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
  F3 f = FUNCTION_CAST<F3>(code->entry());
  for (int i = 0; i < kTableLength; i++) {
    test.a = inputfs_S[i];
    test.b = inputft_S[i];
    test.c = inputfs_D[i];
    test.d = inputft_D[i];
    (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
    CHECK_EQ(test.resultS, outputs_S[i]);
    CHECK_EQ(test.resultD, outputs_D[i]);
  }
}


TEST(sqrt_rsqrt_recip) {
  const int kTableLength = 4;
  const double deltaDouble = 2E-15;
  const float deltaFloat = 2E-7;
  const float sqrt2_s = sqrt(2);
  const double sqrt2_d = sqrt(2);
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
  MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);

  typedef struct test_float {
    float a;
    float resultS;
    float resultS1;
    float resultS2;
    double c;
    double resultD;
    double resultD1;
    double resultD2;
  }TestFloat;
  TestFloat test;

  double inputs_D[kTableLength] = {
    0.0L, 4.0L, 2.0L, 4e-28L
  };

  double outputs_D[kTableLength] = {
    0.0L, 2.0L, sqrt2_d, 2e-14L
  };
  float inputs_S[kTableLength] = {
    0.0, 4.0, 2.0, 4e-28
  };

  float outputs_S[kTableLength] = {
    0.0, 2.0, sqrt2_s, 2e-14
  };


  __ lwc1(f2, MemOperand(a0, offsetof(TestFloat, a)) );
  __ ldc1(f8, MemOperand(a0, offsetof(TestFloat, c)) );
  __ sqrt_s(f6, f2);
  __ sqrt_d(f12, f8);

  if (IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) {
    __ rsqrt_d(f14, f8);
    __ rsqrt_s(f16, f2);
    __ recip_d(f18, f8);
    __ recip_s(f4, f2);
  }
  __ swc1(f6, MemOperand(a0, offsetof(TestFloat, resultS)) );
  __ sdc1(f12, MemOperand(a0, offsetof(TestFloat, resultD)) );

  if (IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) {
    __ swc1(f16, MemOperand(a0, offsetof(TestFloat, resultS1)) );
    __ sdc1(f14, MemOperand(a0, offsetof(TestFloat, resultD1)) );
    __ swc1(f4, MemOperand(a0, offsetof(TestFloat, resultS2)) );
    __ sdc1(f18, MemOperand(a0, offsetof(TestFloat, resultD2)) );
  }
  __ jr(ra);
  __ nop();

  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
  F3 f = FUNCTION_CAST<F3>(code->entry());

  for (int i = 0; i < kTableLength; i++) {
    float f1;
    double d1;
    test.a = inputs_S[i];
    test.c = inputs_D[i];

    (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));

    CHECK_EQ(test.resultS, outputs_S[i]);
    CHECK_EQ(test.resultD, outputs_D[i]);

    if (IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) {
      if (i != 0) {
        f1 = test.resultS1 - 1.0F/outputs_S[i];
        f1 = (f1 < 0) ? f1 : -f1;
        CHECK(f1 <= deltaFloat);
        d1 = test.resultD1 - 1.0L/outputs_D[i];
        d1 = (d1 < 0) ? d1 : -d1;
        CHECK(d1 <= deltaDouble);
        f1 = test.resultS2 - 1.0F/inputs_S[i];
        f1 = (f1 < 0) ? f1 : -f1;
        CHECK(f1 <= deltaFloat);
        d1 = test.resultD2 - 1.0L/inputs_D[i];
        d1 = (d1 < 0) ? d1 : -d1;
        CHECK(d1 <= deltaDouble);
      } else {
        CHECK_EQ(test.resultS1, 1.0F/outputs_S[i]);
        CHECK_EQ(test.resultD1, 1.0L/outputs_D[i]);
        CHECK_EQ(test.resultS2, 1.0F/inputs_S[i]);
        CHECK_EQ(test.resultD2, 1.0L/inputs_D[i]);
      }
    }
  }
}


TEST(neg) {
  const int kTableLength = 3;
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
  MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);

  typedef struct test_float {
    float a;
    float resultS;
    double c;
    double resultD;
  }TestFloat;

  TestFloat test;
  double inputs_D[kTableLength] = {
    0.0, 4.0, -2.0
  };

  double outputs_D[kTableLength] = {
    0.0, -4.0, 2.0
  };
  float inputs_S[kTableLength] = {
    0.0, 4.0, -2.0
  };

  float outputs_S[kTableLength] = {
    0.0, -4.0, 2.0
  };
  __ lwc1(f2, MemOperand(a0, offsetof(TestFloat, a)) );
  __ ldc1(f8, MemOperand(a0, offsetof(TestFloat, c)) );
  __ neg_s(f6, f2);
  __ neg_d(f12, f8);
  __ swc1(f6, MemOperand(a0, offsetof(TestFloat, resultS)) );
  __ sdc1(f12, MemOperand(a0, offsetof(TestFloat, resultD)) );
  __ jr(ra);
  __ nop();

  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
  F3 f = FUNCTION_CAST<F3>(code->entry());
  for (int i = 0; i < kTableLength; i++) {
    test.a = inputs_S[i];
    test.c = inputs_D[i];
    (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
    CHECK_EQ(test.resultS, outputs_S[i]);
    CHECK_EQ(test.resultD, outputs_D[i]);
  }
}


TEST(mul) {
  const int kTableLength = 4;
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
  MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);

  typedef struct test_float {
    float a;
    float b;
    float resultS;
    double c;
    double d;
    double resultD;
  }TestFloat;

  TestFloat test;
  double inputfs_D[kTableLength] = {
    5.3, -5.3, 5.3, -2.9
  };
  double inputft_D[kTableLength] = {
    4.8, 4.8, -4.8, -0.29
  };

  float inputfs_S[kTableLength] = {
    5.3, -5.3, 5.3, -2.9
  };
  float inputft_S[kTableLength] = {
    4.8, 4.8, -4.8, -0.29
  };

  __ lwc1(f2, MemOperand(a0, offsetof(TestFloat, a)) );
  __ lwc1(f4, MemOperand(a0, offsetof(TestFloat, b)) );
  __ ldc1(f6, MemOperand(a0, offsetof(TestFloat, c)) );
  __ ldc1(f8, MemOperand(a0, offsetof(TestFloat, d)) );
  __ mul_s(f10, f2, f4);
  __ mul_d(f12, f6, f8);
  __ swc1(f10, MemOperand(a0, offsetof(TestFloat, resultS)) );
  __ sdc1(f12, MemOperand(a0, offsetof(TestFloat, resultD)) );
  __ jr(ra);
  __ nop();

  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
  F3 f = FUNCTION_CAST<F3>(code->entry());
  for (int i = 0; i < kTableLength; i++) {
    test.a = inputfs_S[i];
    test.b = inputft_S[i];
    test.c = inputfs_D[i];
    test.d = inputft_D[i];
    (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
    CHECK_EQ(test.resultS, inputfs_S[i]*inputft_S[i]);
    CHECK_EQ(test.resultD, inputfs_D[i]*inputft_D[i]);
  }
}


TEST(mov) {
  const int kTableLength = 4;
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
  MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);

  typedef struct test_float {
    double a;
    double b;
    float c;
    float d;
  }TestFloat;

  TestFloat test;
  double inputs_D[kTableLength] = {
    5.3, -5.3, 5.3, -2.9
  };
  double inputs_S[kTableLength] = {
    4.8, 4.8, -4.8, -0.29
  };

  float outputs_S[kTableLength] = {
    4.8, 4.8, -4.8, -0.29
  };
  double outputs_D[kTableLength] = {
    5.3, -5.3, 5.3, -2.9
  };

  __ ldc1(f4, MemOperand(a0, offsetof(TestFloat, a)) );
  __ lwc1(f6, MemOperand(a0, offsetof(TestFloat, c)) );
  __ mov_s(f8, f6);
  __ mov_d(f10, f4);
  __ swc1(f8, MemOperand(a0, offsetof(TestFloat, d)) );
  __ sdc1(f10, MemOperand(a0, offsetof(TestFloat, b)) );

  __ jr(ra);
  __ nop();

  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
  F3 f = FUNCTION_CAST<F3>(code->entry());
  for (int i = 0; i < kTableLength; i++) {
    test.a = inputs_D[i];
    test.c = inputs_S[i];

    (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
    CHECK_EQ(test.b, outputs_D[i]);
    CHECK_EQ(test.d, outputs_S[i]);
  }
}


TEST(floor_w) {
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
  MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);

  typedef struct test_float {
    uint32_t isNaN2008;
    double a;
    float b;
    int32_t c;  // a floor result
    int32_t d;  // b floor result
  }Test;
  const int kTableLength = 15;
  double inputs_D[kTableLength] = {
      2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
      -2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
      2147483648.0,
      std::numeric_limits<double>::quiet_NaN(),
      std::numeric_limits<double>::infinity()
      };
  float inputs_S[kTableLength] = {
      2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
      -2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
      2147483648.0,
      std::numeric_limits<float>::quiet_NaN(),
      std::numeric_limits<float>::infinity()
      };
  double outputs[kTableLength] = {
      2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
      -3.0, -3.0, -3.0, -4.0, -4.0, -4.0,
      kFPUInvalidResult, kFPUInvalidResult,
      kFPUInvalidResult};
  double outputsNaN2008[kTableLength] = {
      2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
      -3.0, -3.0, -3.0, -4.0, -4.0, -4.0,
      kFPUInvalidResult,
      0,
      kFPUInvalidResult};

  __ cfc1(t1, FCSR);
  __ sw(t1, MemOperand(a0, offsetof(Test, isNaN2008)));
  __ ldc1(f4, MemOperand(a0, offsetof(Test, a)) );
  __ lwc1(f6, MemOperand(a0, offsetof(Test, b)) );
  __ floor_w_d(f8, f4);
  __ floor_w_s(f10, f6);
  __ swc1(f8, MemOperand(a0, offsetof(Test, c)) );
  __ swc1(f10, MemOperand(a0, offsetof(Test, d)) );
  __ jr(ra);
  __ nop();
  Test test;
  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
  F3 f = FUNCTION_CAST<F3>(code->entry());
  for (int i = 0; i < kTableLength; i++) {
    test.a = inputs_D[i];
    test.b = inputs_S[i];
    (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
    if ((test.isNaN2008 & kFCSRNaN2008FlagMask) && kArchVariant == kMips32r6) {
      CHECK_EQ(test.c, outputsNaN2008[i]);
    } else {
      CHECK_EQ(test.c, outputs[i]);
    }
    CHECK_EQ(test.d, test.c);
  }
}


TEST(floor_l) {
  if (IsFp64Mode()) {
    CcTest::InitializeVM();
    Isolate* isolate = CcTest::i_isolate();
    HandleScope scope(isolate);
    MacroAssembler assm(isolate, NULL, 0,
                        v8::internal::CodeObjectRequired::kYes);
    const double dFPU64InvalidResult = static_cast<double>(kFPU64InvalidResult);
    typedef struct test_float {
      uint32_t isNaN2008;
      double a;
      float b;
      int64_t c;
      int64_t d;
    }Test;
    const int kTableLength = 15;
    double inputs_D[kTableLength] = {
        2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
        -2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
        2147483648.0,
        std::numeric_limits<double>::quiet_NaN(),
        std::numeric_limits<double>::infinity()
        };
    float inputs_S[kTableLength] = {
        2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
        -2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
        2147483648.0,
        std::numeric_limits<float>::quiet_NaN(),
        std::numeric_limits<float>::infinity()
        };
    double outputs[kTableLength] = {
        2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
        -3.0, -3.0, -3.0, -4.0, -4.0, -4.0,
        2147483648.0, dFPU64InvalidResult,
        dFPU64InvalidResult};
    double outputsNaN2008[kTableLength] = {
        2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
        -3.0, -3.0, -3.0, -4.0, -4.0, -4.0,
        2147483648.0,
        0,
        dFPU64InvalidResult};

    __ cfc1(t1, FCSR);
    __ sw(t1, MemOperand(a0, offsetof(Test, isNaN2008)));
    __ ldc1(f4, MemOperand(a0, offsetof(Test, a)) );
    __ lwc1(f6, MemOperand(a0, offsetof(Test, b)) );
    __ floor_l_d(f8, f4);
    __ floor_l_s(f10, f6);
    __ sdc1(f8, MemOperand(a0, offsetof(Test, c)) );
    __ sdc1(f10, MemOperand(a0, offsetof(Test, d)) );
    __ jr(ra);
    __ nop();
    Test test;
    CodeDesc desc;
    assm.GetCode(&desc);
    Handle<Code> code = isolate->factory()->NewCode(
        desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
    F3 f = FUNCTION_CAST<F3>(code->entry());
    for (int i = 0; i < kTableLength; i++) {
      test.a = inputs_D[i];
      test.b = inputs_S[i];
      (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
      if ((test.isNaN2008 & kFCSRNaN2008FlagMask) &&
              kArchVariant == kMips32r6) {
        CHECK_EQ(test.c, outputsNaN2008[i]);
      } else {
        CHECK_EQ(test.c, outputs[i]);
      }
      CHECK_EQ(test.d, test.c);
    }
  }
}


TEST(ceil_w) {
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
  MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);

  typedef struct test_float {
    uint32_t isNaN2008;
    double a;
    float b;
    int32_t c;  // a floor result
    int32_t d;  // b floor result
  }Test;
  const int kTableLength = 15;
  double inputs_D[kTableLength] = {
      2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
      -2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
      2147483648.0,
      std::numeric_limits<double>::quiet_NaN(),
      std::numeric_limits<double>::infinity()
      };
  float inputs_S[kTableLength] = {
      2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
      -2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
      2147483648.0,
      std::numeric_limits<float>::quiet_NaN(),
      std::numeric_limits<float>::infinity()
      };
  double outputs[kTableLength] = {
      3.0, 3.0, 3.0, 4.0, 4.0, 4.0,
      -2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
      kFPUInvalidResult, kFPUInvalidResult,
      kFPUInvalidResult};
  double outputsNaN2008[kTableLength] = {
      3.0, 3.0, 3.0, 4.0, 4.0, 4.0,
      -2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
      kFPUInvalidResult,
      0,
      kFPUInvalidResult};

  __ cfc1(t1, FCSR);
  __ sw(t1, MemOperand(a0, offsetof(Test, isNaN2008)));
  __ ldc1(f4, MemOperand(a0, offsetof(Test, a)) );
  __ lwc1(f6, MemOperand(a0, offsetof(Test, b)) );
  __ ceil_w_d(f8, f4);
  __ ceil_w_s(f10, f6);
  __ swc1(f8, MemOperand(a0, offsetof(Test, c)) );
  __ swc1(f10, MemOperand(a0, offsetof(Test, d)) );
  __ jr(ra);
  __ nop();
  Test test;
  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
  F3 f = FUNCTION_CAST<F3>(code->entry());
  for (int i = 0; i < kTableLength; i++) {
    test.a = inputs_D[i];
    test.b = inputs_S[i];
    (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
    if ((test.isNaN2008 & kFCSRNaN2008FlagMask) && kArchVariant == kMips32r6) {
      CHECK_EQ(test.c, outputsNaN2008[i]);
    } else {
      CHECK_EQ(test.c, outputs[i]);
    }
    CHECK_EQ(test.d, test.c);
  }
}


TEST(ceil_l) {
  if (IsFp64Mode()) {
    CcTest::InitializeVM();
    Isolate* isolate = CcTest::i_isolate();
    HandleScope scope(isolate);
    MacroAssembler assm(isolate, NULL, 0,
                        v8::internal::CodeObjectRequired::kYes);
    const double dFPU64InvalidResult = static_cast<double>(kFPU64InvalidResult);
    typedef struct test_float {
      uint32_t isNaN2008;
      double a;
      float b;
      int64_t c;
      int64_t d;
    }Test;
    const int kTableLength = 15;
    double inputs_D[kTableLength] = {
        2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
        -2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
        2147483648.0,
        std::numeric_limits<double>::quiet_NaN(),
        std::numeric_limits<double>::infinity()
        };
    float inputs_S[kTableLength] = {
        2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
        -2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
        2147483648.0,
        std::numeric_limits<float>::quiet_NaN(),
        std::numeric_limits<float>::infinity()
        };
    double outputs[kTableLength] = {
        3.0, 3.0, 3.0, 4.0, 4.0, 4.0,
        -2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
        2147483648.0, dFPU64InvalidResult,
        dFPU64InvalidResult};
    double outputsNaN2008[kTableLength] = {
        3.0, 3.0, 3.0, 4.0, 4.0, 4.0,
        -2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
        2147483648.0,
        0,
        dFPU64InvalidResult};

    __ cfc1(t1, FCSR);
    __ sw(t1, MemOperand(a0, offsetof(Test, isNaN2008)));
    __ ldc1(f4, MemOperand(a0, offsetof(Test, a)) );
    __ lwc1(f6, MemOperand(a0, offsetof(Test, b)) );
    __ ceil_l_d(f8, f4);
    __ ceil_l_s(f10, f6);
    __ sdc1(f8, MemOperand(a0, offsetof(Test, c)) );
    __ sdc1(f10, MemOperand(a0, offsetof(Test, d)) );
    __ jr(ra);
    __ nop();
    Test test;
    CodeDesc desc;
    assm.GetCode(&desc);
    Handle<Code> code = isolate->factory()->NewCode(
        desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
    F3 f = FUNCTION_CAST<F3>(code->entry());
    for (int i = 0; i < kTableLength; i++) {
      test.a = inputs_D[i];
      test.b = inputs_S[i];
      (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
      if ((test.isNaN2008 & kFCSRNaN2008FlagMask) &&
              kArchVariant == kMips32r6) {
        CHECK_EQ(test.c, outputsNaN2008[i]);
      } else {
        CHECK_EQ(test.c, outputs[i]);
      }
      CHECK_EQ(test.d, test.c);
    }
  }
}


TEST(jump_tables1) {
  // Test jump tables with forward jumps.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
  Assembler assm(isolate, nullptr, 0);

  const int kNumCases = 512;
  int values[kNumCases];
  isolate->random_number_generator()->NextBytes(values, sizeof(values));
  Label labels[kNumCases];

  __ addiu(sp, sp, -4);
  __ sw(ra, MemOperand(sp));

  Label done;
  {
    __ BlockTrampolinePoolFor(kNumCases + 7);
    PredictableCodeSizeScope predictable(
        &assm, (kNumCases + 7) * Assembler::kInstrSize);
    Label here;

    __ bal(&here);
    __ nop();
    __ bind(&here);
    __ sll(at, a0, 2);
    __ addu(at, at, ra);
    __ lw(at, MemOperand(at, 5 * Assembler::kInstrSize));
    __ jr(at);
    __ nop();
    for (int i = 0; i < kNumCases; ++i) {
      __ dd(&labels[i]);
    }
  }

  for (int i = 0; i < kNumCases; ++i) {
    __ bind(&labels[i]);
    __ lui(v0, (values[i] >> 16) & 0xffff);
    __ ori(v0, v0, values[i] & 0xffff);
    __ b(&done);
    __ nop();
  }

  __ bind(&done);
  __ lw(ra, MemOperand(sp));
  __ addiu(sp, sp, 4);
  __ jr(ra);
  __ nop();

  CHECK_EQ(assm.UnboundLabelsCount(), 0);

  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
#ifdef OBJECT_PRINT
  code->Print(std::cout);
#endif
  F1 f = FUNCTION_CAST<F1>(code->entry());
  for (int i = 0; i < kNumCases; ++i) {
    int res = reinterpret_cast<int>(
        CALL_GENERATED_CODE(isolate, f, i, 0, 0, 0, 0));
    ::printf("f(%d) = %d\n", i, res);
    CHECK_EQ(values[i], res);
  }
}


TEST(jump_tables2) {
  // Test jump tables with backward jumps.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
  Assembler assm(isolate, nullptr, 0);

  const int kNumCases = 512;
  int values[kNumCases];
  isolate->random_number_generator()->NextBytes(values, sizeof(values));
  Label labels[kNumCases];

  __ addiu(sp, sp, -4);
  __ sw(ra, MemOperand(sp));

  Label done, dispatch;
  __ b(&dispatch);
  __ nop();

  for (int i = 0; i < kNumCases; ++i) {
    __ bind(&labels[i]);
    __ lui(v0, (values[i] >> 16) & 0xffff);
    __ ori(v0, v0, values[i] & 0xffff);
    __ b(&done);
    __ nop();
  }

  __ bind(&dispatch);
  {
    __ BlockTrampolinePoolFor(kNumCases + 7);
    PredictableCodeSizeScope predictable(
        &assm, (kNumCases + 7) * Assembler::kInstrSize);
    Label here;

    __ bal(&here);
    __ nop();
    __ bind(&here);
    __ sll(at, a0, 2);
    __ addu(at, at, ra);
    __ lw(at, MemOperand(at, 5 * Assembler::kInstrSize));
    __ jr(at);
    __ nop();
    for (int i = 0; i < kNumCases; ++i) {
      __ dd(&labels[i]);
    }
  }

  __ bind(&done);
  __ lw(ra, MemOperand(sp));
  __ addiu(sp, sp, 4);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
#ifdef OBJECT_PRINT
  code->Print(std::cout);
#endif
  F1 f = FUNCTION_CAST<F1>(code->entry());
  for (int i = 0; i < kNumCases; ++i) {
    int res = reinterpret_cast<int>(
        CALL_GENERATED_CODE(isolate, f, i, 0, 0, 0, 0));
    ::printf("f(%d) = %d\n", i, res);
    CHECK_EQ(values[i], res);
  }
}


TEST(jump_tables3) {
  // Test jump tables with backward jumps and embedded heap objects.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
  Assembler assm(isolate, nullptr, 0);

  const int kNumCases = 256;
  Handle<Object> values[kNumCases];
  for (int i = 0; i < kNumCases; ++i) {
    double value = isolate->random_number_generator()->NextDouble();
    values[i] = isolate->factory()->NewHeapNumber(value, IMMUTABLE, TENURED);
  }
  Label labels[kNumCases];
  Object* obj;
  int32_t imm32;

  __ addiu(sp, sp, -4);
  __ sw(ra, MemOperand(sp));

  Label done, dispatch;
  __ b(&dispatch);


  for (int i = 0; i < kNumCases; ++i) {
    __ bind(&labels[i]);
    obj = *values[i];
    imm32 = reinterpret_cast<intptr_t>(obj);
    __ lui(v0, (imm32 >> 16) & 0xffff);
    __ ori(v0, v0, imm32 & 0xffff);
    __ b(&done);
    __ nop();
  }

  __ bind(&dispatch);
  {
    __ BlockTrampolinePoolFor(kNumCases + 7);
    PredictableCodeSizeScope predictable(
        &assm, (kNumCases + 7) * Assembler::kInstrSize);
    Label here;

    __ bal(&here);
    __ nop();
    __ bind(&here);
    __ sll(at, a0, 2);
    __ addu(at, at, ra);
    __ lw(at, MemOperand(at, 5 * Assembler::kInstrSize));
    __ jr(at);
    __ nop();
    for (int i = 0; i < kNumCases; ++i) {
      __ dd(&labels[i]);
    }
  }

  __ bind(&done);
  __ lw(ra, MemOperand(sp));
  __ addiu(sp, sp, 4);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
#ifdef OBJECT_PRINT
  code->Print(std::cout);
#endif
  F1 f = FUNCTION_CAST<F1>(code->entry());
  for (int i = 0; i < kNumCases; ++i) {
    Handle<Object> result(
        CALL_GENERATED_CODE(isolate, f, i, 0, 0, 0, 0), isolate);
#ifdef OBJECT_PRINT
    ::printf("f(%d) = ", i);
    result->Print(std::cout);
    ::printf("\n");
#endif
    CHECK(values[i].is_identical_to(result));
  }
}


TEST(BITSWAP) {
  // Test BITSWAP
  if (IsMipsArchVariant(kMips32r6)) {
    CcTest::InitializeVM();
    Isolate* isolate = CcTest::i_isolate();
    HandleScope scope(isolate);

    typedef struct {
      int32_t r1;
      int32_t r2;
      int32_t r3;
      int32_t r4;
    } T;
    T t;

    Assembler assm(isolate, NULL, 0);

    __ lw(a2, MemOperand(a0, offsetof(T, r1)));
    __ nop();
    __ bitswap(a1, a2);
    __ sw(a1, MemOperand(a0, offsetof(T, r1)));

    __ lw(a2, MemOperand(a0, offsetof(T, r2)));
    __ nop();
    __ bitswap(a1, a2);
    __ sw(a1, MemOperand(a0, offsetof(T, r2)));

    __ jr(ra);
    __ nop();

    CodeDesc desc;
    assm.GetCode(&desc);
    Handle<Code> code = isolate->factory()->NewCode(
        desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
    F3 f = FUNCTION_CAST<F3>(code->entry());
    t.r1 = 0x781A15C3;
    t.r2 = 0x8B71FCDE;
    Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
    USE(dummy);

    CHECK_EQ(static_cast<int32_t>(0x1E58A8C3), t.r1);
    CHECK_EQ(static_cast<int32_t>(0xD18E3F7B), t.r2);
  }
}


TEST(class_fmt) {
  if (IsMipsArchVariant(kMips32r6)) {
    // Test CLASS.fmt instruction.
    CcTest::InitializeVM();
    Isolate* isolate = CcTest::i_isolate();
    HandleScope scope(isolate);

    typedef struct {
      double dSignalingNan;
      double dQuietNan;
      double dNegInf;
      double dNegNorm;
      double dNegSubnorm;
      double dNegZero;
      double dPosInf;
      double dPosNorm;
      double dPosSubnorm;
      double dPosZero;
      float  fSignalingNan;
      float  fQuietNan;
      float  fNegInf;
      float  fNegNorm;
      float  fNegSubnorm;
      float  fNegZero;
      float  fPosInf;
      float  fPosNorm;
      float  fPosSubnorm;
      float  fPosZero;  } T;
    T t;

    // Create a function that accepts &t, and loads, manipulates, and stores
    // the doubles t.a ... t.f.
    MacroAssembler assm(isolate, NULL, 0,
                        v8::internal::CodeObjectRequired::kYes);

    __ ldc1(f4, MemOperand(a0, offsetof(T, dSignalingNan)));
    __ class_d(f6, f4);
    __ sdc1(f6, MemOperand(a0, offsetof(T, dSignalingNan)));

    __ ldc1(f4, MemOperand(a0, offsetof(T, dQuietNan)));
    __ class_d(f6, f4);
    __ sdc1(f6, MemOperand(a0, offsetof(T, dQuietNan)));

    __ ldc1(f4, MemOperand(a0, offsetof(T, dNegInf)));
    __ class_d(f6, f4);
    __ sdc1(f6, MemOperand(a0, offsetof(T, dNegInf)));

    __ ldc1(f4, MemOperand(a0, offsetof(T, dNegNorm)));
    __ class_d(f6, f4);
    __ sdc1(f6, MemOperand(a0, offsetof(T, dNegNorm)));

    __ ldc1(f4, MemOperand(a0, offsetof(T, dNegSubnorm)));
    __ class_d(f6, f4);
    __ sdc1(f6, MemOperand(a0, offsetof(T, dNegSubnorm)));

    __ ldc1(f4, MemOperand(a0, offsetof(T, dNegZero)));
    __ class_d(f6, f4);
    __ sdc1(f6, MemOperand(a0, offsetof(T, dNegZero)));

    __ ldc1(f4, MemOperand(a0, offsetof(T, dPosInf)));
    __ class_d(f6, f4);
    __ sdc1(f6, MemOperand(a0, offsetof(T, dPosInf)));

    __ ldc1(f4, MemOperand(a0, offsetof(T, dPosNorm)));
    __ class_d(f6, f4);
    __ sdc1(f6, MemOperand(a0, offsetof(T, dPosNorm)));

    __ ldc1(f4, MemOperand(a0, offsetof(T, dPosSubnorm)));
    __ class_d(f6, f4);
    __ sdc1(f6, MemOperand(a0, offsetof(T, dPosSubnorm)));

    __ ldc1(f4, MemOperand(a0, offsetof(T, dPosZero)));
    __ class_d(f6, f4);
    __ sdc1(f6, MemOperand(a0, offsetof(T, dPosZero)));

    // Testing instruction CLASS.S
    __ lwc1(f4, MemOperand(a0, offsetof(T, fSignalingNan)));
    __ class_s(f6, f4);
    __ swc1(f6, MemOperand(a0, offsetof(T, fSignalingNan)));

    __ lwc1(f4, MemOperand(a0, offsetof(T, fQuietNan)));
    __ class_s(f6, f4);
    __ swc1(f6, MemOperand(a0, offsetof(T, fQuietNan)));

    __ lwc1(f4, MemOperand(a0, offsetof(T, fNegInf)));
    __ class_s(f6, f4);
    __ swc1(f6, MemOperand(a0, offsetof(T, fNegInf)));

    __ lwc1(f4, MemOperand(a0, offsetof(T, fNegNorm)));
    __ class_s(f6, f4);
    __ swc1(f6, MemOperand(a0, offsetof(T, fNegNorm)));

    __ lwc1(f4, MemOperand(a0, offsetof(T, fNegSubnorm)));
    __ class_s(f6, f4);
    __ swc1(f6, MemOperand(a0, offsetof(T, fNegSubnorm)));

    __ lwc1(f4, MemOperand(a0, offsetof(T, fNegZero)));
    __ class_s(f6, f4);
    __ swc1(f6, MemOperand(a0, offsetof(T, fNegZero)));

    __ lwc1(f4, MemOperand(a0, offsetof(T, fPosInf)));
    __ class_s(f6, f4);
    __ swc1(f6, MemOperand(a0, offsetof(T, fPosInf)));

    __ lwc1(f4, MemOperand(a0, offsetof(T, fPosNorm)));
    __ class_s(f6, f4);
    __ swc1(f6, MemOperand(a0, offsetof(T, fPosNorm)));

    __ lwc1(f4, MemOperand(a0, offsetof(T, fPosSubnorm)));
    __ class_s(f6, f4);
    __ swc1(f6, MemOperand(a0, offsetof(T, fPosSubnorm)));

    __ lwc1(f4, MemOperand(a0, offsetof(T, fPosZero)));
    __ class_s(f6, f4);
    __ swc1(f6, MemOperand(a0, offsetof(T, fPosZero)));

    __ jr(ra);
    __ nop();

    CodeDesc desc;
    assm.GetCode(&desc);
    Handle<Code> code = isolate->factory()->NewCode(
        desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
    F3 f = FUNCTION_CAST<F3>(code->entry());

    t.dSignalingNan =  std::numeric_limits<double>::signaling_NaN();
    t.dQuietNan = std::numeric_limits<double>::quiet_NaN();
    t.dNegInf       = -1.0 / 0.0;
    t.dNegNorm      = -5.0;
    t.dNegSubnorm   = -DBL_MIN / 2.0;
    t.dNegZero      = -0.0;
    t.dPosInf       = 2.0 / 0.0;
    t.dPosNorm      = 275.35;
    t.dPosSubnorm   = DBL_MIN / 2.0;
    t.dPosZero      = +0.0;
    // Float test values

    t.fSignalingNan = std::numeric_limits<float>::signaling_NaN();
    t.fQuietNan     = std::numeric_limits<float>::quiet_NaN();
    t.fNegInf       = -0.5/0.0;
    t.fNegNorm      = -FLT_MIN;
    t.fNegSubnorm   = -FLT_MIN / 1.5;
    t.fNegZero      = -0.0;
    t.fPosInf       = 100000.0 / 0.0;
    t.fPosNorm      = FLT_MAX;
    t.fPosSubnorm   = FLT_MIN / 20.0;
    t.fPosZero      = +0.0;

    Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
    USE(dummy);
    // Expected double results.
    CHECK_EQ(bit_cast<int64_t>(t.dSignalingNan), 0x001);
    CHECK_EQ(bit_cast<int64_t>(t.dQuietNan),     0x002);
    CHECK_EQ(bit_cast<int64_t>(t.dNegInf),       0x004);
    CHECK_EQ(bit_cast<int64_t>(t.dNegNorm),      0x008);
    CHECK_EQ(bit_cast<int64_t>(t.dNegSubnorm),   0x010);
    CHECK_EQ(bit_cast<int64_t>(t.dNegZero),      0x020);
    CHECK_EQ(bit_cast<int64_t>(t.dPosInf),       0x040);
    CHECK_EQ(bit_cast<int64_t>(t.dPosNorm),      0x080);
    CHECK_EQ(bit_cast<int64_t>(t.dPosSubnorm),   0x100);
    CHECK_EQ(bit_cast<int64_t>(t.dPosZero),      0x200);

    // Expected float results.
    CHECK_EQ(bit_cast<int32_t>(t.fSignalingNan), 0x001);
    CHECK_EQ(bit_cast<int32_t>(t.fQuietNan),     0x002);
    CHECK_EQ(bit_cast<int32_t>(t.fNegInf),       0x004);
    CHECK_EQ(bit_cast<int32_t>(t.fNegNorm),      0x008);
    CHECK_EQ(bit_cast<int32_t>(t.fNegSubnorm),   0x010);
    CHECK_EQ(bit_cast<int32_t>(t.fNegZero),      0x020);
    CHECK_EQ(bit_cast<int32_t>(t.fPosInf),       0x040);
    CHECK_EQ(bit_cast<int32_t>(t.fPosNorm),      0x080);
    CHECK_EQ(bit_cast<int32_t>(t.fPosSubnorm),   0x100);
    CHECK_EQ(bit_cast<int32_t>(t.fPosZero),      0x200);
  }
}


TEST(ABS) {
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
  MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);

  typedef struct test_float {
    int64_t fir;
    double a;
    float b;
    double fcsr;
  } TestFloat;

  TestFloat test;

  // Save FIR.
  __ cfc1(a1, FCSR);
  // Disable FPU exceptions.
  __ ctc1(zero_reg, FCSR);

  __ ldc1(f4, MemOperand(a0, offsetof(TestFloat, a)));
  __ abs_d(f10, f4);
  __ sdc1(f10, MemOperand(a0, offsetof(TestFloat, a)));

  __ lwc1(f4, MemOperand(a0, offsetof(TestFloat, b)));
  __ abs_s(f10, f4);
  __ swc1(f10, MemOperand(a0, offsetof(TestFloat, b)));

  // Restore FCSR.
  __ ctc1(a1, FCSR);

  __ jr(ra);
  __ nop();

  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
  F3 f = FUNCTION_CAST<F3>(code->entry());
  test.a = -2.0;
  test.b = -2.0;
  (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
  CHECK_EQ(test.a, 2.0);
  CHECK_EQ(test.b, 2.0);

  test.a = 2.0;
  test.b = 2.0;
  (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
  CHECK_EQ(test.a, 2.0);
  CHECK_EQ(test.b, 2.0);

  // Testing biggest positive number
  test.a = std::numeric_limits<double>::max();
  test.b = std::numeric_limits<float>::max();
  (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
  CHECK_EQ(test.a, std::numeric_limits<double>::max());
  CHECK_EQ(test.b, std::numeric_limits<float>::max());

  // Testing smallest negative number
  test.a = -std::numeric_limits<double>::max();  // lowest()
  test.b = -std::numeric_limits<float>::max();   // lowest()
  (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
  CHECK_EQ(test.a, std::numeric_limits<double>::max());
  CHECK_EQ(test.b, std::numeric_limits<float>::max());

  // Testing smallest positive number
  test.a = -std::numeric_limits<double>::min();
  test.b = -std::numeric_limits<float>::min();
  (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
  CHECK_EQ(test.a, std::numeric_limits<double>::min());
  CHECK_EQ(test.b, std::numeric_limits<float>::min());

  // Testing infinity
  test.a = -std::numeric_limits<double>::max()
          / std::numeric_limits<double>::min();
  test.b = -std::numeric_limits<float>::max()
          / std::numeric_limits<float>::min();
  (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
  CHECK_EQ(test.a, std::numeric_limits<double>::max()
                 / std::numeric_limits<double>::min());
  CHECK_EQ(test.b, std::numeric_limits<float>::max()
                 / std::numeric_limits<float>::min());

  test.a = std::numeric_limits<double>::quiet_NaN();
  test.b = std::numeric_limits<float>::quiet_NaN();
  (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
  CHECK_EQ(std::isnan(test.a), true);
  CHECK_EQ(std::isnan(test.b), true);

  test.a = std::numeric_limits<double>::signaling_NaN();
  test.b = std::numeric_limits<float>::signaling_NaN();
  (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
  CHECK_EQ(std::isnan(test.a), true);
  CHECK_EQ(std::isnan(test.b), true);
}


TEST(ADD_FMT) {
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
  MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);

  typedef struct test_float {
    double a;
    double b;
    double c;
    float fa;
    float fb;
    float fc;
  } TestFloat;

  TestFloat test;

  __ ldc1(f4, MemOperand(a0, offsetof(TestFloat, a)));
  __ ldc1(f8, MemOperand(a0, offsetof(TestFloat, b)));
  __ add_d(f10, f8, f4);
  __ sdc1(f10, MemOperand(a0, offsetof(TestFloat, c)));

  __ lwc1(f4, MemOperand(a0, offsetof(TestFloat, fa)));
  __ lwc1(f8, MemOperand(a0, offsetof(TestFloat, fb)));
  __ add_s(f10, f8, f4);
  __ swc1(f10, MemOperand(a0, offsetof(TestFloat, fc)));

  __ jr(ra);
  __ nop();

  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
  F3 f = FUNCTION_CAST<F3>(code->entry());
  test.a = 2.0;
  test.b = 3.0;
  test.fa = 2.0;
  test.fb = 3.0;
  (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
  CHECK_EQ(test.c, 5.0);
  CHECK_EQ(test.fc, 5.0);

  test.a = std::numeric_limits<double>::max();
  test.b = -std::numeric_limits<double>::max();  // lowest()
  test.fa = std::numeric_limits<float>::max();
  test.fb = -std::numeric_limits<float>::max();  // lowest()
  (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
  CHECK_EQ(test.c, 0.0);
  CHECK_EQ(test.fc, 0.0);

  test.a = std::numeric_limits<double>::max();
  test.b = std::numeric_limits<double>::max();
  test.fa = std::numeric_limits<float>::max();
  test.fb = std::numeric_limits<float>::max();
  (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
  CHECK_EQ(std::isfinite(test.c), false);
  CHECK_EQ(std::isfinite(test.fc), false);

  test.a = 5.0;
  test.b = std::numeric_limits<double>::signaling_NaN();
  test.fa = 5.0;
  test.fb = std::numeric_limits<float>::signaling_NaN();
  (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
  CHECK_EQ(std::isnan(test.c), true);
  CHECK_EQ(std::isnan(test.fc), true);
}


TEST(C_COND_FMT) {
  if ((IsMipsArchVariant(kMips32r1)) || (IsMipsArchVariant(kMips32r2))) {
    CcTest::InitializeVM();
    Isolate* isolate = CcTest::i_isolate();
    HandleScope scope(isolate);
    MacroAssembler assm(isolate, NULL, 0,
                        v8::internal::CodeObjectRequired::kYes);

    typedef struct test_float {
      double dOp1;
      double dOp2;
      uint32_t dF;
      uint32_t dUn;
      uint32_t dEq;
      uint32_t dUeq;
      uint32_t dOlt;
      uint32_t dUlt;
      uint32_t dOle;
      uint32_t dUle;
      float fOp1;
      float fOp2;
      uint32_t fF;
      uint32_t fUn;
      uint32_t fEq;
      uint32_t fUeq;
      uint32_t fOlt;
      uint32_t fUlt;
      uint32_t fOle;
      uint32_t fUle;
    } TestFloat;

    TestFloat test;

    __ li(t1, 1);

    __ ldc1(f4, MemOperand(a0, offsetof(TestFloat, dOp1)));
    __ ldc1(f6, MemOperand(a0, offsetof(TestFloat, dOp2)));

    __ lwc1(f14, MemOperand(a0, offsetof(TestFloat, fOp1)));
    __ lwc1(f16, MemOperand(a0, offsetof(TestFloat, fOp2)));

    __ mov(t2, zero_reg);
    __ mov(t3, zero_reg);
    __ c_d(F, f4, f6, 0);
    __ c_s(F, f14, f16, 2);
    __ movt(t2, t1, 0);
    __ movt(t3, t1, 2);
    __ sw(t2, MemOperand(a0, offsetof(TestFloat, dF)) );
    __ sw(t3, MemOperand(a0, offsetof(TestFloat, fF)) );

    __ mov(t2, zero_reg);
    __ mov(t3, zero_reg);
    __ c_d(UN, f4, f6, 2);
    __ c_s(UN, f14, f16, 4);
    __ movt(t2, t1, 2);
    __ movt(t3, t1, 4);
    __ sw(t2, MemOperand(a0, offsetof(TestFloat, dUn)) );
    __ sw(t3, MemOperand(a0, offsetof(TestFloat, fUn)) );

    __ mov(t2, zero_reg);
    __ mov(t3, zero_reg);
    __ c_d(EQ, f4, f6, 4);
    __ c_s(EQ, f14, f16, 6);
    __ movt(t2, t1, 4);
    __ movt(t3, t1, 6);
    __ sw(t2, MemOperand(a0, offsetof(TestFloat, dEq)) );
    __ sw(t3, MemOperand(a0, offsetof(TestFloat, fEq)) );

    __ mov(t2, zero_reg);
    __ mov(t3, zero_reg);
    __ c_d(UEQ, f4, f6, 6);
    __ c_s(UEQ, f14, f16, 0);
    __ movt(t2, t1, 6);
    __ movt(t3, t1, 0);
    __ sw(t2, MemOperand(a0, offsetof(TestFloat, dUeq)) );
    __ sw(t3, MemOperand(a0, offsetof(TestFloat, fUeq)) );

    __ mov(t2, zero_reg);
    __ mov(t3, zero_reg);
    __ c_d(OLT, f4, f6, 0);
    __ c_s(OLT, f14, f16, 2);
    __ movt(t2, t1, 0);
    __ movt(t3, t1, 2);
    __ sw(t2, MemOperand(a0, offsetof(TestFloat, dOlt)) );
    __ sw(t3, MemOperand(a0, offsetof(TestFloat, fOlt)) );

    __ mov(t2, zero_reg);
    __ mov(t3, zero_reg);
    __ c_d(ULT, f4, f6, 2);
    __ c_s(ULT, f14, f16, 4);
    __ movt(t2, t1, 2);
    __ movt(t3, t1, 4);
    __ sw(t2, MemOperand(a0, offsetof(TestFloat, dUlt)) );
    __ sw(t3, MemOperand(a0, offsetof(TestFloat, fUlt)) );

    __ mov(t2, zero_reg);
    __ mov(t3, zero_reg);
    __ c_d(OLE, f4, f6, 4);
    __ c_s(OLE, f14, f16, 6);
    __ movt(t2, t1, 4);
    __ movt(t3, t1, 6);
    __ sw(t2, MemOperand(a0, offsetof(TestFloat, dOle)) );
    __ sw(t3, MemOperand(a0, offsetof(TestFloat, fOle)) );

    __ mov(t2, zero_reg);
    __ mov(t3, zero_reg);
    __ c_d(ULE, f4, f6, 6);
    __ c_s(ULE, f14, f16, 0);
    __ movt(t2, t1, 6);
    __ movt(t3, t1, 0);
    __ sw(t2, MemOperand(a0, offsetof(TestFloat, dUle)) );
    __ sw(t3, MemOperand(a0, offsetof(TestFloat, fUle)) );

    __ jr(ra);
    __ nop();

    CodeDesc desc;
    assm.GetCode(&desc);
    Handle<Code> code = isolate->factory()->NewCode(
        desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
    F3 f = FUNCTION_CAST<F3>(code->entry());
    test.dOp1 = 2.0;
    test.dOp2 = 3.0;
    test.fOp1 = 2.0;
    test.fOp2 = 3.0;
    (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
    CHECK_EQ(test.dF, 0U);
    CHECK_EQ(test.dUn, 0U);
    CHECK_EQ(test.dEq, 0U);
    CHECK_EQ(test.dUeq, 0U);
    CHECK_EQ(test.dOlt, 1U);
    CHECK_EQ(test.dUlt, 1U);
    CHECK_EQ(test.dOle, 1U);
    CHECK_EQ(test.dUle, 1U);
    CHECK_EQ(test.fF, 0U);
    CHECK_EQ(test.fUn, 0U);
    CHECK_EQ(test.fEq, 0U);
    CHECK_EQ(test.fUeq, 0U);
    CHECK_EQ(test.fOlt, 1U);
    CHECK_EQ(test.fUlt, 1U);
    CHECK_EQ(test.fOle, 1U);
    CHECK_EQ(test.fUle, 1U);

    test.dOp1 = std::numeric_limits<double>::max();
    test.dOp2 = std::numeric_limits<double>::min();
    test.fOp1 = std::numeric_limits<float>::min();
    test.fOp2 = -std::numeric_limits<float>::max();  // lowest()
    (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
    CHECK_EQ(test.dF, 0U);
    CHECK_EQ(test.dUn, 0U);
    CHECK_EQ(test.dEq, 0U);
    CHECK_EQ(test.dUeq, 0U);
    CHECK_EQ(test.dOlt, 0U);
    CHECK_EQ(test.dUlt, 0U);
    CHECK_EQ(test.dOle, 0U);
    CHECK_EQ(test.dUle, 0U);
    CHECK_EQ(test.fF, 0U);
    CHECK_EQ(test.fUn, 0U);
    CHECK_EQ(test.fEq, 0U);
    CHECK_EQ(test.fUeq, 0U);
    CHECK_EQ(test.fOlt, 0U);
    CHECK_EQ(test.fUlt, 0U);
    CHECK_EQ(test.fOle, 0U);
    CHECK_EQ(test.fUle, 0U);

    test.dOp1 = -std::numeric_limits<double>::max();  // lowest()
    test.dOp2 = -std::numeric_limits<double>::max();  // lowest()
    test.fOp1 = std::numeric_limits<float>::max();
    test.fOp2 = std::numeric_limits<float>::max();
    (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
    CHECK_EQ(test.dF, 0U);
    CHECK_EQ(test.dUn, 0U);
    CHECK_EQ(test.dEq, 1U);
    CHECK_EQ(test.dUeq, 1U);
    CHECK_EQ(test.dOlt, 0U);
    CHECK_EQ(test.dUlt, 0U);
    CHECK_EQ(test.dOle, 1U);
    CHECK_EQ(test.dUle, 1U);
    CHECK_EQ(test.fF, 0U);
    CHECK_EQ(test.fUn, 0U);
    CHECK_EQ(test.fEq, 1U);
    CHECK_EQ(test.fUeq, 1U);
    CHECK_EQ(test.fOlt, 0U);
    CHECK_EQ(test.fUlt, 0U);
    CHECK_EQ(test.fOle, 1U);
    CHECK_EQ(test.fUle, 1U);

    test.dOp1 = std::numeric_limits<double>::quiet_NaN();
    test.dOp2 = 0.0;
    test.fOp1 = std::numeric_limits<float>::quiet_NaN();
    test.fOp2 = 0.0;
    (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
    CHECK_EQ(test.dF, 0U);
    CHECK_EQ(test.dUn, 1U);
    CHECK_EQ(test.dEq, 0U);
    CHECK_EQ(test.dUeq, 1U);
    CHECK_EQ(test.dOlt, 0U);
    CHECK_EQ(test.dUlt, 1U);
    CHECK_EQ(test.dOle, 0U);
    CHECK_EQ(test.dUle, 1U);
    CHECK_EQ(test.fF, 0U);
    CHECK_EQ(test.fUn, 1U);
    CHECK_EQ(test.fEq, 0U);
    CHECK_EQ(test.fUeq, 1U);
    CHECK_EQ(test.fOlt, 0U);
    CHECK_EQ(test.fUlt, 1U);
    CHECK_EQ(test.fOle, 0U);
    CHECK_EQ(test.fUle, 1U);
  }
}


TEST(CMP_COND_FMT) {
  if (IsMipsArchVariant(kMips32r6)) {
    CcTest::InitializeVM();
    Isolate* isolate = CcTest::i_isolate();
    HandleScope scope(isolate);
    MacroAssembler assm(isolate, NULL, 0,
                        v8::internal::CodeObjectRequired::kYes);

    typedef struct test_float {
      double dOp1;
      double dOp2;
      double dF;
      double dUn;
      double dEq;
      double dUeq;
      double dOlt;
      double dUlt;
      double dOle;
      double dUle;
      double dOr;
      double dUne;
      double dNe;
      float fOp1;
      float fOp2;
      float fF;
      float fUn;
      float fEq;
      float fUeq;
      float fOlt;
      float fUlt;
      float fOle;
      float fUle;
      float fOr;
      float fUne;
      float fNe;
    } TestFloat;

    TestFloat test;

    __ li(t1, 1);

    __ ldc1(f4, MemOperand(a0, offsetof(TestFloat, dOp1)));
    __ ldc1(f6, MemOperand(a0, offsetof(TestFloat, dOp2)));

    __ lwc1(f14, MemOperand(a0, offsetof(TestFloat, fOp1)));
    __ lwc1(f16, MemOperand(a0, offsetof(TestFloat, fOp2)));

    __ cmp_d(F, f2, f4, f6);
    __ cmp_s(F, f12, f14, f16);
    __ sdc1(f2, MemOperand(a0, offsetof(TestFloat, dF)) );
    __ swc1(f12, MemOperand(a0, offsetof(TestFloat, fF)) );

    __ cmp_d(UN, f2, f4, f6);
    __ cmp_s(UN, f12, f14, f16);
    __ sdc1(f2, MemOperand(a0, offsetof(TestFloat, dUn)) );
    __ swc1(f12, MemOperand(a0, offsetof(TestFloat, fUn)) );

    __ cmp_d(EQ, f2, f4, f6);
    __ cmp_s(EQ, f12, f14, f16);
    __ sdc1(f2, MemOperand(a0, offsetof(TestFloat, dEq)) );
    __ swc1(f12, MemOperand(a0, offsetof(TestFloat, fEq)) );

    __ cmp_d(UEQ, f2, f4, f6);
    __ cmp_s(UEQ, f12, f14, f16);
    __ sdc1(f2, MemOperand(a0, offsetof(TestFloat, dUeq)) );
    __ swc1(f12, MemOperand(a0, offsetof(TestFloat, fUeq)) );

    __ cmp_d(LT, f2, f4, f6);
    __ cmp_s(LT, f12, f14, f16);
    __ sdc1(f2, MemOperand(a0, offsetof(TestFloat, dOlt)) );
    __ swc1(f12, MemOperand(a0, offsetof(TestFloat, fOlt)) );

    __ cmp_d(ULT, f2, f4, f6);
    __ cmp_s(ULT, f12, f14, f16);
    __ sdc1(f2, MemOperand(a0, offsetof(TestFloat, dUlt)) );
    __ swc1(f12, MemOperand(a0, offsetof(TestFloat, fUlt)) );

    __ cmp_d(LE, f2, f4, f6);
    __ cmp_s(LE, f12, f14, f16);
    __ sdc1(f2, MemOperand(a0, offsetof(TestFloat, dOle)) );
    __ swc1(f12, MemOperand(a0, offsetof(TestFloat, fOle)) );

    __ cmp_d(ULE, f2, f4, f6);
    __ cmp_s(ULE, f12, f14, f16);
    __ sdc1(f2, MemOperand(a0, offsetof(TestFloat, dUle)) );
    __ swc1(f12, MemOperand(a0, offsetof(TestFloat, fUle)) );

    __ cmp_d(ORD, f2, f4, f6);
    __ cmp_s(ORD, f12, f14, f16);
    __ sdc1(f2, MemOperand(a0, offsetof(TestFloat, dOr)) );
    __ swc1(f12, MemOperand(a0, offsetof(TestFloat, fOr)) );

    __ cmp_d(UNE, f2, f4, f6);
    __ cmp_s(UNE, f12, f14, f16);
    __ sdc1(f2, MemOperand(a0, offsetof(TestFloat, dUne)) );
    __ swc1(f12, MemOperand(a0, offsetof(TestFloat, fUne)) );

    __ cmp_d(NE, f2, f4, f6);
    __ cmp_s(NE, f12, f14, f16);
    __ sdc1(f2, MemOperand(a0, offsetof(TestFloat, dNe)) );
    __ swc1(f12, MemOperand(a0, offsetof(TestFloat, fNe)) );

    __ jr(ra);
    __ nop();

    CodeDesc desc;
    assm.GetCode(&desc);
    Handle<Code> code = isolate->factory()->NewCode(
        desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
    F3 f = FUNCTION_CAST<F3>(code->entry());
    uint64_t dTrue  = 0xFFFFFFFFFFFFFFFF;
    uint64_t dFalse = 0x0000000000000000;
    uint32_t fTrue  = 0xFFFFFFFF;
    uint32_t fFalse = 0x00000000;

    test.dOp1 = 2.0;
    test.dOp2 = 3.0;
    test.fOp1 = 2.0;
    test.fOp2 = 3.0;
    (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
    CHECK_EQ(bit_cast<uint64_t>(test.dF), dFalse);
    CHECK_EQ(bit_cast<uint64_t>(test.dUn), dFalse);
    CHECK_EQ(bit_cast<uint64_t>(test.dEq), dFalse);
    CHECK_EQ(bit_cast<uint64_t>(test.dUeq), dFalse);
    CHECK_EQ(bit_cast<uint64_t>(test.dOlt), dTrue);
    CHECK_EQ(bit_cast<uint64_t>(test.dUlt), dTrue);
    CHECK_EQ(bit_cast<uint64_t>(test.dOle), dTrue);
    CHECK_EQ(bit_cast<uint64_t>(test.dUle), dTrue);
    CHECK_EQ(bit_cast<uint64_t>(test.dOr), dTrue);
    CHECK_EQ(bit_cast<uint64_t>(test.dUne), dTrue);
    CHECK_EQ(bit_cast<uint64_t>(test.dNe), dTrue);
    CHECK_EQ(bit_cast<uint32_t>(test.fF), fFalse);
    CHECK_EQ(bit_cast<uint32_t>(test.fUn), fFalse);
    CHECK_EQ(bit_cast<uint32_t>(test.fEq), fFalse);
    CHECK_EQ(bit_cast<uint32_t>(test.fUeq), fFalse);
    CHECK_EQ(bit_cast<uint32_t>(test.fOlt), fTrue);
    CHECK_EQ(bit_cast<uint32_t>(test.fUlt), fTrue);
    CHECK_EQ(bit_cast<uint32_t>(test.fOle), fTrue);
    CHECK_EQ(bit_cast<uint32_t>(test.fUle), fTrue);

    test.dOp1 = std::numeric_limits<double>::max();
    test.dOp2 = std::numeric_limits<double>::min();
    test.fOp1 = std::numeric_limits<float>::min();
    test.fOp2 = -std::numeric_limits<float>::max();  // lowest()
    (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
    CHECK_EQ(bit_cast<uint64_t>(test.dF), dFalse);
    CHECK_EQ(bit_cast<uint64_t>(test.dUn), dFalse);
    CHECK_EQ(bit_cast<uint64_t>(test.dEq), dFalse);
    CHECK_EQ(bit_cast<uint64_t>(test.dUeq), dFalse);
    CHECK_EQ(bit_cast<uint64_t>(test.dOlt), dFalse);
    CHECK_EQ(bit_cast<uint64_t>(test.dUlt), dFalse);
    CHECK_EQ(bit_cast<uint64_t>(test.dOle), dFalse);
    CHECK_EQ(bit_cast<uint64_t>(test.dUle), dFalse);
    CHECK_EQ(bit_cast<uint64_t>(test.dOr), dTrue);
    CHECK_EQ(bit_cast<uint64_t>(test.dUne), dTrue);
    CHECK_EQ(bit_cast<uint64_t>(test.dNe), dTrue);
    CHECK_EQ(bit_cast<uint32_t>(test.fF), fFalse);
    CHECK_EQ(bit_cast<uint32_t>(test.fUn), fFalse);
    CHECK_EQ(bit_cast<uint32_t>(test.fEq), fFalse);
    CHECK_EQ(bit_cast<uint32_t>(test.fUeq), fFalse);
    CHECK_EQ(bit_cast<uint32_t>(test.fOlt), fFalse);
    CHECK_EQ(bit_cast<uint32_t>(test.fUlt), fFalse);
    CHECK_EQ(bit_cast<uint32_t>(test.fOle), fFalse);
    CHECK_EQ(bit_cast<uint32_t>(test.fUle), fFalse);

    test.dOp1 = -std::numeric_limits<double>::max();  // lowest()
    test.dOp2 = -std::numeric_limits<double>::max();  // lowest()
    test.fOp1 = std::numeric_limits<float>::max();
    test.fOp2 = std::numeric_limits<float>::max();
    (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
    CHECK_EQ(bit_cast<uint64_t>(test.dF), dFalse);
    CHECK_EQ(bit_cast<uint64_t>(test.dUn), dFalse);
    CHECK_EQ(bit_cast<uint64_t>(test.dEq), dTrue);
    CHECK_EQ(bit_cast<uint64_t>(test.dUeq), dTrue);
    CHECK_EQ(bit_cast<uint64_t>(test.dOlt), dFalse);
    CHECK_EQ(bit_cast<uint64_t>(test.dUlt), dFalse);
    CHECK_EQ(bit_cast<uint64_t>(test.dOle), dTrue);
    CHECK_EQ(bit_cast<uint64_t>(test.dUle), dTrue);
    CHECK_EQ(bit_cast<uint64_t>(test.dOr), dTrue);
    CHECK_EQ(bit_cast<uint64_t>(test.dUne), dFalse);
    CHECK_EQ(bit_cast<uint64_t>(test.dNe), dFalse);
    CHECK_EQ(bit_cast<uint32_t>(test.fF), fFalse);
    CHECK_EQ(bit_cast<uint32_t>(test.fUn), fFalse);
    CHECK_EQ(bit_cast<uint32_t>(test.fEq), fTrue);
    CHECK_EQ(bit_cast<uint32_t>(test.fUeq), fTrue);
    CHECK_EQ(bit_cast<uint32_t>(test.fOlt), fFalse);
    CHECK_EQ(bit_cast<uint32_t>(test.fUlt), fFalse);
    CHECK_EQ(bit_cast<uint32_t>(test.fOle), fTrue);
    CHECK_EQ(bit_cast<uint32_t>(test.fUle), fTrue);

    test.dOp1 = std::numeric_limits<double>::quiet_NaN();
    test.dOp2 = 0.0;
    test.fOp1 = std::numeric_limits<float>::quiet_NaN();
    test.fOp2 = 0.0;
    (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
    CHECK_EQ(bit_cast<uint64_t>(test.dF), dFalse);
    CHECK_EQ(bit_cast<uint64_t>(test.dUn), dTrue);
    CHECK_EQ(bit_cast<uint64_t>(test.dEq), dFalse);
    CHECK_EQ(bit_cast<uint64_t>(test.dUeq), dTrue);
    CHECK_EQ(bit_cast<uint64_t>(test.dOlt), dFalse);
    CHECK_EQ(bit_cast<uint64_t>(test.dUlt), dTrue);
    CHECK_EQ(bit_cast<uint64_t>(test.dOle), dFalse);
    CHECK_EQ(bit_cast<uint64_t>(test.dUle), dTrue);
    CHECK_EQ(bit_cast<uint64_t>(test.dOr), dFalse);
    CHECK_EQ(bit_cast<uint64_t>(test.dUne), dTrue);
    CHECK_EQ(bit_cast<uint64_t>(test.dNe), dFalse);
    CHECK_EQ(bit_cast<uint32_t>(test.fF), fFalse);
    CHECK_EQ(bit_cast<uint32_t>(test.fUn), fTrue);
    CHECK_EQ(bit_cast<uint32_t>(test.fEq), fFalse);
    CHECK_EQ(bit_cast<uint32_t>(test.fUeq), fTrue);
    CHECK_EQ(bit_cast<uint32_t>(test.fOlt), fFalse);
    CHECK_EQ(bit_cast<uint32_t>(test.fUlt), fTrue);
    CHECK_EQ(bit_cast<uint32_t>(test.fOle), fFalse);
    CHECK_EQ(bit_cast<uint32_t>(test.fUle), fTrue);
  }
}


TEST(CVT) {
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
  MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);

  typedef struct test_float {
    float    cvt_d_s_in;
    double   cvt_d_s_out;
    int32_t  cvt_d_w_in;
    double   cvt_d_w_out;
    int64_t  cvt_d_l_in;
    double   cvt_d_l_out;

    float    cvt_l_s_in;
    int64_t  cvt_l_s_out;
    double   cvt_l_d_in;
    int64_t  cvt_l_d_out;

    double   cvt_s_d_in;
    float    cvt_s_d_out;
    int32_t  cvt_s_w_in;
    float    cvt_s_w_out;
    int64_t  cvt_s_l_in;
    float    cvt_s_l_out;

    float    cvt_w_s_in;
    int32_t  cvt_w_s_out;
    double   cvt_w_d_in;
    int32_t  cvt_w_d_out;
  } TestFloat;

  TestFloat test;

  // Save FCSR.
  __ cfc1(a1, FCSR);
  // Disable FPU exceptions.
  __ ctc1(zero_reg, FCSR);

#define GENERATE_CVT_TEST(x, y, z) \
  __ y##c1(f0, MemOperand(a0, offsetof(TestFloat, x##_in))); \
  __ x(f0, f0); \
  __ nop(); \
  __ z##c1(f0, MemOperand(a0, offsetof(TestFloat, x##_out)));

  GENERATE_CVT_TEST(cvt_d_s, lw, sd)
  GENERATE_CVT_TEST(cvt_d_w, lw, sd)
  if ((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
         IsFp64Mode()) {
    GENERATE_CVT_TEST(cvt_d_l, ld, sd)
  }

  if (IsFp64Mode()) {
    GENERATE_CVT_TEST(cvt_l_s, lw, sd)
    GENERATE_CVT_TEST(cvt_l_d, ld, sd)
  }

  GENERATE_CVT_TEST(cvt_s_d, ld, sw)
  GENERATE_CVT_TEST(cvt_s_w, lw, sw)
  if ((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
         IsFp64Mode()) {
    GENERATE_CVT_TEST(cvt_s_l, ld, sw)
  }

  GENERATE_CVT_TEST(cvt_w_s, lw, sw)
  GENERATE_CVT_TEST(cvt_w_d, ld, sw)

  // Restore FCSR.
  __ ctc1(a1, FCSR);

  __ jr(ra);
  __ nop();

  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
  F3 f = FUNCTION_CAST<F3>(code->entry());

  test.cvt_d_s_in = -0.51;
  test.cvt_d_w_in = -1;
  test.cvt_d_l_in = -1;
  test.cvt_l_s_in = -0.51;
  test.cvt_l_d_in = -0.51;
  test.cvt_s_d_in = -0.51;
  test.cvt_s_w_in = -1;
  test.cvt_s_l_in = -1;
  test.cvt_w_s_in = -0.51;
  test.cvt_w_d_in = -0.51;

  (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
  CHECK_EQ(test.cvt_d_s_out, static_cast<double>(test.cvt_d_s_in));
  CHECK_EQ(test.cvt_d_w_out, static_cast<double>(test.cvt_d_w_in));
  if ((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
         IsFp64Mode()) {
    CHECK_EQ(test.cvt_d_l_out, static_cast<double>(test.cvt_d_l_in));
  }
  if (IsFp64Mode()) {
    CHECK_EQ(test.cvt_l_s_out, -1);
    CHECK_EQ(test.cvt_l_d_out, -1);
  }
  CHECK_EQ(test.cvt_s_d_out, static_cast<float>(test.cvt_s_d_in));
  CHECK_EQ(test.cvt_s_w_out, static_cast<float>(test.cvt_s_w_in));
  if ((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
         IsFp64Mode()) {
    CHECK_EQ(test.cvt_s_l_out, static_cast<float>(test.cvt_s_l_in));
  }
  CHECK_EQ(test.cvt_w_s_out, -1);
  CHECK_EQ(test.cvt_w_d_out, -1);


  test.cvt_d_s_in = 0.49;
  test.cvt_d_w_in = 1;
  test.cvt_d_l_in = 1;
  test.cvt_l_s_in = 0.49;
  test.cvt_l_d_in = 0.49;
  test.cvt_s_d_in = 0.49;
  test.cvt_s_w_in = 1;
  test.cvt_s_l_in = 1;
  test.cvt_w_s_in = 0.49;
  test.cvt_w_d_in = 0.49;

  (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
  CHECK_EQ(test.cvt_d_s_out, static_cast<double>(test.cvt_d_s_in));
  CHECK_EQ(test.cvt_d_w_out, static_cast<double>(test.cvt_d_w_in));
  if ((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
         IsFp64Mode()) {
    CHECK_EQ(test.cvt_d_l_out, static_cast<double>(test.cvt_d_l_in));
  }
  if (IsFp64Mode()) {
    CHECK_EQ(test.cvt_l_s_out, 0);
    CHECK_EQ(test.cvt_l_d_out, 0);
  }
  CHECK_EQ(test.cvt_s_d_out, static_cast<float>(test.cvt_s_d_in));
  CHECK_EQ(test.cvt_s_w_out, static_cast<float>(test.cvt_s_w_in));
  if ((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
         IsFp64Mode()) {
    CHECK_EQ(test.cvt_s_l_out, static_cast<float>(test.cvt_s_l_in));
  }
  CHECK_EQ(test.cvt_w_s_out, 0);
  CHECK_EQ(test.cvt_w_d_out, 0);

  test.cvt_d_s_in = std::numeric_limits<float>::max();
  test.cvt_d_w_in = std::numeric_limits<int32_t>::max();
  test.cvt_d_l_in = std::numeric_limits<int64_t>::max();
  test.cvt_l_s_in = std::numeric_limits<float>::max();
  test.cvt_l_d_in = std::numeric_limits<double>::max();
  test.cvt_s_d_in = std::numeric_limits<double>::max();
  test.cvt_s_w_in = std::numeric_limits<int32_t>::max();
  test.cvt_s_l_in = std::numeric_limits<int64_t>::max();
  test.cvt_w_s_in = std::numeric_limits<float>::max();
  test.cvt_w_d_in = std::numeric_limits<double>::max();

  (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
  CHECK_EQ(test.cvt_d_s_out, static_cast<double>(test.cvt_d_s_in));
  CHECK_EQ(test.cvt_d_w_out, static_cast<double>(test.cvt_d_w_in));
  if ((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
         IsFp64Mode()) {
    CHECK_EQ(test.cvt_d_l_out, static_cast<double>(test.cvt_d_l_in));
  }
  if (IsFp64Mode()) {
    CHECK_EQ(test.cvt_l_s_out, std::numeric_limits<int64_t>::max());
    CHECK_EQ(test.cvt_l_d_out, std::numeric_limits<int64_t>::max());
  }
  CHECK_EQ(test.cvt_s_d_out, static_cast<float>(test.cvt_s_d_in));
  CHECK_EQ(test.cvt_s_w_out, static_cast<float>(test.cvt_s_w_in));
  if ((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
         IsFp64Mode()) {
    CHECK_EQ(test.cvt_s_l_out, static_cast<float>(test.cvt_s_l_in));
  }
  CHECK_EQ(test.cvt_w_s_out, std::numeric_limits<int32_t>::max());
  CHECK_EQ(test.cvt_w_d_out, std::numeric_limits<int32_t>::max());


  test.cvt_d_s_in = -std::numeric_limits<float>::max();   // lowest()
  test.cvt_d_w_in = std::numeric_limits<int32_t>::min();  // lowest()
  test.cvt_d_l_in = std::numeric_limits<int64_t>::min();  // lowest()
  test.cvt_l_s_in = -std::numeric_limits<float>::max();   // lowest()
  test.cvt_l_d_in = -std::numeric_limits<double>::max();  // lowest()
  test.cvt_s_d_in = -std::numeric_limits<double>::max();  // lowest()
  test.cvt_s_w_in = std::numeric_limits<int32_t>::min();  // lowest()
  test.cvt_s_l_in = std::numeric_limits<int64_t>::min();  // lowest()
  test.cvt_w_s_in = -std::numeric_limits<float>::max();   // lowest()
  test.cvt_w_d_in = -std::numeric_limits<double>::max();  // lowest()

  (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
  CHECK_EQ(test.cvt_d_s_out, static_cast<double>(test.cvt_d_s_in));
  CHECK_EQ(test.cvt_d_w_out, static_cast<double>(test.cvt_d_w_in));
  if ((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
         IsFp64Mode()) {
    CHECK_EQ(test.cvt_d_l_out, static_cast<double>(test.cvt_d_l_in));
  }
  // The returned value when converting from fixed-point to float-point
  // is not consistent between board, simulator and specification
  // in this test case, therefore modifying the test
  if (IsFp64Mode()) {
    CHECK(test.cvt_l_s_out == std::numeric_limits<int64_t>::min() ||
         test.cvt_l_s_out == std::numeric_limits<int64_t>::max());
    CHECK(test.cvt_l_d_out == std::numeric_limits<int64_t>::min() ||
          test.cvt_l_d_out == std::numeric_limits<int64_t>::max());
  }
  CHECK_EQ(test.cvt_s_d_out, static_cast<float>(test.cvt_s_d_in));
  CHECK_EQ(test.cvt_s_w_out, static_cast<float>(test.cvt_s_w_in));
  if ((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
         IsFp64Mode()) {
    CHECK_EQ(test.cvt_s_l_out, static_cast<float>(test.cvt_s_l_in));
  }
  CHECK(test.cvt_w_s_out == std::numeric_limits<int32_t>::min() ||
        test.cvt_w_s_out == std::numeric_limits<int32_t>::max());
  CHECK(test.cvt_w_d_out == std::numeric_limits<int32_t>::min() ||
        test.cvt_w_d_out == std::numeric_limits<int32_t>::max());


  test.cvt_d_s_in = std::numeric_limits<float>::min();
  test.cvt_d_w_in = std::numeric_limits<int32_t>::min();
  test.cvt_d_l_in = std::numeric_limits<int64_t>::min();
  test.cvt_l_s_in = std::numeric_limits<float>::min();
  test.cvt_l_d_in = std::numeric_limits<double>::min();
  test.cvt_s_d_in = std::numeric_limits<double>::min();
  test.cvt_s_w_in = std::numeric_limits<int32_t>::min();
  test.cvt_s_l_in = std::numeric_limits<int64_t>::min();
  test.cvt_w_s_in = std::numeric_limits<float>::min();
  test.cvt_w_d_in = std::numeric_limits<double>::min();

  (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
  CHECK_EQ(test.cvt_d_s_out, static_cast<double>(test.cvt_d_s_in));
  CHECK_EQ(test.cvt_d_w_out, static_cast<double>(test.cvt_d_w_in));
  if ((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
         IsFp64Mode()) {
    CHECK_EQ(test.cvt_d_l_out, static_cast<double>(test.cvt_d_l_in));
  }
  if (IsFp64Mode()) {
    CHECK_EQ(test.cvt_l_s_out, 0);
    CHECK_EQ(test.cvt_l_d_out, 0);
  }
  CHECK_EQ(test.cvt_s_d_out, static_cast<float>(test.cvt_s_d_in));
  CHECK_EQ(test.cvt_s_w_out, static_cast<float>(test.cvt_s_w_in));
  if ((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
         IsFp64Mode()) {
    CHECK_EQ(test.cvt_s_l_out, static_cast<float>(test.cvt_s_l_in));
  }
  CHECK_EQ(test.cvt_w_s_out, 0);
  CHECK_EQ(test.cvt_w_d_out, 0);
}


TEST(DIV_FMT) {
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
  MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);

  typedef struct test {
    double dOp1;
    double dOp2;
    double dRes;
    float  fOp1;
    float  fOp2;
    float  fRes;
  } Test;

  Test test;

  // Save FCSR.
  __ cfc1(a1, FCSR);
  // Disable FPU exceptions.
  __ ctc1(zero_reg, FCSR);

  __ ldc1(f4, MemOperand(a0, offsetof(Test, dOp1)) );
  __ ldc1(f2, MemOperand(a0, offsetof(Test, dOp2)) );
  __ nop();
  __ div_d(f6, f4, f2);
  __ sdc1(f6, MemOperand(a0, offsetof(Test, dRes)) );

  __ lwc1(f4, MemOperand(a0, offsetof(Test, fOp1)) );
  __ lwc1(f2, MemOperand(a0, offsetof(Test, fOp2)) );
  __ nop();
  __ div_s(f6, f4, f2);
  __ swc1(f6, MemOperand(a0, offsetof(Test, fRes)) );

    // Restore FCSR.
  __ ctc1(a1, FCSR);

  __ jr(ra);
  __ nop();

  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());

  F3 f = FUNCTION_CAST<F3>(code->entry());

  (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));

  const int test_size = 3;

  double dOp1[test_size] = {
    5.0,
    DBL_MAX,
    DBL_MAX,
  };
  double dOp2[test_size] = {
    2.0,
    2.0,
    -DBL_MAX,
  };
  double dRes[test_size] = {
    2.5,
    DBL_MAX / 2.0,
    -1.0,
  };
  float fOp1[test_size] = {
    5.0,
    FLT_MAX,
    FLT_MAX,
  };
  float fOp2[test_size] = {
    2.0,
    2.0,
    -FLT_MAX,
  };
  float fRes[test_size] = {
    2.5,
    FLT_MAX / 2.0,
    -1.0,
  };

  for (int i = 0; i < test_size; i++) {
    test.dOp1 = dOp1[i];
    test.dOp2 = dOp2[i];
    test.fOp1 = fOp1[i];
    test.fOp2 = fOp2[i];

    (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
    CHECK_EQ(test.dRes, dRes[i]);
    CHECK_EQ(test.fRes, fRes[i]);
  }

  test.dOp1 = DBL_MAX;
  test.dOp2 = -0.0;
  test.fOp1 = FLT_MAX;
  test.fOp2 = -0.0;

  (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
  CHECK_EQ(false, std::isfinite(test.dRes));
  CHECK_EQ(false, std::isfinite(test.fRes));

  test.dOp1 = 0.0;
  test.dOp2 = -0.0;
  test.fOp1 = 0.0;
  test.fOp2 = -0.0;

  (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
  CHECK_EQ(true, std::isnan(test.dRes));
  CHECK_EQ(true, std::isnan(test.fRes));

  test.dOp1 = std::numeric_limits<double>::quiet_NaN();
  test.dOp2 = -5.0;
  test.fOp1 = std::numeric_limits<float>::quiet_NaN();
  test.fOp2 = -5.0;

  (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
  CHECK_EQ(true, std::isnan(test.dRes));
  CHECK_EQ(true, std::isnan(test.fRes));
}


uint32_t run_align(uint32_t rs_value, uint32_t rt_value, uint8_t bp) {
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);

  MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);

  __ align(v0, a0, a1, bp);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());

  F2 f = FUNCTION_CAST<F2>(code->entry());

  uint32_t res = reinterpret_cast<uint32_t>(CALL_GENERATED_CODE(
      isolate, f, rs_value, rt_value, 0, 0, 0));

  return res;
}


TEST(r6_align) {
  if (IsMipsArchVariant(kMips32r6)) {
    CcTest::InitializeVM();

    struct TestCaseAlign {
      uint32_t  rs_value;
      uint32_t  rt_value;
      uint8_t   bp;
      uint32_t  expected_res;
    };

    struct TestCaseAlign tc[] = {
      // rs_value,    rt_value,    bp,  expected_res
      { 0x11223344,   0xaabbccdd,   0,  0xaabbccdd },
      { 0x11223344,   0xaabbccdd,   1,  0xbbccdd11 },
      { 0x11223344,   0xaabbccdd,   2,  0xccdd1122 },
      { 0x11223344,   0xaabbccdd,   3,  0xdd112233 },
    };

    size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseAlign);
    for (size_t i = 0; i < nr_test_cases; ++i) {
      CHECK_EQ(tc[i].expected_res, run_align(tc[i].rs_value,
                                             tc[i].rt_value, tc[i].bp));
    }
  }
}

uint32_t PC;  // The program counter.

uint32_t run_aluipc(int16_t offset) {
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);

  MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);

  __ aluipc(v0, offset);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());

  F2 f = FUNCTION_CAST<F2>(code->entry());
  PC = (uint32_t) f;  // Set the program counter.

  uint32_t res = reinterpret_cast<uint32_t>(
      CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));

  return res;
}


TEST(r6_aluipc) {
  if (IsMipsArchVariant(kMips32r6)) {
    CcTest::InitializeVM();

    struct TestCaseAluipc {
      int16_t   offset;
    };

    struct TestCaseAluipc tc[] = {
      // offset
      { -32768 },   // 0x8000
      {     -1 },   // 0xFFFF
      {      0 },
      {      1 },
      {  32767 },   // 0x7FFF
    };

    size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseAluipc);
    for (size_t i = 0; i < nr_test_cases; ++i) {
      PC = 0;
      uint32_t res = run_aluipc(tc[i].offset);
      // Now, the program_counter (PC) is set.
      uint32_t expected_res = ~0x0FFFF & (PC + (tc[i].offset << 16));
      CHECK_EQ(expected_res, res);
    }
  }
}


uint32_t run_auipc(int16_t offset) {
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);

  MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);

  __ auipc(v0, offset);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());

  F2 f = FUNCTION_CAST<F2>(code->entry());
  PC = (uint32_t) f;  // Set the program counter.

  uint32_t res = reinterpret_cast<uint32_t>(
      CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));

  return res;
}


TEST(r6_auipc) {
  if (IsMipsArchVariant(kMips32r6)) {
    CcTest::InitializeVM();

    struct TestCaseAuipc {
      int16_t   offset;
    };

    struct TestCaseAuipc tc[] = {
      // offset
      { -32768 },   // 0x8000
      {     -1 },   // 0xFFFF
      {      0 },
      {      1 },
      {  32767 },   // 0x7FFF
    };

    size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseAuipc);
    for (size_t i = 0; i < nr_test_cases; ++i) {
      PC = 0;
      uint32_t res = run_auipc(tc[i].offset);
      // Now, the program_counter (PC) is set.
      uint32_t expected_res = PC + (tc[i].offset << 16);
      CHECK_EQ(expected_res, res);
    }
  }
}


uint32_t run_lwpc(int offset) {
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);

  MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);

  // 256k instructions; 2^8k
  // addiu t7, t0, 0xffff;  (0x250fffff)
  // ...
  // addiu t4, t0, 0x0000;  (0x250c0000)
  uint32_t addiu_start_1 = 0x25000000;
  for (int32_t i = 0xfffff; i >= 0xc0000; --i) {
    uint32_t addiu_new = addiu_start_1 + i;
    __ dd(addiu_new);
  }

  __ lwpc(t8, offset);         // offset 0; 0xef080000 (t8 register)
  __ mov(v0, t8);

  // 256k instructions; 2^8k
  // addiu t0, t0, 0x0000;  (0x25080000)
  // ...
  // addiu t3, t0, 0xffff;  (0x250bffff)
  uint32_t addiu_start_2 = 0x25000000;
  for (int32_t i = 0x80000; i <= 0xbffff; ++i) {
    uint32_t addiu_new = addiu_start_2 + i;
    __ dd(addiu_new);
  }

  __ jr(ra);
  __ nop();

  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());

  F2 f = FUNCTION_CAST<F2>(code->entry());

  uint32_t res = reinterpret_cast<uint32_t>(
      CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));

  return res;
}


TEST(r6_lwpc) {
  if (IsMipsArchVariant(kMips32r6)) {
    CcTest::InitializeVM();

    struct TestCaseLwpc {
      int      offset;
      uint32_t expected_res;
    };

    struct TestCaseLwpc tc[] = {
      // offset,   expected_res
      { -262144,    0x250fffff },   // offset 0x40000
      {      -4,    0x250c0003 },
      {      -1,    0x250c0000 },
      {       0,    0xef080000 },
      {       1,    0x03001025 },   // mov(v0, t8)
      {       2,    0x25080000 },
      {       4,    0x25080002 },
      {  262143,    0x250bfffd },   // offset 0x3ffff
    };

    size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseLwpc);
    for (size_t i = 0; i < nr_test_cases; ++i) {
      uint32_t res = run_lwpc(tc[i].offset);
      CHECK_EQ(tc[i].expected_res, res);
    }
  }
}


uint32_t run_jic(int16_t offset) {
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);

  MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);

  Label get_program_counter, stop_execution;
  __ push(ra);
  __ li(v0, 0);
  __ li(t1, 0x66);

  __ addiu(v0, v0, 0x1);        // <-- offset = -32
  __ addiu(v0, v0, 0x2);
  __ addiu(v0, v0, 0x10);
  __ addiu(v0, v0, 0x20);
  __ beq(v0, t1, &stop_execution);
  __ nop();

  __ bal(&get_program_counter);  // t0 <- program counter
  __ nop();
  __ jic(t0, offset);

  __ addiu(v0, v0, 0x100);
  __ addiu(v0, v0, 0x200);
  __ addiu(v0, v0, 0x1000);
  __ addiu(v0, v0, 0x2000);   // <--- offset = 16
  __ pop(ra);
  __ jr(ra);
  __ nop();

  __ bind(&get_program_counter);
  __ mov(t0, ra);
  __ jr(ra);
  __ nop();

  __ bind(&stop_execution);
  __ pop(ra);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());

  F2 f = FUNCTION_CAST<F2>(code->entry());

  uint32_t res = reinterpret_cast<uint32_t>(
      CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));

  return res;
}


TEST(r6_jic) {
  if (IsMipsArchVariant(kMips32r6)) {
    CcTest::InitializeVM();

    struct TestCaseJic {
      // As rt will be used t0 register which will have value of
      // the program counter for the jic instruction.
      int16_t   offset;
      uint32_t  expected_res;
    };

    struct TestCaseJic tc[] = {
      // offset,   expected_result
      {      16,            0x2033 },
      {       4,            0x3333 },
      {     -32,              0x66 },
    };

    size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseJic);
    for (size_t i = 0; i < nr_test_cases; ++i) {
      uint32_t res = run_jic(tc[i].offset);
      CHECK_EQ(tc[i].expected_res, res);
    }
  }
}


uint64_t run_beqzc(int32_t value, int32_t offset) {
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);

  MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);

  Label stop_execution;
  __ li(v0, 0);
  __ li(t1, 0x66);

  __ addiu(v0, v0, 0x1);        // <-- offset = -32
  __ addiu(v0, v0, 0x2);
  __ addiu(v0, v0, 0x10);
  __ addiu(v0, v0, 0x20);
  __ beq(v0, t1, &stop_execution);
  __ nop();

  __ beqzc(a0, offset);         // BEQZC rs, offset

  __ addiu(v0, v0,    0x1);
  __ addiu(v0, v0,  0x100);
  __ addiu(v0, v0,  0x200);
  __ addiu(v0, v0, 0x1000);
  __ addiu(v0, v0, 0x2000);   // <--- offset = 16
  __ jr(ra);
  __ nop();

  __ bind(&stop_execution);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());

  F2 f = FUNCTION_CAST<F2>(code->entry());

  uint32_t res = reinterpret_cast<uint32_t>(
      CALL_GENERATED_CODE(isolate, f, value, 0, 0, 0, 0));

  return res;
}


TEST(r6_beqzc) {
  if (IsMipsArchVariant(kMips32r6)) {
    CcTest::InitializeVM();

    struct TestCaseBeqzc {
      uint32_t  value;
      int32_t   offset;
      uint32_t  expected_res;
    };

    struct TestCaseBeqzc tc[] = {
      //    value,    offset,   expected_res
      {       0x0,        -8,           0x66 },
      {       0x0,         0,         0x3334 },
      {       0x0,         1,         0x3333 },
      {     0xabc,         1,         0x3334 },
      {       0x0,         4,         0x2033 },
    };

    size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseBeqzc);
    for (size_t i = 0; i < nr_test_cases; ++i) {
      uint32_t res = run_beqzc(tc[i].value, tc[i].offset);
      CHECK_EQ(tc[i].expected_res, res);
    }
  }
}


uint32_t run_jialc(int16_t offset) {
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);

  MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);

  Label main_block, get_program_counter;
  __ push(ra);
  __ li(v0, 0);
  __ beq(v0, v0, &main_block);
  __ nop();

  // Block 1
  __ addiu(v0, v0, 0x1);        // <-- offset = -40
  __ addiu(v0, v0, 0x2);
  __ jr(ra);
  __ nop();

  // Block 2
  __ addiu(v0, v0, 0x10);        // <-- offset = -24
  __ addiu(v0, v0, 0x20);
  __ jr(ra);
  __ nop();

  // Block 3 (Main)
  __ bind(&main_block);
  __ bal(&get_program_counter);  // t0 <- program counter
  __ nop();
  __ jialc(t0, offset);
  __ addiu(v0, v0, 0x4);
  __ pop(ra);
  __ jr(ra);
  __ nop();

  // Block 4
  __ addiu(v0, v0, 0x100);      // <-- offset = 20
  __ addiu(v0, v0, 0x200);
  __ jr(ra);
  __ nop();

  // Block 5
  __ addiu(v0, v0, 0x1000);     // <--- offset = 36
  __ addiu(v0, v0, 0x2000);
  __ jr(ra);
  __ nop();

  __ bind(&get_program_counter);
  __ mov(t0, ra);
  __ jr(ra);
  __ nop();


  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());

  F2 f = FUNCTION_CAST<F2>(code->entry());

  uint32_t res = reinterpret_cast<uint32_t>(
      CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));

  return res;
}


TEST(r6_jialc) {
  if (IsMipsArchVariant(kMips32r6)) {
    CcTest::InitializeVM();

    struct TestCaseJialc {
      int16_t   offset;
      uint32_t  expected_res;
    };

    struct TestCaseJialc tc[] = {
      // offset,   expected_res
      {     -40,            0x7 },
      {     -24,           0x34 },
      {      20,          0x304 },
      {      36,         0x3004 }
    };

    size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseJialc);
    for (size_t i = 0; i < nr_test_cases; ++i) {
      uint32_t res = run_jialc(tc[i].offset);
      CHECK_EQ(tc[i].expected_res, res);
    }
  }
}

static uint32_t run_addiupc(int32_t imm19) {
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);

  MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);

  __ addiupc(v0, imm19);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());

  F2 f = FUNCTION_CAST<F2>(code->entry());
  PC = (uint32_t) f;  // Set the program counter.

  uint32_t rs = reinterpret_cast<uint32_t>(
      CALL_GENERATED_CODE(isolate, f, imm19, 0, 0, 0, 0));

  return rs;
}


TEST(r6_addiupc) {
  if (IsMipsArchVariant(kMips32r6)) {
    CcTest::InitializeVM();

    struct TestCaseAddiupc {
      int32_t   imm19;
    };

    TestCaseAddiupc tc[] = {
        //  imm19
        {-262144},  // 0x40000
        {-1},       // 0x7FFFF
        {0},
        {1},      // 0x00001
        {262143}  // 0x3FFFF
    };

    size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseAddiupc);
    for (size_t i = 0; i < nr_test_cases; ++i) {
      PC = 0;
      uint32_t res = run_addiupc(tc[i].imm19);
      // Now, the program_counter (PC) is set.
      uint32_t expected_res = PC + (tc[i].imm19 << 2);
      CHECK_EQ(expected_res, res);
    }
  }
}


int32_t run_bc(int32_t offset) {
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);

  MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);

  Label continue_1, stop_execution;
  __ push(ra);
  __ li(v0, 0);
  __ li(t8, 0);
  __ li(t9, 2);   // A condition for stopping execution.

  for (int32_t i = -100; i <= -11; ++i) {
    __ addiu(v0, v0, 1);
  }

  __ addiu(t8, t8, 1);              // -10

  __ beq(t8, t9, &stop_execution);  // -9
  __ nop();                         // -8
  __ beq(t8, t8, &continue_1);      // -7
  __ nop();                         // -6

  __ bind(&stop_execution);
  __ pop(ra);                       // -5, -4
  __ jr(ra);                        // -3
  __ nop();                         // -2

  __ bind(&continue_1);
  __ bc(offset);                    // -1

  for (int32_t i = 0; i <= 99; ++i) {
    __ addiu(v0, v0, 1);
  }

  __ pop(ra);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());

  F2 f = FUNCTION_CAST<F2>(code->entry());

  int32_t res = reinterpret_cast<int32_t>(
      CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));

  return res;
}


TEST(r6_bc) {
  if (IsMipsArchVariant(kMips32r6)) {
    CcTest::InitializeVM();

    struct TestCaseBc {
      int32_t   offset;
      int32_t   expected_res;
    };

    struct TestCaseBc tc[] = {
      //    offset,   expected_result
      {       -100,   (abs(-100) - 10) * 2        },
      {        -11,   (abs(-100) - 10 + 1)        },
      {          0,   (abs(-100) - 10 + 1 + 99)   },
      {          1,   (abs(-100) - 10 + 99)       },
      {         99,   (abs(-100) - 10 + 1)        },
    };

    size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseBc);
    for (size_t i = 0; i < nr_test_cases; ++i) {
      int32_t res = run_bc(tc[i].offset);
      CHECK_EQ(tc[i].expected_res, res);
    }
  }
}


int32_t run_balc(int32_t offset) {
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);

  MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);

  Label continue_1, stop_execution;
  __ push(ra);
  __ li(v0, 0);
  __ li(t8, 0);
  __ li(t9, 2);   // A condition for stopping execution.

  __ beq(t8, t8, &continue_1);
  __ nop();

  uint32_t instruction_addiu = 0x24420001;  // addiu v0, v0, 1
  for (int32_t i = -117; i <= -57; ++i) {
    __ dd(instruction_addiu);
  }
  __ jr(ra);                        // -56
  __ nop();                         // -55

  for (int32_t i = -54; i <= -4; ++i) {
    __ dd(instruction_addiu);
  }
  __ jr(ra);                        // -3
  __ nop();                         // -2

  __ bind(&continue_1);
  __ balc(offset);                    // -1

  __ pop(ra);                         // 0, 1
  __ jr(ra);                          // 2
  __ nop();                           // 3

  for (int32_t i = 4; i <= 44; ++i) {
    __ dd(instruction_addiu);
  }
  __ jr(ra);
  __ nop();

  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());

  F2 f = FUNCTION_CAST<F2>(code->entry());

  int32_t res = reinterpret_cast<int32_t>(
      CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));

  return res;
}


uint32_t run_aui(uint32_t rs, uint16_t offset) {
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);

  MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);

  __ li(t0, rs);
  __ aui(v0, t0, offset);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());

  F2 f = FUNCTION_CAST<F2>(code->entry());

  uint32_t res =
    reinterpret_cast<uint32_t>
        (CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));

  return res;
}


TEST(r6_aui) {
  if (IsMipsArchVariant(kMips32r6)) {
    CcTest::InitializeVM();

    struct TestCaseAui {
      uint32_t   rs;
      uint16_t   offset;
      uint32_t   ref_res;
    };

    struct TestCaseAui tc[] = {
      // input, offset, result
      {0xfffeffff, 1, 0xffffffff},
      {0xffffffff, 0, 0xffffffff},
      {0, 0xffff, 0xffff0000},
      {0x0008ffff, 0xfff7, 0xffffffff},
      {32767, 32767, 0x7fff7fff},
      // overflow cases
      {0xffffffff, 0x1, 0x0000ffff},
      {0xffffffff, 0xffff, 0xfffeffff},
    };

    size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseAui);
    for (size_t i = 0; i < nr_test_cases; ++i) {
      PC = 0;
      uint32_t res = run_aui(tc[i].rs, tc[i].offset);
      CHECK_EQ(tc[i].ref_res, res);
    }
  }
}


TEST(r6_balc) {
  if (IsMipsArchVariant(kMips32r6)) {
    CcTest::InitializeVM();

    struct TestCaseBalc {
      int32_t   offset;
      int32_t   expected_res;
    };

    struct TestCaseBalc tc[] = {
      //  offset,   expected_result
      {     -117,   61  },
      {      -54,   51  },
      {        0,   0   },
      {        4,   41  },
    };

    size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseBalc);
    for (size_t i = 0; i < nr_test_cases; ++i) {
      int32_t res = run_balc(tc[i].offset);
      CHECK_EQ(tc[i].expected_res, res);
    }
  }
}


uint32_t run_bal(int16_t offset) {
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);

  MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);

  __ mov(t0, ra);
  __ bal(offset);       // Equivalent for "BGEZAL zero_reg, offset".
  __ nop();

  __ mov(ra, t0);
  __ jr(ra);
  __ nop();

  __ li(v0, 1);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());

  F2 f = FUNCTION_CAST<F2>(code->entry());

  uint32_t res = reinterpret_cast<uint32_t>(
      CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));

  return res;
}


TEST(bal) {
  CcTest::InitializeVM();

  struct TestCaseBal {
    int16_t  offset;
    uint32_t  expected_res;
  };

  struct TestCaseBal tc[] = {
    // offset, expected_res
    {       4,      1 },
  };

  size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseBal);
  for (size_t i = 0; i < nr_test_cases; ++i) {
    CHECK_EQ(tc[i].expected_res, run_bal(tc[i].offset));
  }
}


TEST(Trampoline) {
  // Private member of Assembler class.
  static const int kMaxBranchOffset = (1 << (18 - 1)) - 1;

  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);

  MacroAssembler assm(isolate, nullptr, 0,
                      v8::internal::CodeObjectRequired::kYes);
  Label done;
  size_t nr_calls = kMaxBranchOffset / (2 * Instruction::kInstrSize) + 2;

  for (size_t i = 0; i < nr_calls; ++i) {
    __ BranchShort(&done, eq, a0, Operand(a1));
  }
  __ bind(&done);
  __ Ret(USE_DELAY_SLOT);
  __ mov(v0, zero_reg);

  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
  F2 f = FUNCTION_CAST<F2>(code->entry());

  int32_t res = reinterpret_cast<int32_t>(
      CALL_GENERATED_CODE(isolate, f, 42, 42, 0, 0, 0));
  CHECK_EQ(res, 0);
}

#undef __